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Abstract

Some remarks are provided concerning the effects of gemakdtansformations,
such as those encountered in a manufacturing process, stotlieastic character
of corresponding material properties. It is shown that,eneyal, even second-
order statistical properties are transformed in a nonarimanner as the material
undergoes arbitrary transformation.
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1. Introduction

Recent developments and progress in computational stilwhaschanics require
consistent probabilistic models of material propertiesnuinber of difficulties

appear in initial efforts at integrating stochastic modeith computational me-
chanics tools due to both lack of experimental measurensntgell as lack of
methods for constructing physically consistent stochastidels for such materi-
als.

It is well known that finite deformations of a material, suchthose occurring
during the manufacturing process, induce modificationhefrhaterial proper-
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ties which are generally highly complex and which canagpyiori, be summa-
rized in just a geometrical transformation. This paper gnés a framework for
investigating the manner in which stochastic propertiekeierogeneous mate-
rials are transformed under finite deformations, in congigenot only the ge-
ometrical aspects but also the physical modifications oitlagerial induced by
the finite deformation. More precisely, the analysis is fBdion heterogeneous
materials that are assumed to be linear elastic in the undefbconfiguration,
and which are transformed by a finite deformation into a logfeneous material
for which the linear elastic properties are studied in thi@geed configuration.
The statistical fluctuations in the properties of matermaisether in the deformed
or undeformed configurations, are induced by microstredh@terogeneity. The
proposed framework does not address situations involvirag® transformation
during the processing stage. Thus for instance, while dedtion of the fiber
reinforcement matrix during the manufacturing of compassis covered, the so-
lidification and curing of resin during that same processldoequire additional
analysis not covered in this paper. That analysis, howewau|d have to be car-
ried out using the consistent statistical descriptionshefftber reinforcement as
described in this paper. Another example covered in theeptgsaper involves
transformations induced by cold rolling and forming of niietasheets. The re-
sults of this paper demonstrate that the properties of #itesstal fluctuations of
material properties in the deformed configuration, inahgdieir probability den-
sity functions, correlation structure and stationaritg, fanctions of the manner in
which the deformation affects both the microstructure dredgeometry. Devel-
oping multiscale statistical models for material proprtinust therefore take into
account the details of any large deformation to which theenthas been sub-
jected. These properties will generally be different frdra statistical properties
of the material in the undeformed stage.

The paper demonstrates that even with an elementary asalyie material de-
formation process, some important properties of the stzldluctuations can be
inferred. The paper stops short, however, of prescribingpaquure for synthe-
sizing the stochastic processes in the deformed stage.

2. Definition of the Problem

It is assumed that the data associated with the problemstasfsa natural con-
figuration of a heterogeneous linear elastic material ogiogpdomain(), and a
manufacturing process, defined by a deterministic mapfimghich transforms
Qg into a deformed configuratian. It is further assumed that the statistical prop-
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erties of the parameters of the constitutive equation ofritagerial at), are known
and can generally be deduced from an experimental idettittficar his statistical
behavior is typically induced by the interaction of the scall which the constitu-
tive equation is described with subscales at which sigmifistatistical variability
prevents a deterministic analysis. This behavior is peuah materials with ran-
dom microstructure [8, 9, 15]. The objective of the presardlysis is then to
construct the statistical properties of the parameterfi®fcbnstitutive equation
in the domain of linear elasticity of the heterogeneous neltat the new de-
formed configuratiorf2. Figure (1) depicts the basic elements of this problem.
The new configuration is then used as the new reference coatiigii for further
engineering analysis. Itis indeed this new configurati@n ihoften of interest as
it represents manufactured components to be used in design.

/
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Figure 1: Transformation frorfy, to .

This problem is ubiquitous in the analysis of systems wititclsastic materials for
which the statistical properties are required. For insgtastochastic finite element
analyses applied to manufactured components require kagwelof the statistical
properties of the material in the geometry correspondintstmanufactured con-
figuration(). These statistical properties are usually different fromproperties
in Q.

Two cases will be shown to be relevant in this context. Thé dmse corresponds
to the usual situation in deterministic continuum mechsfoc which the material
properties in configuratiof}, are transported to deformed configuratidonSuch
a transport is defined by a deterministic linear pointwiserafor depending on
each poink in €,. This case corresponds to the situation for which the $itzdis



properties of the random microstructure is not modified byjpiag f defining
the manufacturing process. This does not mean that thetstatiproperties of
the material are the same for configuratidaisand 2, in view of the material
transport associated wifh The second case corresponds to the most general sit-
uations where mappiniginduces such changes in the random microstructure that
the statistics of the material parameters are modified asohdng is transformed
into domain(2. In this case, the material transformation is clearly a cam@per-
ator which depends both onand the random microstructure.

A choice has to be made at this point regarding the statistiodeling of the ran-
dom properties of the material in the natural configuratiefirebd by(2,. Clearly,
associating the randomness to the presence of a randomstnictore leads the
parameters of the constitutive equation to be modeled atastic fields. From
the theory of probability, a stochastic field is completegscribed by its sys-
tem of joint distributions. Obviously, this system cannet diirectly identified
from experimental data and an alternative characterizatiast be introduced.
It should however be noted that the response of systems fahwhe reference
configuration is the manufactured configurati@nis highly nonlinear with re-
spect to the material parameters such as Young modulus assoRaoefficient
for an isotropic elastic medium. Consequently a seconératdscription of these
stochastic fields is not sufficient. Representations thatige an equivalent level
of information to that available through the system of jaimtributions is re-
quired. Such a representation is provided, for instangeutih the polynomial
chaos decomposition. This representation will be usedarséguel.

3. Mathematical Characterization of the Transformations

Two transformations are significant to the present analy$tse first one deals
with the nonlinear mappingwhich transforms the material domain from fig

to its ) configuration. The second transformation deals with thedlirpointwise
operator which carries the material properties associatdl(2, to those associ-
ated withQ2. We assume that the first mappifigs deterministic, while the second
mapping is potentially uncertain. This assumption assutmeswhile the manu-
facturing process is controllable at the coarse scale, thdiffoations it imparts
on the substructure are not always predictable. This sed&dines the material
properties inf2 and ), and highlights their characteristics. Following that, the
stochastic properties of the transformed material quastire also analyzed.



3.1. Defining the Nonlinear Mappirfg

As defined above, lé2, be a bounded domain &" occupied by the material and
referring to its natural configuration. Domaldy is equipped with the measure
duo(x). Forinstance if, is a volume inR?, duq(X) is the Lebesgue measure in
R3; if Qq is a surface irR3, duy(x) is the corresponding surface measure. fLet
be the mapping introduced above. To simplify the preseoiati is assumed that
this mapping is one-to-one fronf), onto a bounded domaif, of R",

QQ —= 0

x oy =f(x) (1)

Consequentlyf~! exists fromQ ontoQ,. We assume furthermore thiaandf '
are differentiable. These assumptions can be readilyedlay defining this map-
ping in a piecewise manner over adjacent regionQg4ron which it is bijective;
this is essentially equivalent to using manifold theorye Tineasure ., (x) on {2
is transported by into a measuré(y) on 2 such thatdu(y) = due(X). Using
equation (1) yields,

du(y) = |defJ ()] duo (F1(y)) (2)

in which def.J(y)] is the determinant of the jacobian matfiky)| of transforma-
tionf~!. This jacobian matrix, assumed to be invertible, is given by

[T(y)] = Vy (F(y)) 3)
whereV , is the gradient with respect §o

3.2. Transforming the Material Properties

Consider anR”-valued vectorU,(x) in the natural configuratiof), associated
with a tensorial quantity defined in a local coordinate sysfg(x) depending on
pointx. The correspondinB”-valued vectotJ(y) in deformed configuratiof? is
defined with respect to another coordinate sysfgg) which depends og € (.
A linear mapping can thus be defined frd&4 into R” which mapsU,(x) into
U(y). This linear mapping is denoted by the deterministic or cand x v real
matrix [T'(x)] such that,

U(y) = [T(X)]Uo(x) , Yy =1(x) (4)



For instance, vectdd,(x) could represent the vector consisting of the 21 constants
in the elasticity tensof,(x), represented in coordinate systégix) attached to

9, and associated with a general nonhomogeneous anisoimapéerial. More-
over, letC(y) denote the elasticity tensor correspondin@¢(x), in the deformed
configuration2. TensorC(y) is defined relative to a coordinate systéity) at-
tached td2. TheR”-valued vectotJ(y) consists then of the 21 constants in tensor
C(y).

The two cases introduced in Section 4 correspond, respégtio the cases where
matrix [7'(x)] is deterministic and random.

4. Stochastic Properties of Transformed Material Propertes

As explained above, the randomness in the transformed iagteoperties must
be derived from either random properties in the natural gondition, or a random
evolution of the materials between the two configuratiortse Statistical charac-
terization of the material properties in the natural confagion, described in the
next subsection, is thus paramount for the characterizatiadhese properties in
the deformed configuration.

4.1. Characterization of Stochastic Properties in NatuCainfiguration

If the material properties in the natural configuration resgnted byJ,(x), is a

deterministic vector, then the material properties in taotdmed configuration,
U(y), remains deterministic. In the remainder of this sectibmiili be assumed
that{U,(x), = € Q} is a second-order stochastic field, indexedlgwvith values

in R”. As indicated in Section 2, the Chaos decompositiobgf) can be used
to represent it.

4.1.1. Chaos Decomposition 0f(x)

Chaos decompositions provide representations of secated-candom variables
and processes in terms of Hilbertian based.thspaces of random variables.
The general infinite-dimensional theory provides for theresentation of gen-
eral second-order variables and processes in terms of Wiegrenite polyno-
mials in gaussian random variables [16, 5, 14]. Generabrzst to the case of
other polynomials in non-Gaussian variables can be foufitih Procedures for
identifying the Chaos coefficients in such decompositibased on experimental
data and combining statistical methods with inverse metliodboundary value
problems, have also been proposed recently [4, 6, 3, 1, 1B)7,



Thus starting with experimental data in the natural con&gan, ap-term Chaos
decomposition of the material propertiék,(x), in this configuration is written as

X) = Uga(X)¢a() (5)

where{ is anR#-valued random variable with a joint probability measeds)
onR*. In this equation), (&) denotes the Hilbertian basis such that

vo=1  (Ya(§) ¥s(8)) = E{tba(§)¥p(§)} = y Ya(8)(S)Pe(dS) = dag, (6)

whered, s denotes the Kronecker symbol. It is emphasized that as— oo the
characterization provided by the Chaos decompositionrigbetely equivalent to
that provided by the complete system of joint probabilityasiees. While it is
clear that an expression fag,(X) is given by

an(X> =E {UO(X)wa@)}v (7)

it should be noted that this expression cannot be used fosake of identify-
ing uq,, from experimental observations 0f)(x). Alternative identification tech-
niques have been developed for that task.

4.1.2. Second-Order Moments of Stochastic Figj(k)
From the Chaos representation given by equation (5) itvidlthat the mean
function ofUy(x), X — my,(x) = E{Uy(X)} from €, into R" is such that

My,x) = Uoo(X) - (8)

The autocorrelation functiofx, X') — [Ry, (X, x')] = E{Ug(X)Ue(x')T}, from
Qo x € into the set ofn x n real matrices, associated with thg 1) Chaos
decomposition, is such that,

[Ruy (x,X) Zum Uga (X (9)



4.2. Case |: Statistically Invariant Material Propertieader Manufacturing Pro-
cess

In this case, it is assumed that the statistical propertigheo material are not
modified by the manufacturing process which means that exu@t) holds with

[T'(x)] a deterministic matrix. The randomnesdUfy), which will be character-
ized in this section, is solely dependent on the randommadg(i).

4.2.1. Chaos Decomposition dfy)
From equations (4) and (5) the Chaos decompositiod (g can be deduced in
the form,

Uly) = > Ua(y)¢a($) (10)

in which,

Ua(Y) = ([T'0)]Uoa (X)) xg-1y) - (11)
Thus, the terms in the Chaos representatiod @f) are transformed individually
and identically by{7’(x)]. It is noted here that this transformation of the statistica
content of the material properties becomes significant @asrtaterial undergoes
finite deformations.

4.2.2. Second-Order Moments of Stochastic Figy)
From equation (4), it follows that the mean functionbfy), y — my(y) =
E{U(y)} from 2 into R" is such that

mu(y) = {[7°()]Mu, (X) b1y - (12)
From the Chaos representation given by equation (ZQ)y) can also be ex-
pressed as

my(y) = Uo(y) - (13)

The autocorrelation functiofy, y’) — [Ru(y,Y')] = E{U(y)U(y)T}, from Q x
Q) into the set ofr x n real matrices can be written as

[RU<y7 y/)] = ([T()(>][RU()()(7X/)][T(X/>T])x:f—l(y)7 x/=f~1(y") (14)

Finally, the approximation dfRy (y, y’)] associated with thép, 1) Chaos decom-
position ofU(y) given by equation (10) is
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[Ru(y, Y)] = ua(y)ua(y)". (15)

The identification of coefficients, (y) can be achieved either through direct mea-
surements ofJ(y) in deformed configuratiof® or calculated using equation (11).
In the first case, the identification process is similar ta tlescribed fou,, (X) in
Section 4.1.1.

4.2.3. Second-Order Moments for Mean-Square HomogendouakeStic Field
Uop(X)

Assume thatJ,(x) is a second-order mean-square homogeneous stochastic field

indexed byR™ with values inR”. Consequentlymy, (x) is independent ok and

autocorrelation functionRy, (x, x’)] depends only ox — x’ and is rewritten as

Ry, (x —x’). From equation (12), it can be seen that the mean functiti(f is

written as,

my(y) = [T(F(y)] my,. (16)

This equation shows clearly that the mean functiotJ¢f) will, in general, de-
pend ony. From equation (14), an expression for the autocorreldtiontion of
U(y) is deduced in the form

[Ru(y,y)] = [T(F'(W)] [Ru, (£ ) — ') [TE )" (@7

It is interesting to note that in general, the mean-squaredy@neous character
of the stochastic field representing the material propertienot preserved under
general deformations induced by a manufacturing proce$seelcases can be
identified in this context.

Rigid Body Motions:.In this casex = f~!(y) = [@]y + t where[©] andt denote
an arbitrary invertible real x 3 matrix and an arbitrary vector iR*, respectively.
It can moreover be shown that in this cal§gx)| is the identity matrix. Therefore,
equations (16) and (17) yield,

mU(y) = My, (18)

[Ru(y,Y)] = [Ru, (B)(y —Y)) ] (19)

These two equations show thidty) is a mean-square homogeneous stochastic
field onRR™.



Infinitesimal Deformations:This case corresponds to modeling the manufactur-
ing process using linearized elasticity theory. While iis ttase[T'(x)] remains
the identity matrix, the mappinffx) is now generally nonlinear. Equations (16)
and (17) now yield the following expressions for the mean aatbcorrelation
functions,

my(y) = my, (20)

[Ru(y,Y)] = [Ru, (FH(y) = £71(Y)] - (21)

Itis first noted here thdt*(y) —f~'(y’) cannot, in general, be written g&/ —y’)

for someR"-valued functiorg. It is interesting to observe that, in this case, while
the mean remains independentygfthe autocorrelation function cannot now be
expressed as a function pf- y’, and the procedd(y) is clearly not mean-square
homogeneous. It should also be noted here that this situstitypical of many
problems that are common both in practice and in research.

Finite Deformation:. This case corresponds to modeling the manufacturing pro-
cess using nonlinear elasticity theory [2, 11, 17]. In tlise[T'(x)] is no longer

the identity matrix and depends on Moreover, the mappin§(x) is also non-
linear. Equations (16) and (17) now remain in their most garferm which are
given here again as

my(y) = [T(F(y)] my,, (22)

[Ru(y,Y)] = [TE(Y)] [Ru, (1) =10 [TEGDT. (29)

In this case it is also concluded that the procgsg) is not, in general, mean-
square homogeneous.

4.3. Case II: Random Evolution of Material Properties undéanufacturing
Process

In this case, it is assumed that the statistical properfidtgeeanaterial are modified
by the manufacturing process which means that equationofds twith [T'(x)] a
random matrix. The randomness liy), which will be characterized in this
section, now depends on the randomness in hbilx) and[7T(x)]. This situa-
tion corresponds to problems where there is uncertainthenewolution of any
given realization of the material properties between caméiions(), and(2. It
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is again reminded that in the present context, the microitra is assumed to be
random. Two nominal cases present themselves, both letamgnatrix|[7'(X)]
which is random. In the first case, the randomness of the stiercture does not
change during the manufacturing process, but the manufiagtprocess itself is
random. This case corresponds to matrix-valued random {figltk)|, x € Qo }
being independent of thR"-valued random field Uy(x), x € Q}. In the sec-
ond case, the randomness of the microstructure changesgydhe manufactur-
ing process, in addition to the above-mentioned randomndsg process itself.
This is the situation, for instance, when the manufactupraress induces new
interfaces, stress concentrations, or crack closuresiiogein the microstructure.
This situation leads to statistical dependence betweenxnatiued random field
{IT(x)], x € Qp} isindependent dR"-valued random fieldUy(x), x € Q}.
Thus two cases will be considered in this section, corredipgnto whether the
mapping[7'(x)] is independent ofJ,(x) or not.

4.3.1. Randomness of Microstructure Unchanged during N&oturing Process
In this case, the matrix-valued random figld’(x)], x € €} is independent of
R"-valued random fieldUy(x), x € Q}. Randomness iff’(x)] necessitates ex-
perimental measurements on deformed configurdiiam order to identifyU(y)
stochastic field. In view of the statistical independencdependent measure-
ments can be justified of}, to identify stochastic fieldJy(x) as explained in
Section 4.1.

For eachx fixed in€) letUy (X, x;), 7 = 1,..., J beJ independent realizations of
Uo(x). These correspond to different realizations of the randotiai microstruc-
ture. Each realizatiol(x, ;) is transformed, during the same realizatéyrof
the manufacturing process, intkty, ¢;, x;). From equation (4), it is deduced that

U(y> Qj? Hj) = [T(Xv ej)]UO(Xv lij) Y= f(X) (24)

in which [T'(x, §,)] is a realization of random matri’(x)]. It is clear from the
above equation that the statistical identification of randoatrix[7'(x)] is an ex-
perimentally unrealistic problem. At each poitthe same realization of the
manufacturing process must be applied to different reidiza of the initial mi-
crostructure. This is clearly physically unrealizablethe context of a random
manufacturing process. Assuming that such a hurdle couttiercome, the es-
timation of a single almost surely invertible realizati@mdom matri{7'(x)] still
requires at/? experimental observations. Thus for an anisotropic meitéor
whichv = 21, we needi41 experimental tests.
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This analysis strongly suggests the need, in such probfemamna priori stochas-
tic representation for the manufacturing process.

4.3.2. Randomness of Microstructure Evolving during Maoturing Process
This last case to be considered addresses situations wieevolution of the
material parameters during the manufacturing processaistitally dependent
on the initial configuration of the microstructure. In thase, equation (4), can be
written down for a given experimental realization if therfgr

U(y, 05, k) = [T'(X, 05, 5)]Uo(X, ),y =F(X) , (25)
where now each realization of random matfix(x)], in addition of being de-

pendent ord;, also depends oR,. It is therefore obvious that the experimental
identification of models to be used in support of such analisquite unrealistic.

5. Conclusion

A detailed analysis has been presented of the analysisafadtic processes used
in representing material properties. It has been foundtktigamathematical struc-
ture of these processes is highly dependent on the defamatbcesses that these
materials undergo. Two particular cases are worth notihg.fifst case deals with
problems where the statistical properties of the materiatastructure do not
change during the manufacturing process. For this classodilgms, a method
to characterize the probabilistic structure of these na#ein their manufactured
configuration, which is the configuration used for numenmadictions, has been
proposed. It should be noted that the probabilistic stmgadfithe material proper-
ties in this configuration are not very intuitive and disagwath current practice.
The second class of problems deals with situations wherstttistical proper-
ties of the material microstructure change during the mactufing process. A
treatment of these problems does not seem to be accessitbrert experimen-
tal identification. This suggests the need for further itigasions for modeling
the effects of the random microstructure at the macroschiles imperative in
developing such models to be mindful of the experimentattifieation process
required by such models. Recent developments in probébiiedels pave the
way for the modeling of random microstructure with minimat@metrization.
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