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Abstract

Some remarks are provided concerning the effects of geometrical transformations,
such as those encountered in a manufacturing process, on thestochastic character
of corresponding material properties. It is shown that, in general, even second-
order statistical properties are transformed in a non-trivial manner as the material
undergoes arbitrary transformation.
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1. Introduction

Recent developments and progress in computational stochastic mechanics require
consistent probabilistic models of material properties. Anumber of difficulties
appear in initial efforts at integrating stochastic modelswith computational me-
chanics tools due to both lack of experimental measurementsas well as lack of
methods for constructing physically consistent stochastic models for such materi-
als.

It is well known that finite deformations of a material, such as those occurring
during the manufacturing process, induce modifications of the material proper-
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ties which are generally highly complex and which cannot,a priori, be summa-
rized in just a geometrical transformation. This paper presents a framework for
investigating the manner in which stochastic properties ofheterogeneous mate-
rials are transformed under finite deformations, in considering not only the ge-
ometrical aspects but also the physical modifications of thematerial induced by
the finite deformation. More precisely, the analysis is focused on heterogeneous
materials that are assumed to be linear elastic in the undeformed configuration,
and which are transformed by a finite deformation into a heterogeneous material
for which the linear elastic properties are studied in the deformed configuration.
The statistical fluctuations in the properties of materials, whether in the deformed
or undeformed configurations, are induced by microstructure heterogeneity. The
proposed framework does not address situations involving phase transformation
during the processing stage. Thus for instance, while deformation of the fiber
reinforcement matrix during the manufacturing of composites is covered, the so-
lidification and curing of resin during that same process would require additional
analysis not covered in this paper. That analysis, however,would have to be car-
ried out using the consistent statistical descriptions of the fiber reinforcement as
described in this paper. Another example covered in the present paper involves
transformations induced by cold rolling and forming of metallic sheets. The re-
sults of this paper demonstrate that the properties of the statistical fluctuations of
material properties in the deformed configuration, including their probability den-
sity functions, correlation structure and stationarity, are functions of the manner in
which the deformation affects both the microstructure and the geometry. Devel-
oping multiscale statistical models for material properties must therefore take into
account the details of any large deformation to which the material has been sub-
jected. These properties will generally be different from the statistical properties
of the material in the undeformed stage.
The paper demonstrates that even with an elementary analysis of the material de-
formation process, some important properties of the statistical fluctuations can be
inferred. The paper stops short, however, of prescribing a procedure for synthe-
sizing the stochastic processes in the deformed stage.

2. Definition of the Problem

It is assumed that the data associated with the problem consist of a natural con-
figuration of a heterogeneous linear elastic material occupying domainΩ0 and a
manufacturing process, defined by a deterministic mappingf, which transforms
Ω0 into a deformed configurationΩ. It is further assumed that the statistical prop-
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erties of the parameters of the constitutive equation of thematerial atΩ0 are known
and can generally be deduced from an experimental identification. This statistical
behavior is typically induced by the interaction of the scale at which the constitu-
tive equation is described with subscales at which significant statistical variability
prevents a deterministic analysis. This behavior is prevalent in materials with ran-
dom microstructure [8, 9, 15]. The objective of the present analysis is then to
construct the statistical properties of the parameters of the constitutive equation
in the domain of linear elasticity of the heterogeneous material at the new de-
formed configurationΩ. Figure (1) depicts the basic elements of this problem.
The new configuration is then used as the new reference configuration for further
engineering analysis. It is indeed this new configuration that is often of interest as
it represents manufactured components to be used in design.
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Figure 1: Transformation fromΩ0 toΩ.

This problem is ubiquitous in the analysis of systems with stochastic materials for
which the statistical properties are required. For instance, stochastic finite element
analyses applied to manufactured components require knowledge of the statistical
properties of the material in the geometry corresponding toits manufactured con-
figurationΩ. These statistical properties are usually different from the properties
in Ω0.
Two cases will be shown to be relevant in this context. The first case corresponds
to the usual situation in deterministic continuum mechanics for which the material
properties in configurationΩ0 are transported to deformed configurationΩ. Such
a transport is defined by a deterministic linear pointwise operator depending on
each pointx in Ω0. This case corresponds to the situation for which the statistical
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properties of the random microstructure is not modified by mapping f defining
the manufacturing process. This does not mean that the statistical properties of
the material are the same for configurationsΩ0 andΩ, in view of the material
transport associated withf. The second case corresponds to the most general sit-
uations where mappingf induces such changes in the random microstructure that
the statistics of the material parameters are modified as domainΩ0 is transformed
into domainΩ. In this case, the material transformation is clearly a random oper-
ator which depends both onx and the random microstructure.
A choice has to be made at this point regarding the statistical modeling of the ran-
dom properties of the material in the natural configuration defined byΩ0. Clearly,
associating the randomness to the presence of a random microstructure leads the
parameters of the constitutive equation to be modeled as stochastic fields. From
the theory of probability, a stochastic field is completely described by its sys-
tem of joint distributions. Obviously, this system cannot be directly identified
from experimental data and an alternative characterization must be introduced.
It should however be noted that the response of systems for which the reference
configuration is the manufactured configurationΩ, is highly nonlinear with re-
spect to the material parameters such as Young modulus and Poisson coefficient
for an isotropic elastic medium. Consequently a second-order description of these
stochastic fields is not sufficient. Representations that provide an equivalent level
of information to that available through the system of jointdistributions is re-
quired. Such a representation is provided, for instance, through the polynomial
chaos decomposition. This representation will be used in the sequel.

3. Mathematical Characterization of the Transformations

Two transformations are significant to the present analysis. The first one deals
with the nonlinear mappingf which transforms the material domain from itsΩ0

to itsΩ configuration. The second transformation deals with the linear pointwise
operator which carries the material properties associatedwith Ω0 to those associ-
ated withΩ. We assume that the first mappingf is deterministic, while the second
mapping is potentially uncertain. This assumption assumesthat while the manu-
facturing process is controllable at the coarse scale, the modifications it imparts
on the substructure are not always predictable. This section defines the material
properties inΩ andΩ0 and highlights their characteristics. Following that, the
stochastic properties of the transformed material quantities are also analyzed.
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3.1. Defining the Nonlinear Mappingf

As defined above, letΩ0 be a bounded domain ofRn occupied by the material and
referring to its natural configuration. DomainΩ0 is equipped with the measure
dµ0(x). For instance ifΩ0 is a volume inR3, dµ0(x) is the Lebesgue measure in
R

3; if Ω0 is a surface inR3, dµ0(x) is the corresponding surface measure. Letf
be the mapping introduced above. To simplify the presentation, it is assumed that
this mappingf is one-to-one fromΩ0 onto a bounded domain,Ω, of Rn,

Ω0
f

−→ Ω

x f
7→ y = f(x) (1)

Consequently,f−1 exists fromΩ ontoΩ0. We assume furthermore thatf andf−1

are differentiable. These assumptions can be readily relaxed by defining this map-
ping in a piecewise manner over adjacent regions inΩ0 on which it is bijective;
this is essentially equivalent to using manifold theory. The measuredµ0(x) onΩ0

is transported byf into a measuredµ(y) onΩ such thatdµ(y) = dµ0(x). Using
equation (1) yields,

dµ(y) = |det[J(y)]| dµ0

(

f−1(y)
)

, (2)

in which det[J(y)] is the determinant of the jacobian matrix[J(y)] of transforma-
tion f−1. This jacobian matrix, assumed to be invertible, is given by,

[J(y)] = ∇y

(

f−1(y)
)

(3)

where∇y is the gradient with respect toy.

3.2. Transforming the Material Properties

Consider anRν-valued vectorU0(x) in the natural configurationΩ0 associated
with a tensorial quantity defined in a local coordinate system E0(x) depending on
pointx. The correspondingRν-valued vectorU(y) in deformed configurationΩ is
defined with respect to another coordinate systemE(y) which depends ony ∈ Ω.
A linear mapping can thus be defined fromRν into R

ν which mapsU0(x) into
U(y). This linear mapping is denoted by the deterministic or random ν × ν real
matrix [T (x)] such that,

U(y) = [T (x)]U0(x) , y = f(x) (4)
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For instance, vectorU0(x) could represent the vector consisting of the 21 constants
in the elasticity tensorC0(x), represented in coordinate systemE0(x) attached to
Ω0, and associated with a general nonhomogeneous anisotropicmaterial. More-
over, letC(y) denote the elasticity tensor corresponding toC0(x), in the deformed
configurationΩ. TensorC(y) is defined relative to a coordinate systemE(y) at-
tached toΩ. TheRν-valued vectorU(y) consists then of the 21 constants in tensor
C(y).
The two cases introduced in Section 4 correspond, respectively, to the cases where
matrix [T (x)] is deterministic and random.

4. Stochastic Properties of Transformed Material Properties

As explained above, the randomness in the transformed material properties must
be derived from either random properties in the natural configuration, or a random
evolution of the materials between the two configurations. The statistical charac-
terization of the material properties in the natural configuration, described in the
next subsection, is thus paramount for the characterization of these properties in
the deformed configuration.

4.1. Characterization of Stochastic Properties in NaturalConfiguration

If the material properties in the natural configuration, represented byU0(x), is a
deterministic vector, then the material properties in the deformed configuration,
U(y), remains deterministic. In the remainder of this section, it will be assumed
that{U0(x), x ∈ Ω0} is a second-order stochastic field, indexed byΩ0 with values
in R

ν . As indicated in Section 2, the Chaos decomposition ofU0(x) can be used
to represent it.

4.1.1. Chaos Decomposition ofU0(x)
Chaos decompositions provide representations of second-order random variables
and processes in terms of Hilbertian bases inL2 spaces of random variables.
The general infinite-dimensional theory provides for the representation of gen-
eral second-order variables and processes in terms of Wiener-Hermite polyno-
mials in gaussian random variables [16, 5, 14]. Generalizations, to the case of
other polynomials in non-Gaussian variables can be found in[12]. Procedures for
identifying the Chaos coefficients in such decompositions,based on experimental
data and combining statistical methods with inverse methods for boundary value
problems, have also been proposed recently [4, 6, 3, 1, 13, 7,10]
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Thus starting with experimental data in the natural configuration, ap-term Chaos
decomposition of the material properties,U0(x), in this configuration is written as

U0(x) =
p

∑

α=0

u0α(x)ψα(ξ) , (5)

whereξ is anRµ-valued random variable with a joint probability measurePξ(ds)
onRµ. In this equationψα(ξ) denotes the Hilbertian basis such that

ψ0 ≡ 1 〈ψα(ξ), ψβ(ξ)〉 = E{ψα(ξ)ψβ(ξ)} =

∫

Rµ

ψα(s)ψβ(s)Pξ(ds) = δαβ , (6)

whereδαβ denotes the Kronecker symbol. It is emphasized that asp, µ → ∞ the
characterization provided by the Chaos decomposition is completely equivalent to
that provided by the complete system of joint probability measures. While it is
clear that an expression foru0α(x) is given by

u0α(x) = E {U0(x)ψα(ξ)} , (7)

it should be noted that this expression cannot be used for thesake of identify-
ing u0α from experimental observations ofU0(x). Alternative identification tech-
niques have been developed for that task.

4.1.2. Second-Order Moments of Stochastic FieldU0(x)
From the Chaos representation given by equation (5) it follows that the mean
function ofU0(x), x 7→ mU0

(x) = E{U0(x)} fromΩ0 intoR
n is such that

mU0(x) = u00(x) . (8)

The autocorrelation function(x, x′) 7→ [RU0
(x,x′)] = E{U0(x)U0(x′)T}, from

Ω0 × Ω0 into the set ofn × n real matrices, associated with the(p, µ) Chaos
decomposition, is such that,

[RU0
(x, x′)] =

p
∑

α=0

u0α(x)u0α(x′)T (9)
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4.2. Case I: Statistically Invariant Material Properties under Manufacturing Pro-
cess

In this case, it is assumed that the statistical properties of the material are not
modified by the manufacturing process which means that equation (4) holds with
[T (x)] a deterministic matrix. The randomness inU(y), which will be character-
ized in this section, is solely dependent on the randomness in U0(x).

4.2.1. Chaos Decomposition ofU(y)
From equations (4) and (5) the Chaos decomposition ofU(y) can be deduced in
the form,

U(y) =
p

∑

α=0

uα(y)ψα(ξ) (10)

in which,

uα(y) = ([T (x)]u0α(x))x=f−1(y) . (11)

Thus, the terms in the Chaos representation ofU(y) are transformed individually
and identically by[T (x)]. It is noted here that this transformation of the statistical
content of the material properties becomes significant as the material undergoes
finite deformations.

4.2.2. Second-Order Moments of Stochastic FieldU(y)
From equation (4), it follows that the mean function ofU(y), y 7→ mU(y) =
E{U(y)} from Ω intoR

n is such that

mU(y) = {[T (x)]mU0
(x)}x=f−1(y) . (12)

From the Chaos representation given by equation (10),mU(y) can also be ex-
pressed as

mU(y) = u0(y) . (13)

The autocorrelation function(y, y′) 7→ [RU(y, y′)] = E{U(y)U(y′)T}, fromΩ×
Ω into the set ofn× n real matrices can be written as

[RU(y, y′)] =
(

[T (x)][RU0
(x, x′)][T (x′)T ]

)

x=f−1(y), x′=f−1(y′)
. (14)

Finally, the approximation of[RU(y, y′)] associated with the(p, µ) Chaos decom-
position ofU(y) given by equation (10) is
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[RU(y, y′)] =

p
∑

α=0

uα(y)uα(y
′)T . (15)

The identification of coefficientsuα(y) can be achieved either through direct mea-
surements ofU(y) in deformed configurationΩ or calculated using equation (11).
In the first case, the identification process is similar to that described foru0α(x) in
Section 4.1.1.

4.2.3. Second-Order Moments for Mean-Square Homogeneous Stochastic Field
U0(x)

Assume thatU0(x) is a second-order mean-square homogeneous stochastic field
indexed byRn with values inRν . Consequently,mU0

(x) is independent ofx and
autocorrelation function[RU0

(x, x′)] depends only onx − x′ and is rewritten as
RU0

(x − x′). From equation (12), it can be seen that the mean function ofU(y) is
written as,

mU(y) = [T (f−1(y))] mU0
. (16)

This equation shows clearly that the mean function ofU(y) will, in general, de-
pend ony. From equation (14), an expression for the autocorrelationfunction of
U(y) is deduced in the form

[RU(y, y′)] = [T (f−1(y))] [RU0

(

f−1(y)− f−1(y′)
)

] [T (f−1(y′))]T (17)

It is interesting to note that in general, the mean-square homogeneous character
of the stochastic field representing the material properties is not preserved under
general deformations induced by a manufacturing process. Three cases can be
identified in this context.

Rigid Body Motions:.In this case,x = f−1(y) = [Θ]y+ t where[Θ] andt denote
an arbitrary invertible real3×3 matrix and an arbitrary vector inR3, respectively.
It can moreover be shown that in this case,[T (x)] is the identity matrix. Therefore,
equations (16) and (17) yield,

mU(y) = mU0
, (18)

[RU(y, y′)] = [RU0
([Θ](y − y′)) ] (19)

These two equations show thatU(y) is a mean-square homogeneous stochastic
field onRn.
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Infinitesimal Deformations:.This case corresponds to modeling the manufactur-
ing process using linearized elasticity theory. While in this case,[T (x)] remains
the identity matrix, the mappingf(x) is now generally nonlinear. Equations (16)
and (17) now yield the following expressions for the mean andautocorrelation
functions,

mU(y) = mU0
(20)

[RU(y, y′)] = [RU0

(

f−1(y)− f−1(y′)
)

] . (21)

It is first noted here thatf−1(y)− f−1(y′) cannot, in general, be written asg(y−y′)
for someRn-valued functiong. It is interesting to observe that, in this case, while
the mean remains independent ofy, the autocorrelation function cannot now be
expressed as a function ofy− y′, and the processU(y) is clearly not mean-square
homogeneous. It should also be noted here that this situation is typical of many
problems that are common both in practice and in research.

Finite Deformation:.This case corresponds to modeling the manufacturing pro-
cess using nonlinear elasticity theory [2, 11, 17]. In this case,[T (x)] is no longer
the identity matrix and depends onx. Moreover, the mappingf(x) is also non-
linear. Equations (16) and (17) now remain in their most general form which are
given here again as

mU(y) = [T (f−1(y))] mU0
, (22)

[RU(y, y′)] = [T (f−1(y))] [RU0

(

f−1(y)− f−1(y′)
)

] [T (f−1(y′))]T . (23)

In this case it is also concluded that the processU(y) is not, in general, mean-
square homogeneous.

4.3. Case II: Random Evolution of Material Properties underManufacturing
Process

In this case, it is assumed that the statistical properties of the material are modified
by the manufacturing process which means that equation (4) holds with [T (x)] a
random matrix. The randomness inU(y), which will be characterized in this
section, now depends on the randomness in bothU0(x) and [T (x)]. This situa-
tion corresponds to problems where there is uncertainty in the evolution of any
given realization of the material properties between configurationsΩ0 andΩ. It
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is again reminded that in the present context, the microstructure is assumed to be
random. Two nominal cases present themselves, both leadingto a matrix[T (x)]
which is random. In the first case, the randomness of the microstructure does not
change during the manufacturing process, but the manufacturing process itself is
random. This case corresponds to matrix-valued random field{[T (x)], x ∈ Ω0}
being independent of theRn-valued random field{U0(x), x ∈ Ω}. In the sec-
ond case, the randomness of the microstructure changes during the manufactur-
ing process, in addition to the above-mentioned randomnessin the process itself.
This is the situation, for instance, when the manufacturingprocess induces new
interfaces, stress concentrations, or crack closures/openings in the microstructure.
This situation leads to statistical dependence between matrix-valued random field
{[T (x)], x ∈ Ω0} is independent ofRn-valued random field{U0(x), x ∈ Ω}.
Thus two cases will be considered in this section, corresponding to whether the
mapping[T (x)] is independent ofU0(x) or not.

4.3.1. Randomness of Microstructure Unchanged during Manufacturing Process
In this case, the matrix-valued random field{[T (x)], x ∈ Ω0} is independent of
R

n-valued random field{U0(x), x ∈ Ω}. Randomness in[T (x)] necessitates ex-
perimental measurements on deformed configurationΩ in order to identifyU(y)
stochastic field. In view of the statistical independence, independent measure-
ments can be justified onΩ0 to identify stochastic fieldU0(x) as explained in
Section 4.1.
For eachx fixed inΩ0 let U0(x, κj), j = 1, . . . , J beJ independent realizations of
U0(x). These correspond to different realizations of the random initial microstruc-
ture. Each realizationU0(x, κj) is transformed, during the same realizationθj of
the manufacturing process, intoU(y, θj, κj). From equation (4), it is deduced that

U(y, θj , κj) = [T (x, θj)]U0(x, κj) , y = f(x) (24)

in which [T (x, θj)] is a realization of random matrix[T (x)]. It is clear from the
above equation that the statistical identification of random matrix[T (x)] is an ex-
perimentally unrealistic problem. At each pointx, the same realization of the
manufacturing process must be applied to different realizations of the initial mi-
crostructure. This is clearly physically unrealizable, inthe context of a random
manufacturing process. Assuming that such a hurdle could beovercome, the es-
timation of a single almost surely invertible realization random matrix[T (x)] still
requires atν2 experimental observations. Thus for an anisotropic material for
whichν = 21, we need441 experimental tests.
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This analysis strongly suggests the need, in such problems,for ana priori stochas-
tic representation for the manufacturing process.

4.3.2. Randomness of Microstructure Evolving during Manufacturing Process
This last case to be considered addresses situations where the evolution of the
material parameters during the manufacturing process is statistically dependent
on the initial configuration of the microstructure. In this case, equation (4), can be
written down for a given experimental realization if the form,

U(y, θj , κj) = [T (x, θj, κj)]U0(x, κj) , y = f(x) , (25)

where now each realization of random matrix[T (x)], in addition of being de-
pendent onθj , also depends onκj . It is therefore obvious that the experimental
identification of models to be used in support of such analyses is quite unrealistic.

5. Conclusion

A detailed analysis has been presented of the analysis of stochastic processes used
in representing material properties. It has been found thatthe mathematical struc-
ture of these processes is highly dependent on the deformation processes that these
materials undergo. Two particular cases are worth noting. The first case deals with
problems where the statistical properties of the material microstructure do not
change during the manufacturing process. For this class of problems, a method
to characterize the probabilistic structure of these materials in their manufactured
configuration, which is the configuration used for numericalpredictions, has been
proposed. It should be noted that the probabilistic structure of the material proper-
ties in this configuration are not very intuitive and disagree with current practice.
The second class of problems deals with situations where thestatistical proper-
ties of the material microstructure change during the manufacturing process. A
treatment of these problems does not seem to be accessible toa direct experimen-
tal identification. This suggests the need for further investigations for modeling
the effects of the random microstructure at the macroscale.It is imperative in
developing such models to be mindful of the experimental identification process
required by such models. Recent developments in probabilistic models pave the
way for the modeling of random microstructure with minimal parametrization.
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