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Abstract

This paper deals with a multiscale statistical inverse wetior performing the
experimental identification of the elastic properties ofenals at macroscale and
at mesoscale within the framework of a heterogeneous ntiaasare which is
modeled by a random elastic media. New methods are requrezhfrying out
such multiscale identification using experimental measergs of the displace-
ment fields carried out at macroscale and at mesoscale witla@mgle specimen
submitted to a given external load at macroscale. In thispém a heterogeneous
microstructure, a new identification method is presenteldamulated within the
framework of the three-dimensional linear elasticity. érqits the identification
of the effective elasticity tensor at macroscale, and tbeatification of the tensor-
valued random field, which models the apparent elasticitgl ¢ mesoscale. A
validation is presented first with simulated experimentagia numerical model
based on the hypothesis of 2D-plane stresses. Then, wenpteegesults given
by the proposed identification procedure for experimentdsnrements obtained
by digital image correlation (DIC) on cortical bone
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1. Introduction

The inverse methods devoted to the experimental identdicaf the elastic prop-
erties of materials at the macroscale and/or mesoscaleieaveextensively stud-
ied. The experimental identification of microstructural rpimlogy by image
analysis began in the 1980s [35, 36, 37], and it has led tafgignt advances
in the identification of mechanical properties. We refer tia@der, for instance,
to [16] for the identification of elastic moduli from dispkment-force boundary
measurements, to [38, 57, 58, 31, 30, 47, 8, 33, 45, 46, 48pBorks devoted
to the displacement field measurements in micro and mactuenés using digi-
tal image correlation in 2D and 3D, including software depehents, to [32, 11]
for aspects concerning multiscale full-field measuremeafd.0] for aspects con-
cerning measurement errors in digital image correlatichrigue, to [22, 23, 9]
for inverse problems in elasticity and for the identificatiof elastic parameters
by using displacement field measurements, to [13, 12, 3, 4], f&r identifica-
tion methods of mechanical parameters from full-field mearsents in linear and
nonlinear elasticity, and to [7, 24] for stochastic aspéetadom media using a
moving-window technique.

Concerning the identification of stochastic models, thenoddlogies for statisti-
cal inverse problems in finite and infinite dimensions are enaus and have given
rise to numerous studies and publications. These methokis exéensive use of
the formulations and the tools of the functional analysistfie boundary value
problems as well as those of probability theory, includinatimematical statistics
(finite and infinite dimensional cases). Concerning the eratitical statistics,
one can refer to [40, 49] and to [15, 59, 55, 39] for the generalciples on the
statistical inverse problems. Early works on the sta@stioverse identification
of stochastic fields for random elastic media, using paatia limited experimen-
tal data, have primarily be devoted to the identificationred hyperparameters
of prior stochastic models (such as the spatial correlation scatbshe level of
statistical fluctuations) [19, 20, 1, 18, 17, 29], and theethndologies have re-
cently been proposed for the identification of general sistib representations
of random fields in high stochastic dimension [52, 53, 44, 4Bhose proba-
bilistic/statistical methods are able to solve the stiatitnverse problems related
to the identification ofrior stochastic models for the apparent elastic fields at
mesoscale. Nevertheless, such experimental identificatvbich is carried out



using measurements of the displacement fields at macroacdlenesoscale on
a single specimen submitted to a given external load at reeal®, requires new
methods for identifying the statistical mean value of thed@m apparent elastic-
ity tensor at mesoscale and the other hyperparameter®tmgits prior stochas-
tic model as, for instance, the spatial correlation lengtisthe hyperparameters
allowing the statistical fluctuations of the stochastiafi be controlled.

The present paper is not devoted to the presentation of a toahastic model
for representing the random elasticity field of a heterogesemicrostructure
at mesoscale. This work proposes a new methodology forifgenf a prior
stochastic model of such random elasticity field using racdtie experimental
data performed on a single specimen. Taking into accounimier difficulty
of this challenging statistical inverse problem inducedhwsy high stochastic di-
mension of the tensor-valued random field to be identifie@rampeterizegrior
stochastic model can be used in order to obtain a well-posgistgcal inverse
problem. Taking into account the mathematical propertieth® tensor-valued
random elasticity field of the heterogeneous elastic mionoture at mesoscale,
the model proposed in [50] has been used for validating tHésuoale identifica-
tion.

In this paper, an identification method and its validation @resented using mul-
tiscale measurements. A new multiscale statistical imversthod is introduced
for a heterogeneous microstructure within the framewotkethree-dimensional
linear elasticity. This method permits both the identificatof the effective elas-

ticity tensor at macroscale and the identification of thedetvalued random field
that models the apparent elasticity field at mesoscale. Tétbadology to per-

form the experimental identification of both the mean pad e statistical fluc-

tuations of a stochastic model of the elasticity field at nseate of a heteroge-
neous microstructure using experimental data for a sirmggeimen, has not been
proposed in the literature. It should be noted that the ramelasticity field is not

a real valued random field, but a tensor-valued random field/Fach the entries

of the tensor cannot be identified separately (entry by ¢dtrg to algebraic prop-
erties that relate the entries. If a digital image correlatnethod was only used
at mesoscale, then the mean part of the stochastic modelsaisgae could not
be identified. Conversely, if a digital image correlationthoel was only used at
macroscale, then the statistical fluctuations of the st&tahanodel at mesoscale
could not be identified. Since, by assumptions, only a sisgkrimen is exper-
imentally tested, a multiscale digital image correlationstnsimultaneously be
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used at mesoscale and at macroscale for the specimen stbtoith given load.

Such experimental procedure has specially been implenhamte validated (see
[42]). Therefore, the complete statistical informatiore@m and fluctuations) of
the random elastic field at mesoscale must be transferrde: tmacroscale in or-
der to use the macroscale measurements for identifying genrpart. Such a
transfer of information is carried out by using a stochastimogenization. These
considerations have led the authors to propose an innevatig new multiscale
experimental identification procedure.

In the presented work, a fundamental mechanical propertysésl: there ex-
ists a Representative Volume Element (RVE) that allows feeparation of the
mesoscale with the macroscale. In the context of homogeoizan microme-
chanics of heterogeneous materials, it is proved (see $bamce [51] and refer-
ences included) that, if such a RVE exists, then there isatgsttal fluctuations
at macroscale (with a very high level of probability), whicteans that there ex-
ists a scale separation. By definition of a RVE, it is necgstaat the random
elasticity field at mesoscale be ergodic and consequentigt be homogeneous
(stationary). For the class of materials considered invioidk (cortical bone) this
hypothesis is experimentally verified. The statisticaltilations of the cortical
bone at macroscale are negligible, and therefore, thest @&RVE, and thus the
hypothesis use (homogeneous random field at mesoscalggsisnable. In ad-
dition, it should be noted that, if such a hypothesis was moified, and taking
into account that only one specimen is tested, then thesttati inverse prob-
lem would be an ill-posed problem, because the statistiGabging could not be
done, due to the lack of the ergodic property.

It is assumed that the experimental measurements of th&adepent field are
available at macroscale and at mesoscale. griwg stochastic model is a non-
Gaussian tensor-valued random field adapted to the algepraperties of the
3D-elasticity field and to the corresponding stochastipttl boundary value
problem. The hyperparameters of fréor stochastic model of the apparent elas-
ticity random field at mesoscale, are its statistical meduneyats spatial corre-
lation lengths and its level of statistical fluctuations.eTitlentification of such a
stochastic model at mesoscale requires the knowledge dftbetive elasticity
tensor at macroscale, as well as the measurements of tHaadisgents field at
the two scales, simultaneously, for one given specimen gtéahio a given static
external load (as explained before).



The theory is presented for the three-dimensional case.mengal validation is

presented first for the 2D plane stresses using simulateeriexgnts. Then, we
present the results given by the proposed identificatiooqutore for experimental
measurements obtained on cortical bone.

In all this paper, the framework of the three-dimensionadir elasticity is used.
Consequently, and for instance, the terminology "stramsoe” will be used in-
stead of "linearized strain tensor”, etc.

2. Multiscale experimental configuration

The specimen (whose microstructure is complex and heteemyes at microscale)
occupies a bounded macroscopic donfaiti in r? (the three-dimensional Eu-
clidean space). A surface force field;*, is applied on a parE™* of the
boundaryoQ)™a<re of ()™ar°. The other part™2 of 9Q)™<° is fixed such that
there is no rigid body displacement. At macroscale, the oreasdisplacement
field in Q™2 is denoted by ;5" and its associated tensor-valued strain field is
denoted by,

Let(2™*° be a subdomain of the specimen at mesoscale. Itis assuntér’tfais

a representative elementary volume (REV). 88t"**° be the boundary df™°.
Letug® be the experimental measurement of thevalued displacement field in
Qmese at mesoscale. The associated tensor-valued strain fiekhisted by °.

It is assumed that the experimental measurements of despkat fielduf, > are

obtained only for one subdomaia™*° related to one specimen. The volume
average at mesoscalg,;°, of <, is introduced such that

exp

1
EI’HESO — EI’HESO(X) dx7 (1)

—exp ()meso €Xp
Qmeso

in whichx is the generic point ir® and whereix is the volume element. The level
of statistical fluctuations (around the volume averdgfg’) of <5 is estimated
by the quantityy2s° defined by

exp
/Vmeso
5mebo _ V &p ( 2)

T lexgells

in which

1
Vmeso _

exp ‘ ()meso | (meso

et (%) — el dx 3)

exp Lexp
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and where||T'||r is the Frobenius norm such that, for any second-order tensor

T = {T;;}:;, one has
3 3
ITlE=>_> 75 (@)

i=1 j=1

3. Multiscale statistical inverse problem

In a first subsection, numerical indicators used in the ifleation procedure are
defined. In the second subsection, the identification proees define for the
case of 2D plane stresses.

3.1. Construction of indicators for the identification peattire

At macroscale, a deterministic boundary value problemtr®duced for a three-
dimensional linear elastic medium, which models the spenim its experimen-
tal configuration (geometry, surface forces and Dirichlehditions). At this
macroscale, the constitutive equation involvgsiar model for the fourth-order
elasticity tenso€™2<"°(a) that is parameterized by a vector~or a three-dimensional
anisotropic elastic materiad,represents th2l constants of the fourth-order elas-
ticity tensor. The boundary value problem is formulated ispthcement and
the solution is denoted by™*° (deterministicr3-valued displacement field at
macroscale, which depends an The tensor-valued strain field associated with
u™are js denoted by:™* and depends oa TensorC™°(a) is unknown and
must experimentally be identified, which means that thematara must be iden-
tified using the measurements of the displacement field atoseale. Conse-
quently, a first numerical indicatdf, (a) is introduced in order to quantify the
distance betweerf;> ande™*“**(a). For a fixed value of parameteythis indi-
cator is defined by

Ti(a) = |llesy™ — ™ (a)llI* (5)

exp

in which
ety — em(@)||” = / lemro() =™ (x;a) [ dx.  (6)

At mesoscale, two additional numerical indicatafs(b) andZ;(a, b), are con-
structed to identify the hyperparameteinvolved in theprior tensor-valued ran-
dom field, c™*°(b), which models the apparent elasticity random field that is
considered as the restriction to subdom@irf*° of a statistically homogeneous



random field{c™*°(x; b),x € R3}.

Concerning the construction of the numerical indic&idb), a stochastic bound-
ary value problem is introduced for a three-dimensionadmelastic random
medium occupying subdomain™*°, and for which the apparent elasticity ran-
dom field isc™*°(b). This stochastic boundary value problem is formulated in
displacement, and the solution is the random displacenedtdenoted by™°
(r*-valued random field) with the Dirichlet conditiar®e® = Ugen” ON boundary
oQ™ee, The tensor-valued random strain field associated witfi® is denoted
by «™e°. For any given hyperparameterthe numerical indicatdz, (b) is defined

by

To(b) = / (6750 (x; b) — 602 dx 7)
in which 6:; is defined by Eq. (2) and whet&'*°(x; b) is defined by
] Vmeso(x. b)
5 (x;b) = Yoo ®)
e (b) |
and where™*°(b) andV™*°(x; b) are such that
1
EI’HBSO(b) — / EmESO(X; b) dx7 (9)
‘Qmeso| meso
ViR (xb) = E{[|e™=(x;b) — **°(b) |7}, (10)

in which E is the mathematical expectation. It should be noted thatalio,
£"°(b) = g5 Finally, the numerical indicatdf;(a, b) quantifies the distance
between the elasticity tens6f**°(a) used in the deterministic boundary value
problem at macroscale, and the effective teresé¢b) calculated by homogeniza-
tion of the mesoscale stochastic model in subdortifi® which is a REV. We
then have

Iy(ab) = [ C™*(a) — E{c(b)}|% - (11)
The identification of parametessandb that describe the stochastic model of the
apparent elasticity random fieflt"*°(b) at mesoscale is obtained by solving a

multi-objective optimization problem for the three indices Z, (a), Z»(b), and
Ig(a, b)

3.2. ldentification procedure for 2D plane stresses
In this section, we present the particular case of 2D plamsses, which will be
the configuration of the experimental measurements predemiSection 5.
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3.2.1. Prior stochastic model of the apparent elasticitydam field for 2D plane
stresses

In this subsection, @rior probabilistic model of the apparent elasticity random

field is constructed for the case of 2D plane stresses. fitig probabilistic

model will be used in the next sections (i) for the validatadrthe method in 2D

plane stresses (Section 4), and (ii) for the applicatiorhefrhethod with experi-

mental measurements obtained through DIC method (Sec}ion 5

At mesoscale, thprior stochastic model of the apparent elastic random &&fe°

is indexed by subdomaiii™° which is assumed to be a REV. We are interested
in using a stochastic representatiorcdf° with a minimum of hyperparameters
(dimension of vectob), which is adapted to the elliptic boundary value prob-
lem corresponding to the linear elastostatic problem. rRatac stochastic mod-
els have been proposed for real-valued stochastic fieldsg28, 21], and for
non-Gaussian tensor-valued random fields in the framewidhedeterogeneous
anisotropic linear elasticity [50, 51, 56, 54, 14], with iorfant enhancements to
take into account the material symmetry and the existencdasticity bounds
[25, 26, 27, 28]. Hereinafter, the stochastic model for gheaaent elastic tensor-
valued random field™* is based on the model proposed in [50] for a heteroge-
neous anisotropic microstructure at the mesoscale.

In using the Voigt notation, for ak fixed in Q™°, the random fourth-order elas-
ticity tensorc™*°(x) can be represented by(& x 6) real random matrix. The
strain random vector is then denoted (ay, €22, 2 €12, £33, 223, 2€13) and the
associated random stress vector is denotetbby, oq2, 012, 033, 023, 013). Such
numbering of those random vectors (that is not usual) has bbeesen for the
sake of simplicity in 2D plane stresses, for which tRe< 3) compliance random
matrix [S* (x)] corresponds to the firg8 x 3) block of the(6 x 6) compliance
random matri{sme°(x)] = [c™*°(x)] ! .

The prior stochastic model o€™*° is then constructed in choosirig"*°] =
{[s™=°(x)],x € Q™=°} in the set SFE (defined in [50, 51, 54]) of the non-
Gaussian second-order stochastic fields with values inghefsall the positive-
definite symmetriq6 x 6) real matrices denoted by (R). For allx in Qmese,
the mean value is a given matfig™*°] = F{[s™*°(x)]} in 1 (R), which is as-
sumed independent af Thew (R)-valued random field [$™*°(x)],x € Q™°}

is parameterized by the symmetric mafiiX'*°], three spatial correlation lengths



denoted by/y, /5, ¢35, and one positive dispersion coefficienthat controls the
level of statistical fluctuations. Finally, an explicit ggator of independent real-
izations (sample paths) of such a random field is completdiyed in [50].

For the case of 2D plane stresses, foxatl Q™*°, the random matrixs*”’ (x)] is
defined as the left uppés x 3) block matrix of the random matrigg™*°(x)]. Con-
sequently, therS (R)-valued random field [S*” (x)],x € ™} is parameterized
by the symmetric matriks"] in 17 (R) (left upper(3x3) block matrix of[S™*°)),
one spatial correlation length= ¢; = ¢, and dispersion parameté&r Theprior
model of the apparent elasticity random fi&d”] = {[c*”(x)] ,x € Q™*°} with
values inv3 (R) is thus constructed, for allin Q™°, as

[P (0)] = [ ()] " (12)

Consequently, the hyperparameieof the prior stochastic model of the appar-
ent elasticity random fieldc??(b)] = {[c?P(x;b)],x € Qm=°} areb = (4,4,
algebraically independent parameters spanning the syriematrix [S*”]).

3.2.2. Multi-objective optimization problem for 2D plarteesses
The identification of hyperparameteis carried out in searching for the optimal
valuesa™*° andb™*° which solve the following multi-objective minimization
problem

(@™o p™=°) = argmin  Z(a,b), (13)

ac Amacro e Bmeso

whereA™**° andB™*° are the sets of the admissible valuesfandb, and where
the component$, (a), Z,(b) andZ;(a, b) of vectorZ(a, b) are defined by Egs. (5),
(7) and (11). Concerning the multi-objective optimizatiohthe material at
macroscale is assumed to be transverse isotropic and ina2ie ptresses, then the
vector-valued parameter= (ER2°"°, pnacro) corresponds to the transverse Young
modulus and the transverse Poisson coefficient at maceosthk hyperparam-
eterb will be defined later. The stochastic boundary value prold¢mesoscale
is solved in using the finite element method. The Monte Caulmerical method
is used to calculate the indicatdfg(b) andZs(a, b) with a numbem, of statisti-
cal independent realizations of the random elasticity flétd” (x)],x € Qmese},
The multi-objective optimization problem defined by Eqg.)i83solved by using
a genetic algorithm and the Pareto front is iteratively tatsed at each gener-
ation of the genetic algorithm. The initial value of paraeret has been set to
a® and corresponds to the solution of the following partiaimjation problem:



al®) = argmin 7, (a) for a € A™*, which is solved with the simplex algorithm.
The optimal value™° is then chosen as the point on the Pareto front that mini-
mizes the distance between the Pareto front and the origin.

4. Validation of the method for 2D plane stresses

The validation is performed within the framework of the Bneslasticity for 2D
plane stresses. It should be noted that the two directianslaserved when the
displacement fields are measured at macroscale and at raleso#ih a camera.

4.1. Construction of a simulated "experimental” database

In order to validate the methodology, some "experimentaasurements are sim-
ulated for the macroscale and the mesoscale by using a catignal model. The
2D domain,Q™a°  is defined in the planéOz,z2) as a square whose dimen-
sion of the edge i& = 10~2m. At mesoscale, the material is heterogeneous,
anisotropic and linear elastic. A line force directed aleng,, with an intensity

of 5 x 1072 N/m, is applied on the edge, = h. The edger, = 0 is fixed. A 2D
plane stress state is assumed. At mesoscale, the 2D apeplasrdity field is con-
structed as a realization of tipeior stochastic model of the random figlzf? (b)]

with £ = 1.25 x 10~*m, § = 0.4 and where the entries 68*”] are defined using
[S™°] which corresponds to a transverse isotropic linear elastidium,

[ £ = 0 —Z 0 0
— E% 0 0 0 0
0 0 ) g g
(S = y v Er ; (14)

~5 ~B 0 7 0 0
0 0 0 0 £ 0
0 0 0 0 0 &

L L 4

with B, = 15.8 x 10° Pa, Er = 9.9 x 10° Pa, G, = 5.2 x 10° Pa, v;, = 0.31
andvy = 0.38. Consequently, we have

S*1=| &% & 2(10) : (15)
+v
0 0 T

Thus, the vector-valued hyperparametes written asb = (9,4, Er,vy). At
mesoscale, the realization of the apparent elasticityaanfield is simulated on
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the whole domairg)macre,

A computational model is constructed with the finite elenmaethod and a regu-
lar finite element mesh with one million quadrangle eleménts00 alongz; and
1,000 alongz,, see Fig. 1, left). The strain field is numerically simulaitedsing
afinite elementinterpolation in a regular grid of nodes withesoscale resolution
on the whole domaif™*° (see Fig. 1, center). Measurements of the strain field
Eop IS simulated at macroscale in extracting the values of thglaicement field

in a regular grid ofl0 x 10 nodes and in using a finite element interpolation (see
Fig. 1, upper right). In addition, in the subdomain defined aguare with dimen-
sion10—? m (mesoscale), the measurements of the strain £{gJd are simulated

at mesoscale in extracting the values of the displacemeéditifi@ regular grid of

100x 100 nodes and in using a finite element interpolation (see Figwier right).

Figure 2 shows the values §f7;%° 1o, for the simulated experimental strain field
at macroscale with a resolutidn x 10. The square in black dashed line represents
the considered mesoscale subdomain. Figure 3 shows theswall{*°},, for

exp

the simulated experimental strain field at mesoscale widsalution100 x 100.

4.2. Numerical results and validation

At macroscale, therior model of the material is chosen as a transverse isotropic
model. Consequently, for 2D plane stresses, the vectoedaparametea =
(ERacre piracro) is made up of the transverse Young modulus and the transverse
Poisson coefficient. The optimal valuesof= (£, pyiracro) jsa™aero = (9.565 x

10° Pa, 0.3987). The finite element mesh of the subdomain at mesoscale is
(i) cartesian with a constant size in directions and z,, and (i) made up of
9,801 = 99 x 99 finite elements with 4 nodes. The total number of Gauss points
associated with the finite element mesBds204. The convergence of the statisti-
cal estimators is reached o0 independent realizations of the random elasticity
field [c?P]. Aninitial population size 050 is used for the solving the optimization
problem defined by Eg. (13) with the genetic algorithm. Léss1100 generations

has been enough for constructing the Pareto front whickiatitely constructed,

at each generation of the genetic algorithm. The value™®f° is almost un-
changed through the iterations when the multi-objectiabdf@m is solved. The
computation has been performed wiihcores with a CPU at 2GHz, and has re-
quired120 hours of CPU time.
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Figure 1: Description of the methodology for the construtf the simulated experimental mea-
surements in using the finite element method at macroscal@tamesoscale: FE model of the
specimen at macroscale with a mesoscale resolution (tefithponent 11} of the strain field at
macroscale with a mesoscale resolution (center); compdnéh of the strain field at macroscale
with a macroscale resolution (upper right); compor{dnt} of the strain field at mesoscale with a
mesoscale resolution (lower right).

Table 1 shows the values of= (¢, 6, E7, vr) for each point of the Pareto front
displayed in Fig. 4. The optimal values correspond to thetsdi, 6, 7, 8 and

9 where pointss et 7 are close. The optimal valug"*=° is such that/™e° =
9.66 x 107> m, ™= = (.37, ERe° = 1.023 x 10'Y Pa, v*=° = 0.376. This
result yields a validation of the proposed methodologyesthcs identified optimal
valueb™*° is very close to the valuethat has been used to construct the simulated
experimental database for whiék= 1.25 x 10~4m, § = 0.4, Er = 9.9 x 10° Pa,

vp = 0.38.
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Figure 2: Componentsi™ 22 of the simulated experimental strain field at macroscalé wit
resolution10 x 10.

5. Application of the method with multiscale experimental measurements

In this section, results are presented for the method wah mailtiscale exper-
imental measurements obtained by using a CCD camera cowileé micro-
scope and the digital image correlation (DIC) method for sneag the displace-
ment fields on one sample of cortical bone at macroscale amgsbscale. The
measurements have been carried out atlihleoratory of Solid Mechanicsf
Ecole Polytechniqueand all the details concerning these multiscale expertisnen
are presented in [42].

5.1. Multiscale experimental database

The DIC method allows the displacement field on an enligltdéaee of a sample
under external loads to be measured for a given resolutitreafamera and of the
speckle pattern. The displacement field is obtained by comgavo images of
the enlightened face, the first one when the sample is undefbf{image of ref-
erence) and the second image when the sample is deformee byttrnal loads
(deformed image). Fig. 5 shows the images obtained for aleawhportical bone.
The comparison of the images is based on the correlatioreafithges under the
assumption that the contrast is conserved locally in a Mycof the points where
the displacement is measured.
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Figure 3: Componenfsf};° 22 of the simulated experimental strain field at mesoscale with
resolution100 x 100.

The experimental configuration for one sample of corticadyavhich came from
beef femur, is the same as for the example presented in sekttidhe uniaxial
load had to be limited t6 000 NV in order to be in the elastic domain of the sam-
ple. A resolution ofl0 x 10 points at macroscale, and a resolutiono® x 100
points at mesoscale are used to identify the displacemédais f mesoscale and
at macroscale. Fig. 6 and Fig. 7 display the identified dispigent fields along
directionsz; andz, at macroscale. Fig. 8 and Fig. 9 display the identified dis-
placement fields along directions andxz, at mesoscale.

5.2. Numerical results

The optimal value of = (Epacro ymacro) js gmacro = (6.74 x 10° Pa, 0.32).

The parameters of the method (finite element mesh size, nuohloedependent
realizations, initial population size for the genetic altjom) are the same than

in Section 4.2. Less thar)0 generations has been enough for constructing the
Pareto front which is iteratively constructed, at each gatien of the genetic al-
gorithm.

For each point of the Pareto front, displayed in Fig. 10, tdaes ob = (¢, 9, Er, vr)

are summarized in Tab 2. The ninth point of the Pareto fromimmies the dis-
tance to the origin. Its optimal components &f€*° = 5.06 x 107°m, §™° =

14



Table 1: Optimization results of the genetic algorithm

k Zo(b) Z3(a,b) ’ 5 Er vr

1 5.00652%10? 2.31167%10* 1.88666& 104 0.400000  1.023000101°  0.392667
2 5.00652% 109 9.477024102 2.500000¢10—*4 0.400000 1.02300010'°  0.392667
3 5.01082%10°? 9.469903¢ 102 9.66666%& 10> 0.366667  1.02300010'°  0.376200
4  5.132208&10~? 9.201960¢102 1.27333% 104 0.383333  1.023000101°  0.392667
5 5.24010x 109 3.467300¢102 9.66666& 10 ° 0.366667 1.023000101° 0.359733
6 5.25940% 109 2.455275¢102 5.06666%& 105 0.350000 8.94300010° 0.293867
7 5.25940% 107 2.455275¢102 9.66666&10~° 0.366667 1.02300010'° 0.376200
8 5.386876<10~? 2.064010¢ 102 5.06666% 10> 0.350000 8.94300010° 0.310333
9 5.49052% 109 1.968774<10~2 5.06666& 10 ° 0.350000 1.237500101° 0.293867
10  6.57386&107? 1.96283% 102 2.193333% 104 0.400000  1.02300010'°  0.392667
11 6.89546% 10~ ? 1.885624¢ 102 2.500000¢ 104 0.383333  1.02300010'°  0.392667
12 7.254986&10° 1.759584102 2.500000¢10—* 0.333333  1.023000101°  0.392667
13 7.56718410? 1.688894102 9.66666& 10~ ° 0.383333 1.02300010'°  0.392667
14 7.996816:10~ 29 1.623193 102 2.000000¢ 10> 0.350000 8.94300010° 0.310333
15  9.12934&10~° 1.50704% 102 2.500000¢ 104 0.366667  1.02300010'°  0.392667
16 9.36844%10? 1.33344% 102 1.27333% 104 0.266667  1.023000101°  0.392667

0.28, Exe° = 6.96 x 109 Pa, v4**° = 0.37. This optimal solution yields a spatial
correlation length equal ta06 x 10~° m which is in agreement with the assump-
tion introduced concerning the separation of the scaless [€hgth is also of the
same order of magnitude than the distance between adjacestlae or osteons
in cortical bovine femur.

Table 2: Optimization in using the genetic algorithm wittpekmental data

k o (b) Z3(a,b) Vi 5 Er vp

1 9.905566¢ 10—+ 1.13075% 101 5.06666% 10> 0.300000 6.96445610° 0.399180
2 9.905566 x 10~*  5.529077 x 1072 5.066667 x 10~5  0.300000 6.964455 x 109  0.385342
3 9.905566 x 10~*  5.529077 x 10~2  5.066667 x 10~°  0.300000 6.964455 x 10°  0.399180
4 9923024 x 10~%  4.566584 x 1072 5.066667 x 10~5  0.300000 6.964455 x 10°  0.371504
5  9.942891 x 10~*  3.721737 x 10~2  5.066667 x 10~5  0.300000 6.964455 x 10°  0.371504
6 9.942891 x 10~%  3.721737 x 1072 5.066667 x 10~5  0.266667 6.964455 x 109  0.371504
7 9.943808 x 10~*  3.707802 x 1072  5.066667 x 10~°>  0.300000 6.380340 x 10°  0.399180
8  9.947595 x 10~%  3.698333 x 1072 1.426667 x 10—*  0.383333 6.672398 x 10°  0.316151
9 9.96509x 104 3.092503% 102 5.06666% 105 0.283333 6.96445510° 0.371504
10 9.989547 x 10~%  2.826733 x 1072 2.040000 x 10~*  0.416667 6.672398 x 10°  0.343827
11 1.009211 x 10~3  2.125592 x 10~2  2.040000 x 10—%  0.483333 6.672398 x 10°  0.343827
12 1.011463 x 1073 2.064572 x 1072 5.066667 x 10~°  0.300000 6.964455 x 10°  0.357666
13 1.019979 x 1073 1.925469 x 10~2  5.066667 x 10~°  0.300000 6.964455 x 10°  0.343827
14 1.023436 x 1073 1.901348 x 1072 2.040000 x 10~*  0.500000 6.672398 x 109  0.343827
15  1.024812 x 1073 2.645432 x 10~3  2.040000 x 10—%  0.433333 6.672398 x 10°  0.343827

6. Conclusions

In the framework of the linear elasticity, a multiscale irsestatistical method has
been presented for the identification of a stochastic mddeempparent elasticity
random field at mesoscale for a heterogeneous microsteugsimg experimental
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Figure 5: Comparison between a reference image (left) aeflarded image (right) at macroscale
for a cubic cortical bovine bone sample.

measurements at macroscale and at mesoscaldoAstochastic model depend-
ing of a hyperparameter has been proposed for the appawesticdly random
field at mesoscale in the case of 2D plane stresses. Thefidatdin procedure
has been formulated as a multi-objective minimization fwbwith respect to
the parameter of the elastic model at macroscale and thepanaeneter of the
prior stochastic model at mesoscale. The optimal value of theypeiea and the
hyperparameter corresponds to the point that minimizesligtance of a Pareto
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Figure 6: Componenfu22c1, in directionz; (horizontal) for the experimental displacement at

exp

macroscale: in color (left) and in black and white (right).
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Figure 7: Componentugi™°}» in directionz, (vertical) for the experimental displacement at

macroscale: in color (left) and in black and white (right).

Figure 8: Componenfues°}, in directionz, (horizontal) for the experimental displacement at

exp

mesoscale: in color (left) and in black and white (right).

front to the origin. The proposed statistical inverse mdthas been validated
with a simulated experimental database and results have fresented in the

17



Figure 9: Componenful°}, in directionzy (vertical) for the experimental displacement at

exp

mesoscale: in color (left) and in black and white (right).

case of experimental measurements obtained by the DIC oheth@ne sample
of cortical bone observed by a CCD camera at both macrosndlenasoscale.
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