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Abstract

This paper deals with a multiscale statistical inverse method for performing the
experimental identification of the elastic properties of materials at macroscale and
at mesoscale within the framework of a heterogeneous microstructure which is
modeled by a random elastic media. New methods are required for carrying out
such multiscale identification using experimental measurements of the displace-
ment fields carried out at macroscale and at mesoscale with only a single specimen
submitted to a given external load at macroscale. In this paper, for a heterogeneous
microstructure, a new identification method is presented and formulated within the
framework of the three-dimensional linear elasticity. It permits the identification
of the effective elasticity tensor at macroscale, and the identification of the tensor-
valued random field, which models the apparent elasticity field at mesoscale. A
validation is presented first with simulated experiments using a numerical model
based on the hypothesis of 2D-plane stresses. Then, we present the results given
by the proposed identification procedure for experimental measurements obtained
by digital image correlation (DIC) on cortical bone

Key words: Multiscale identification, heterogeneous microstructure, random
elasticity field, mesoscale, multiscale experiments

✩International Journal for Multiscale Computational Engineering, 2015, doi: 10.1615/IntJ-
MultCompEng.2015011435.

∗Corresponding author
Email address:christophe.desceliers@univ-paris-est.fr (C. Desceliers)

Preprint submitted to International Journal for Multiscale Computational Engineering



1. Introduction

The inverse methods devoted to the experimental identification of the elastic prop-
erties of materials at the macroscale and/or mesoscale havebeen extensively stud-
ied. The experimental identification of microstructural morphology by image
analysis began in the 1980s [35, 36, 37], and it has led to significant advances
in the identification of mechanical properties. We refer thereader, for instance,
to [16] for the identification of elastic moduli from displacement-force boundary
measurements, to [38, 57, 58, 31, 30, 47, 8, 33, 45, 46, 48, 34]for works devoted
to the displacement field measurements in micro and macromechanics using digi-
tal image correlation in 2D and 3D, including software developments, to [32, 11]
for aspects concerning multiscale full-field measurements, to [10] for aspects con-
cerning measurement errors in digital image correlation technique, to [22, 23, 9]
for inverse problems in elasticity and for the identification of elastic parameters
by using displacement field measurements, to [13, 12, 3, 41, 2, 4] for identifica-
tion methods of mechanical parameters from full-field measurements in linear and
nonlinear elasticity, and to [7, 24] for stochastic aspect of random media using a
moving-window technique.

Concerning the identification of stochastic models, the methodologies for statisti-
cal inverse problems in finite and infinite dimensions are numerous and have given
rise to numerous studies and publications. These methods make extensive use of
the formulations and the tools of the functional analysis for the boundary value
problems as well as those of probability theory, including mathematical statistics
(finite and infinite dimensional cases). Concerning the mathematical statistics,
one can refer to [40, 49] and to [15, 59, 55, 39] for the generalprinciples on the
statistical inverse problems. Early works on the statistical inverse identification
of stochastic fields for random elastic media, using partialand limited experimen-
tal data, have primarily be devoted to the identification of the hyperparameters
of prior stochastic models (such as the spatial correlation scales and the level of
statistical fluctuations) [19, 20, 1, 18, 17, 29], and then, methodologies have re-
cently been proposed for the identification of general stochastic representations
of random fields in high stochastic dimension [52, 53, 44, 43]. Those proba-
bilistic/statistical methods are able to solve the statistical inverse problems related
to the identification ofprior stochastic models for the apparent elastic fields at
mesoscale. Nevertheless, such experimental identification, which is carried out
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using measurements of the displacement fields at macroscaleand mesoscale on
a single specimen submitted to a given external load at macroscale, requires new
methods for identifying the statistical mean value of the random apparent elastic-
ity tensor at mesoscale and the other hyperparameters controlling itsprior stochas-
tic model as, for instance, the spatial correlation lengthsand the hyperparameters
allowing the statistical fluctuations of the stochastic field to be controlled.

The present paper is not devoted to the presentation of a new stochastic model
for representing the random elasticity field of a heterogeneous microstructure
at mesoscale. This work proposes a new methodology for identifying a prior
stochastic model of such random elasticity field using multiscale experimental
data performed on a single specimen. Taking into account themajor difficulty
of this challenging statistical inverse problem induced bythe high stochastic di-
mension of the tensor-valued random field to be identified, a parameterizedprior
stochastic model can be used in order to obtain a well-posed statistical inverse
problem. Taking into account the mathematical properties of the tensor-valued
random elasticity field of the heterogeneous elastic microstructure at mesoscale,
the model proposed in [50] has been used for validating the multiscale identifica-
tion.

In this paper, an identification method and its validation are presented using mul-
tiscale measurements. A new multiscale statistical inverse method is introduced
for a heterogeneous microstructure within the framework ofthe three-dimensional
linear elasticity. This method permits both the identification of the effective elas-
ticity tensor at macroscale and the identification of the tensor-valued random field
that models the apparent elasticity field at mesoscale. The methodology to per-
form the experimental identification of both the mean part and the statistical fluc-
tuations of a stochastic model of the elasticity field at mesoscale of a heteroge-
neous microstructure using experimental data for a single specimen, has not been
proposed in the literature. It should be noted that the random elasticity field is not
a real valued random field, but a tensor-valued random field for which the entries
of the tensor cannot be identified separately (entry by entry) due to algebraic prop-
erties that relate the entries. If a digital image correlation method was only used
at mesoscale, then the mean part of the stochastic model at mesoscale could not
be identified. Conversely, if a digital image correlation method was only used at
macroscale, then the statistical fluctuations of the stochastic model at mesoscale
could not be identified. Since, by assumptions, only a singlespecimen is exper-
imentally tested, a multiscale digital image correlation must simultaneously be
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used at mesoscale and at macroscale for the specimen submitted to a given load.
Such experimental procedure has specially been implemented and validated (see
[42]). Therefore, the complete statistical information (mean and fluctuations) of
the random elastic field at mesoscale must be transferred to the macroscale in or-
der to use the macroscale measurements for identifying the mean part. Such a
transfer of information is carried out by using a stochastichomogenization. These
considerations have led the authors to propose an innovative and new multiscale
experimental identification procedure.

In the presented work, a fundamental mechanical property isused: there ex-
ists a Representative Volume Element (RVE) that allows for aseparation of the
mesoscale with the macroscale. In the context of homogenization in microme-
chanics of heterogeneous materials, it is proved (see for instance [51] and refer-
ences included) that, if such a RVE exists, then there is no statistical fluctuations
at macroscale (with a very high level of probability), whichmeans that there ex-
ists a scale separation. By definition of a RVE, it is necessary that the random
elasticity field at mesoscale be ergodic and consequently, must be homogeneous
(stationary). For the class of materials considered in thiswork (cortical bone) this
hypothesis is experimentally verified. The statistical fluctuations of the cortical
bone at macroscale are negligible, and therefore, there exist a RVE, and thus the
hypothesis use (homogeneous random field at mesoscale) is reasonable. In ad-
dition, it should be noted that, if such a hypothesis was not verified, and taking
into account that only one specimen is tested, then the statistical inverse prob-
lem would be an ill-posed problem, because the statistical averaging could not be
done, due to the lack of the ergodic property.

It is assumed that the experimental measurements of the displacement field are
available at macroscale and at mesoscale. Theprior stochastic model is a non-
Gaussian tensor-valued random field adapted to the algebraic properties of the
3D-elasticity field and to the corresponding stochastic elliptic boundary value
problem. The hyperparameters of theprior stochastic model of the apparent elas-
ticity random field at mesoscale, are its statistical mean value, its spatial corre-
lation lengths and its level of statistical fluctuations. The identification of such a
stochastic model at mesoscale requires the knowledge of theeffective elasticity
tensor at macroscale, as well as the measurements of the displacements field at
the two scales, simultaneously, for one given specimen submitted to a given static
external load (as explained before).
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The theory is presented for the three-dimensional case. A numerical validation is
presented first for the 2D plane stresses using simulated experiments. Then, we
present the results given by the proposed identification procedure for experimental
measurements obtained on cortical bone.

In all this paper, the framework of the three-dimensional linear elasticity is used.
Consequently, and for instance, the terminology ”strain tensor” will be used in-
stead of ”linearized strain tensor”, etc.

2. Multiscale experimental configuration

The specimen (whose microstructure is complex and heterogeneous at microscale)
occupies a bounded macroscopic domainΩmacro in R

3 (the three-dimensional Eu-
clidean space). A surface force field,fmacro, is applied on a partΣmacro of the
boundary∂Ωmacro of Ωmacro. The other partΓmacro of ∂Ωmacro is fixed such that
there is no rigid body displacement. At macroscale, the measured displacement
field in Ωmacro is denoted byumacro

exp and its associated tensor-valued strain field is
denoted byεmacro

exp .

LetΩmeso be a subdomain of the specimen at mesoscale. It is assumed thatΩmeso is
a representative elementary volume (REV). Let∂Ωmeso be the boundary ofΩmeso.
Let umeso

exp be the experimental measurement of theR
3-valued displacement field in

Ωmeso at mesoscale. The associated tensor-valued strain field is denoted by 3
meso
exp .

It is assumed that the experimental measurements of displacement fieldumeso
exp are

obtained only for one subdomainΩmeso related to one specimen. The volume
average at mesoscale,3

meso
exp , of 3

meso
exp is introduced such that

3
meso
exp =

1

|Ωmeso|

∫

Ωmeso

3
meso
exp (x) dx , (1)

in whichx is the generic point inR3 and wheredx is the volume element. The level
of statistical fluctuations (around the volume average3

meso
exp ) of 3

meso
exp is estimated

by the quantityδmeso
exp defined by

δmeso
exp =

√

V meso
exp

‖ 3
meso
exp ‖F

, (2)

in which

V meso
exp =

1

|Ωmeso|

∫

Ωmeso

‖ 3
meso
exp (x)− 3

meso
exp ‖2F dx (3)

5



and where‖T‖F is the Frobenius norm such that, for any second-order tensor
T = {Tij}ij , one has

‖T‖2F =

3
∑

i=1

3
∑

j=1

T 2
ij . (4)

3. Multiscale statistical inverse problem

In a first subsection, numerical indicators used in the identification procedure are
defined. In the second subsection, the identification procedure is define for the
case of 2D plane stresses.

3.1. Construction of indicators for the identification procedure

At macroscale, a deterministic boundary value problem is introduced for a three-
dimensional linear elastic medium, which models the specimen in its experimen-
tal configuration (geometry, surface forces and Dirichlet conditions). At this
macroscale, the constitutive equation involves aprior model for the fourth-order
elasticity tensorCmacro(a) that is parameterized by a vectora. For a three-dimensional
anisotropic elastic material,a represents the21 constants of the fourth-order elas-
ticity tensor. The boundary value problem is formulated in displacement and
the solution is denoted byumacro (deterministicR

3-valued displacement field at
macroscale, which depends ona). The tensor-valued strain field associated with
umacro is denoted byεmacro and depends ona. TensorCmacro(a) is unknown and
must experimentally be identified, which means that the parametera must be iden-
tified using the measurements of the displacement field at macroscale. Conse-
quently, a first numerical indicatorI1(a) is introduced in order to quantify the
distance betweenεmacro

exp andεmacro(a). For a fixed value of parametera, this indi-
cator is defined by

I1(a) = |||εmacro
exp − εmacro(a)|||2 , (5)

in which

|||εmacro
exp − εmacro(a)|||2 =

∫

Ωmacro

‖εmacro
exp (x)− εmacro(x; a)‖2F dx . (6)

At mesoscale, two additional numerical indicators,I2(b) andI3(a, b), are con-
structed to identify the hyperparameterb involved in theprior tensor-valued ran-
dom field, Cmeso(b), which models the apparent elasticity random field that is
considered as the restriction to subdomainΩmeso of a statistically homogeneous
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random field{Cmeso(x; b), x ∈ R
3}.

Concerning the construction of the numerical indicatorI2(b), a stochastic bound-
ary value problem is introduced for a three-dimensional linear elastic random
medium occupying subdomainΩmeso, and for which the apparent elasticity ran-
dom field isCmeso(b). This stochastic boundary value problem is formulated in
displacement, and the solution is the random displacement field denoted byUmeso

(R3-valued random field) with the Dirichlet conditionUmeso = umeso
exp on boundary

∂Ωmeso. The tensor-valued random strain field associated withUmeso is denoted
by 3

meso. For any given hyperparameterb, the numerical indicatorI2(b) is defined
by

I2(b) =

∫

Ωmeso

(δmeso(x; b)− δmeso
exp )2 dx , (7)

in which δmeso
exp is defined by Eq. (2) and whereδmeso(x; b) is defined by

δmeso(x; b) =

√

V meso(x; b)

‖ 3
meso(b)‖F

, (8)

and where3
meso(b) andV meso(x; b) are such that

3
meso(b) =

1

|Ωmeso|

∫

Ωmeso

3
meso(x; b) dx , (9)

V meso(x; b) = E{‖ 3
meso(x; b)− 3

meso(b)‖2F} , (10)

in which E is the mathematical expectation. It should be noted that, for all b,
3
meso(b) = 3

meso
exp . Finally, the numerical indicatorI3(a, b) quantifies the distance

between the elasticity tensorCmacro(a) used in the deterministic boundary value
problem at macroscale, and the effective tensorCeff(b) calculated by homogeniza-
tion of the mesoscale stochastic model in subdomainΩmeso which is a REV. We
then have

I3(a, b) = ‖Cmacro(a)−E{Ceff(b)}‖2F . (11)

The identification of parametersa andb that describe the stochastic model of the
apparent elasticity random fieldCmeso(b) at mesoscale is obtained by solving a
multi-objective optimization problem for the three indicators I1(a), I2(b), and
I3(a, b).

3.2. Identification procedure for 2D plane stresses
In this section, we present the particular case of 2D plane stresses, which will be
the configuration of the experimental measurements presented in Section 5.
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3.2.1. Prior stochastic model of the apparent elasticity random field for 2D plane
stresses

In this subsection, aprior probabilistic model of the apparent elasticity random
field is constructed for the case of 2D plane stresses. Thisprior probabilistic
model will be used in the next sections (i) for the validationof the method in 2D
plane stresses (Section 4), and (ii) for the application of the method with experi-
mental measurements obtained through DIC method (Section 5).

At mesoscale, theprior stochastic model of the apparent elastic random fieldCmeso

is indexed by subdomainΩmeso which is assumed to be a REV. We are interested
in using a stochastic representation ofCmeso with a minimum of hyperparameters
(dimension of vectorb), which is adapted to the elliptic boundary value prob-
lem corresponding to the linear elastostatic problem. Parametric stochastic mod-
els have been proposed for real-valued stochastic fields [24, 6, 5, 21], and for
non-Gaussian tensor-valued random fields in the framework of the heterogeneous
anisotropic linear elasticity [50, 51, 56, 54, 14], with important enhancements to
take into account the material symmetry and the existence ofelasticity bounds
[25, 26, 27, 28]. Hereinafter, the stochastic model for the apparent elastic tensor-
valued random fieldCmeso is based on the model proposed in [50] for a heteroge-
neous anisotropic microstructure at the mesoscale.

In using the Voigt notation, for allx fixed inΩmeso, the random fourth-order elas-
ticity tensorCmeso(x) can be represented by a(6 × 6) real random matrix. The
strain random vector is then denoted by(ε11, ε22, 2 ε12, ε33, 2 ε23, 2 ε13) and the
associated random stress vector is denoted by(σ11, σ22, σ12, σ33, σ23, σ13). Such
numbering of those random vectors (that is not usual) has been chosen for the
sake of simplicity in 2D plane stresses, for which the(3× 3) compliance random
matrix [S2D(x)] corresponds to the first(3 × 3) block of the(6 × 6) compliance
random matrix[Smeso(x)] = [Cmeso(x)]−1 .

The prior stochastic model ofCmeso is then constructed in choosing[Smeso] =
{[Smeso(x)] , x ∈ Ωmeso} in the set SFE+ (defined in [50, 51, 54]) of the non-
Gaussian second-order stochastic fields with values in the set of all the positive-
definite symmetric(6 × 6) real matrices denoted byM+

6 (R). For all x in Ωmeso,
the mean value is a given matrix[Smeso] = E{[Smeso(x)]} in M

+
6 (R), which is as-

sumed independent ofx. TheM
+
6 (R)-valued random field{[Smeso(x)], x ∈ Ωmeso}

is parameterized by the symmetric matrix[Smeso], three spatial correlation lengths
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denoted byℓ1, ℓ2, ℓ3, and one positive dispersion coefficientδ that controls the
level of statistical fluctuations. Finally, an explicit generator of independent real-
izations (sample paths) of such a random field is completely defined in [50].

For the case of 2D plane stresses, for allx in Ωmeso, the random matrix[S2D(x)] is
defined as the left upper(3×3) block matrix of the random matrix[Smeso(x)]. Con-
sequently, theM+

3 (R)-valued random field{[S2D(x)], x ∈ Ωmeso} is parameterized
by the symmetric matrix[S2D] in M

+
3 (R) (left upper(3×3) block matrix of[Smeso]),

one spatial correlation lengthℓ = ℓ1 = ℓ2 and dispersion parameterδ. Theprior
model of the apparent elasticity random field[C2D] = {[C2D(x)] , x ∈ Ωmeso} with
values inM

+
3 (R) is thus constructed, for allx in Ωmeso, as

[C2D(x)] = [S2D(x)]−1 . (12)

Consequently, the hyperparameterb of the prior stochastic model of the appar-
ent elasticity random field[C2D(b)] = {[C2D(x; b)] , x ∈ Ωmeso} are b = (δ, ℓ,
algebraically independent parameters spanning the symmetric matrix [S2D]).

3.2.2. Multi-objective optimization problem for 2D plane stresses
The identification of hyperparameterb is carried out in searching for the optimal
valuesamacro andbmeso which solve the following multi-objective minimization
problem

(amacro, bmeso) = arg min
a∈Amacro , b∈Bmeso

I(a, b) , (13)

whereAmacro andBmeso are the sets of the admissible values fora andb, and where
the componentsI1(a), I2(b) andI3(a, b) of vectorI(a, b) are defined by Eqs. (5),
(7) and (11). Concerning the multi-objective optimization, if the material at
macroscale is assumed to be transverse isotropic and in 2D plane stresses, then the
vector-valued parametera = (Emacro

T , νmacro
T ) corresponds to the transverse Young

modulus and the transverse Poisson coefficient at macroscale. The hyperparam-
eterb will be defined later. The stochastic boundary value problemat mesoscale
is solved in using the finite element method. The Monte Carlo numerical method
is used to calculate the indicatorsI2(b) andI3(a, b) with a numberns of statisti-
cal independent realizations of the random elasticity field{[C2D(x)], x ∈ Ωmeso}.
The multi-objective optimization problem defined by Eq. (13) is solved by using
a genetic algorithm and the Pareto front is iteratively constructed at each gener-
ation of the genetic algorithm. The initial value of parameter a has been set to
a(0) and corresponds to the solution of the following partial optimization problem:
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a(0) = argmin I1(a) for a ∈ Amacro, which is solved with the simplex algorithm.
The optimal valuebmeso is then chosen as the point on the Pareto front that mini-
mizes the distance between the Pareto front and the origin.

4. Validation of the method for 2D plane stresses

The validation is performed within the framework of the linear elasticity for 2D
plane stresses. It should be noted that the two directions are observed when the
displacement fields are measured at macroscale and at mesoscale with a camera.

4.1. Construction of a simulated ”experimental” database

In order to validate the methodology, some ”experimental” measurements are sim-
ulated for the macroscale and the mesoscale by using a computational model. The
2D domain,Ωmacro, is defined in the plane(Ox1x2) as a square whose dimen-
sion of the edge ish = 10−2m. At mesoscale, the material is heterogeneous,
anisotropic and linear elastic. A line force directed along−x2, with an intensity
of 5× 10−2N/m, is applied on the edgex2 = h. The edgex2 = 0 is fixed. A 2D
plane stress state is assumed. At mesoscale, the 2D apparentelasticity field is con-
structed as a realization of theprior stochastic model of the random field[C2D(b)]
with ℓ = 1.25× 10−4m, δ = 0.4 and where the entries of[S2D] are defined using
[Smeso] which corresponds to a transverse isotropic linear elasticmedium,

[Smeso] =



















1
ET

− νT
ET

0 − νL
EL

0 0

− νT
ET

1
ET

0 0 0 0

0 0 2(1+νT )
ET

0 0 0

− νL
EL

− νL
EL

0 1
EL

0 0

0 0 0 0 1
GL

0

0 0 0 0 0 1
GL



















, (14)

with EL = 15.8 × 109 Pa, ET = 9.9 × 109 Pa, GL = 5.2 × 109 Pa, νL = 0.31
andνT = 0.38. Consequently, we have

[S2D] =







1
ET

− νT
ET

0

− νT
ET

1
ET

0

0 0 2(1+νT )
ET






. (15)

Thus, the vector-valued hyperparameterb is written asb = (δ, ℓ, ET , νT ). At
mesoscale, the realization of the apparent elasticity random field is simulated on
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the whole domainΩmacro.

A computational model is constructed with the finite elementmethod and a regu-
lar finite element mesh with one million quadrangle elements(1, 000 alongx1 and
1, 000 alongx2, see Fig. 1, left). The strain field is numerically simulatedin using
a finite element interpolation in a regular grid of nodes witha mesoscale resolution
on the whole domainΩmacro (see Fig. 1, center). Measurements of the strain field
εmacro
exp is simulated at macroscale in extracting the values of the displacement field

in a regular grid of10× 10 nodes and in using a finite element interpolation (see
Fig. 1, upper right). In addition, in the subdomain defined asa square with dimen-
sion10−3m (mesoscale), the measurements of the strain fieldεmeso

exp are simulated
at mesoscale in extracting the values of the displacement field in a regular grid of
100×100 nodes and in using a finite element interpolation (see Fig. 1,lower right).

Figure 2 shows the values of{εmacro
exp }22 for the simulated experimental strain field

at macroscale with a resolution10×10. The square in black dashed line represents
the considered mesoscale subdomain. Figure 3 shows the values of{εmeso

exp }22 for
the simulated experimental strain field at mesoscale with a resolution100× 100.

4.2. Numerical results and validation

At macroscale, theprior model of the material is chosen as a transverse isotropic
model. Consequently, for 2D plane stresses, the vector-valued parametera =
(Emacro

T , νmacro
T ) is made up of the transverse Young modulus and the transverse

Poisson coefficient. The optimal value ofa = (Emacro
T , νmacro

T ) is amacro = (9.565×
109 Pa , 0.3987). The finite element mesh of the subdomain at mesoscale is
(i) cartesian with a constant size in directionsx1 andx2, and (ii) made up of
9, 801 = 99 × 99 finite elements with 4 nodes. The total number of Gauss points
associated with the finite element mesh is39, 204. The convergence of the statisti-
cal estimators is reached for500 independent realizations of the random elasticity
field [C2D]. An initial population size of50 is used for the solving the optimization
problem defined by Eq. (13) with the genetic algorithm. Less than100 generations
has been enough for constructing the Pareto front which is iteratively constructed,
at each generation of the genetic algorithm. The value ofamacro is almost un-
changed through the iterations when the multi-objective problem is solved. The
computation has been performed with50 cores with a CPU at 2GHz, and has re-
quired120 hours of CPU time.
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Figure 1: Description of the methodology for the construction of the simulated experimental mea-
surements in using the finite element method at macroscale and at mesoscale: FE model of the
specimen at macroscale with a mesoscale resolution (left);component{11} of the strain field at
macroscale with a mesoscale resolution (center); component {11} of the strain field at macroscale
with a macroscale resolution (upper right); component{11} of the strain field at mesoscale with a
mesoscale resolution (lower right).

Table 1 shows the values ofb = (ℓ, δ, ET , νT ) for each point of the Pareto front
displayed in Fig. 4. The optimal values correspond to the points 5, 6, 7, 8 and
9 where points6 et 7 are close. The optimal valuebmeso is such thatℓmeso =
9.66 × 10−5m, δmeso = 0.37, Emeso

T = 1.023 × 1010 Pa, νmeso
T = 0.376. This

result yields a validation of the proposed methodology since this identified optimal
valuebmeso is very close to the valueb that has been used to construct the simulated
experimental database for whichℓ = 1.25×10−4m, δ = 0.4, ET = 9.9×109 Pa,
νT = 0.38.
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Figure 2: Component{εmacro
exp }22 of the simulated experimental strain field at macroscale with a

resolution10× 10.

5. Application of the method with multiscale experimental measurements

In this section, results are presented for the method with real multiscale exper-
imental measurements obtained by using a CCD camera coupledwith a micro-
scope and the digital image correlation (DIC) method for measuring the displace-
ment fields on one sample of cortical bone at macroscale and atmesoscale. The
measurements have been carried out at theLaboratory of Solid Mechanicsof
Ecole Polytechnique, and all the details concerning these multiscale experiments
are presented in [42].

5.1. Multiscale experimental database

The DIC method allows the displacement field on an enlightened face of a sample
under external loads to be measured for a given resolution ofthe camera and of the
speckle pattern. The displacement field is obtained by comparing two images of
the enlightened face, the first one when the sample is undeformed (image of ref-
erence) and the second image when the sample is deformed by the external loads
(deformed image). Fig. 5 shows the images obtained for a sample of cortical bone.
The comparison of the images is based on the correlation of the images under the
assumption that the contrast is conserved locally in a vicinity of the points where
the displacement is measured.

13



0 2 4 6 8 10

x 10
−4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−3

m

m

 

 

−7

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

x 10
−3

Figure 3: Component{εmeso
exp }22 of the simulated experimental strain field at mesoscale witha

resolution100× 100.

The experimental configuration for one sample of cortical bone, which came from
beef femur, is the same as for the example presented in section 4. The uniaxial
load had to be limited to9 000N in order to be in the elastic domain of the sam-
ple. A resolution of10 × 10 points at macroscale, and a resolution of100 × 100
points at mesoscale are used to identify the displacement fields at mesoscale and
at macroscale. Fig. 6 and Fig. 7 display the identified displacement fields along
directionsx1 andx2 at macroscale. Fig. 8 and Fig. 9 display the identified dis-
placement fields along directionsx1 andx2 at mesoscale.

5.2. Numerical results

The optimal value ofa = (Emacro
T , νmacro

T ) is amacro = (6.74 × 109 Pa , 0.32).
The parameters of the method (finite element mesh size, number of independent
realizations, initial population size for the genetic algorithm) are the same than
in Section 4.2. Less than100 generations has been enough for constructing the
Pareto front which is iteratively constructed, at each generation of the genetic al-
gorithm.

For each point of the Pareto front, displayed in Fig. 10, the values ofb = (ℓ, δ, ET , νT )
are summarized in Tab 2. The ninth point of the Pareto front minimizes the dis-
tance to the origin. Its optimal components areℓmeso = 5.06 × 10−5m, δmeso =
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Table 1: Optimization results of the genetic algorithm
k I2(b) I3(a,b) ℓ δ ET νT
1 5.006529×10−9 2.311672×10−1 1.886667×10−4 0.400000 1.023000×1010 0.392667
2 5.006529×10−9 9.477024×10−2 2.500000×10−4 0.400000 1.023000×1010 0.392667
3 5.010827×10−9 9.469903×10−2 9.666667×10−5 0.366667 1.023000×1010 0.376200
4 5.132208×10−9 9.201960×10−2 1.273333×10−4 0.383333 1.023000×1010 0.392667
5 5.240100×10−9 3.467300×10−2 9.666667×10−5 0.366667 1.023000×1010 0.359733
6 5.259407×10−9 2.455275×10−2 5.066667×10−5 0.350000 8.943000×109 0.293867
7 5.259407×10−9 2.455275×10−2 9.666667×10−5 0.366667 1.023000×1010 0.376200
8 5.386876×10−9 2.064010×10−2 5.066667×10−5 0.350000 8.943000×109 0.310333
9 5.490529×10−9 1.968774×10−2 5.066667×10−5 0.350000 1.237500×1010 0.293867
10 6.57386×10−9 1.962839×10−2 2.193333×10−4 0.400000 1.023000×1010 0.392667
11 6.895467×10−9 1.885624×10−2 2.500000×10−4 0.383333 1.023000×1010 0.392667
12 7.254986×10−9 1.759584×10−2 2.500000×10−4 0.333333 1.023000×1010 0.392667
13 7.567184×10−9 1.688894×10−2 9.666667×10−5 0.383333 1.023000×1010 0.392667
14 7.996816×10−9 1.623193×10−2 2.000000×10−5 0.350000 8.943000×109 0.310333
15 9.129340×10−9 1.507042×10−2 2.500000×10−4 0.366667 1.023000×1010 0.392667
16 9.368447×10−9 1.333442×10−2 1.273333×10−4 0.266667 1.023000×1010 0.392667

0.28, Emeso
T = 6.96× 109 Pa, νmeso

T = 0.37. This optimal solution yields a spatial
correlation length equal to5.06× 10−5m which is in agreement with the assump-
tion introduced concerning the separation of the scales. This length is also of the
same order of magnitude than the distance between adjacent lamellae or osteons
in cortical bovine femur.

Table 2: Optimization in using the genetic algorithm with experimental data
k I2(b) I3(a,b) ℓ δ ET νT
1 9.905566×10−4 1.130759×10−1 5.066667×10−5 0.300000 6.964455×109 0.399180
2 9.905566 × 10−4 5.529077 × 10−2 5.066667 × 10−5 0.300000 6.964455 × 109 0.385342
3 9.905566 × 10−4 5.529077 × 10−2 5.066667 × 10−5 0.300000 6.964455 × 109 0.399180
4 9.923024 × 10−4 4.566584 × 10−2 5.066667 × 10−5 0.300000 6.964455 × 109 0.371504
5 9.942891 × 10−4 3.721737 × 10−2 5.066667 × 10−5 0.300000 6.964455 × 109 0.371504
6 9.942891 × 10−4 3.721737 × 10−2 5.066667 × 10−5 0.266667 6.964455 × 109 0.371504
7 9.943808 × 10−4 3.707802 × 10−2 5.066667 × 10−5 0.300000 6.380340 × 109 0.399180
8 9.947595 × 10−4 3.698333 × 10−2 1.426667 × 10−4 0.383333 6.672398 × 109 0.316151
9 9.965090×10−4 3.092503×10−2 5.066667×10−5 0.283333 6.964455×109 0.371504
10 9.989547 × 10−4 2.826733 × 10−2 2.040000 × 10−4 0.416667 6.672398 × 109 0.343827
11 1.009211 × 10−3 2.125592 × 10−2 2.040000 × 10−4 0.483333 6.672398 × 109 0.343827
12 1.011463 × 10−3 2.064572 × 10−2 5.066667 × 10−5 0.300000 6.964455 × 109 0.357666
13 1.019979 × 10−3 1.925469 × 10−2 5.066667 × 10−5 0.300000 6.964455 × 109 0.343827
14 1.023436 × 10−3 1.901348 × 10−2 2.040000 × 10−4 0.500000 6.672398 × 109 0.343827
15 1.024812 × 10−3 2.645432 × 10−3 2.040000 × 10−4 0.433333 6.672398 × 109 0.343827

6. Conclusions

In the framework of the linear elasticity, a multiscale inverse statistical method has
been presented for the identification of a stochastic model of the apparent elasticity
random field at mesoscale for a heterogeneous microstructure using experimental
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Figure 4: Pareto front for the numerical indicatorsI2(b) andI3(a, b).

Figure 5: Comparison between a reference image (left) and a deformed image (right) at macroscale
for a cubic cortical bovine bone sample.

measurements at macroscale and at mesoscale. Aprior stochastic model depend-
ing of a hyperparameter has been proposed for the apparent elasticity random
field at mesoscale in the case of 2D plane stresses. The identification procedure
has been formulated as a multi-objective minimization problem with respect to
the parameter of the elastic model at macroscale and the hyperparameter of the
prior stochastic model at mesoscale. The optimal value of the parameter and the
hyperparameter corresponds to the point that minimizes thedistance of a Pareto
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Figure 6: Component{umacro
exp }1 in directionx1 (horizontal) for the experimental displacement at

macroscale: in color (left) and in black and white (right).
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Figure 7: Component{umacro
exp }2 in directionx2 (vertical) for the experimental displacement at

macroscale: in color (left) and in black and white (right).
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Figure 8: Component{umeso
exp }1 in directionx1 (horizontal) for the experimental displacement at

mesoscale: in color (left) and in black and white (right).

front to the origin. The proposed statistical inverse method has been validated
with a simulated experimental database and results have been presented in the
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exp }2 in directionx2 (vertical) for the experimental displacement at

mesoscale: in color (left) and in black and white (right).

case of experimental measurements obtained by the DIC method on one sample
of cortical bone observed by a CCD camera at both macroscale and mesoscale.
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aléatoires. In Homoǵeńeisation en ḿecanique des matériaux 1, Hermès Sci-
ence Publications, 2001.

[38] Kahnjetter, Z. L., Jha, N. K., and Bhatia, H., Optimal image correlation in
experimental mechanics,Optical Engineering, vol. 33, pp. 1099–1105, 1994.

[39] Kaipio, J. and Somersalo, E.,Statistical and Computational Inverse Prob-
lems, Springer-Verlag, New York, 2005.

[40] Lawson, C. L. and Hanson, R. J.,Solving Least Squares Problems, Prentice-
Hall, 1974.

[41] Madi, K., Forest, S., Boussuge, M., Gailliegue, S., Lataste, E., Buffiere, J.-
Y., Bernard, D., and Jeulin, D., Finite element simulationsof the deformation
of fused-cast refractories based on x-ray computed tomography,Computational
Materials Science, vol. 39, pp. 224–229, 2007.

22



[42] Nguyen, M. T., Allain, J. M., Gharbi, H., Desceliers, C., and Soize, C., Ex-
perimental measurements for identification of the elasticity field at mesoscale
of a heterogeneous microstructure by multiscale digital image correlation,Ex-
perimental Mechanics, Submitted September 2014.

[43] Nouy, A., and Soize, C., Random fields representations for stochastic elliptic
boundary value problems and statistical inverse problems,European Journal of
Applied Mathematics, online, pp. 1–35, 21 March 2014.

[44] Perrin, G., Soize, C., Duhamel, D., and Funfschilling,C., Identification of
polynomial chaos representations in high dimension from a set of realizations,
SIAM Journal on Scientific Computing, vol. 34, pp. A2917–A2945, 2012.

[45] Rethore, J., Tinnes, J.-P., Roux, S., Buffiere, J.-Y., and Hild, F., Ex-
tended three-dimensional digital image correlation (X3D-DIC), Comptes Ren-
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