
HAL Id: hal-01162141
https://hal.science/hal-01162141

Submitted on 2 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Integrated Approach for the Enforcement of
Contextual Permissions and Pre-Obligations

Yehia El Rakaiby, Frédéric Cuppens, Nora Cuppens-Bouhlahia

To cite this version:
Yehia El Rakaiby, Frédéric Cuppens, Nora Cuppens-Bouhlahia. An Integrated Approach for the En-
forcement of Contextual Permissions and Pre-Obligations. International journal of mobile computing
and multimedia communications, 2011, 3, pp.33 - 51. �hal-01162141�

https://hal.science/hal-01162141
https://hal.archives-ouvertes.fr

Keywords:	 Contextual	Policies,	ECA	Rules,	Formal	Pre-Obligation	Enforcement,	Pre-Obligation	Policies,	
Usage	Control

INTRODUCTION

Traditional security policy systems provided a
simple yes/no answer to access requests. How-
ever, it was recognized that access often depends
on some user-actions being performed before
access is granted. For instance, an access rule
may specify that users are allowed to download
music files provided that they pay 1$ first. In this
case, if a user requests to download, for example,
the latest single of Muse, s\he is asked to pay

An Integrated Approach for
the Enforcement of Contextual Permissions

and Pre-Obligations

Yehia	Elrakaiby,	TELECOM	Bretagne,	France

Frédéric	Cuppens,	TELECOM	Bretagne,	France

Nora	Cuppens-Boulahia,	TELECOM	Bretagne,	France

Pre-obligations	denote	actions	that	may	be	required	before	access	is	granted.	The	successful	fulfillment	of	
pre-obligations	leads	to	the	authorization	of	the	requested	access.	Pre-obligations	enable	a	more	flexible	
enforcement	of	authorization	policies.	This	paper	formalizes	interactions	between	the	obligation	and	autho-
rization	policy	states	when	pre-obligations	are	supported	and	investigates	their	use	in	a	practical	scenario.	
The	main	advantage	of	the	presented	approach	is	that	it	gives	pre-obligations	both	declarative	semantics	
using	predicate	logic	and	operational	semantics	using	Event-Condition-Action	(ECA)	rules.	Furthermore,	
the	presented	framework	enables	policy	designers	to	easily	choose	to	evaluate	any	pre-obligation	either	(1)	
statically	(an	access	request	is	denied	if	the	pre-obligation	has	not	been	fulfilled);	or	(2)	dynamically	(users	
are	given	the	possibility	to	fulfill	the	pre-obligation	after	the	access	request	and	before	access	is	authorized).

1$. If the payment is made successfully, the
user is allowed to download the requested file.
Such requirements are called pre-obligations.
Neither traditional access control models such
as DAC (NCSC, 1987) and RBAC (Ferraiolo
& Kuhn, 1992) nor more recent contextual se-
curity models such as ASL (Jajodia, Samarati,
& Subrahmanian, 1997) and OrBAC (Abou El
Kalam et al., 2003) support preobligations: In
these models, an access request is only allowed
if the conditions associated with a permission
authorizing the access are true when the access
request is made.

1

There are several advantages of supporting
pre-obligations in the policy language. First,
this provides additional expressiveness since
it enables policy administrators to specify that
subjects may fulfill some of the access require-
ments after the access request. Furthermore,
it separates the expression of requirements
from the functional specification (the code)
of the application. Thus, the analysis of policy
requirements is simplified and administrators
are able to modify the behavior of the system
by updating policy rules without recoding the
application.

To support pre-obligations, a number of
works (Bettini, Jajodia, Wang, & Wijesekera,
2002, 2003 ; Ni, Bertino, & Lobo, 2008) subor-
dinate obligations to access control rules. This
approach has some limitations. For instance,
obligations are only activated after access
requests and general obligations are not sup-
ported. In addition, this approach generally
produces intricate access control policies since
permissions and obligations are often specified
within the same rule. This is the approach used
in (Ni et al., 2008) to specify permissions and
their associated pre-obligations. The main
limitation of previous works on pre-obligations
is however that none formalized the effects of
supporting pre-obligations on the evolution of
the authorization and obligation policy states.
This is essential to provide a deeper understand-
ing of pre-obligations and their enforcement in
information systems. In addition, this formal
approach allows the study and the analysis
of change in the authorization and obligation
policy states in the presence of pre-obligations.
Therefore, it enables, for instance, to derive
plans to reach some particular authorization
states (Becker & Nanz, 2008 ; Craven et al.,
2009) or to explain the deactivation of pre-
obligations after permission activation.

In this paper, we study the specification
and the enforcement of pre-obligations. In our
approach, we formalize the enforcement of
pre-obligations using an extension of the lan-
guage Lactive (Baral & Lobo, 1996). Lactive
enables the description of change in state using

concepts from action specification languages
(Gelfond & Lifschitz, 1993).Thus, it enables
reasoning about state evolution and the study
of interactions between pre-obligations and the
authorization and obligation policy states. Lac-
tive also supports the specification of reactive
behavior using active rules. This feature enables
us to provide formal operational semantics for
the enforcement of pre-obligations.

To simplify the expression of pre-obliga-
tions in access control rules, we specify pre-
obligations in the form of contexts. A security
rule context (Cuppens & Cuppens-Boulahia,
2008) denotes a set of conditions which have
to be true for the security rule to be effective.
For instance, a context during_working_hours
may hold (be true) every working day from
8 in the morning until 6 in the afternoon. In
our approach, context rules may be used to
specify requirements which state that some
user-action should be taken. These contexts
are called pre-obligation contexts. We support
two evaluations of pre-obligation contexts:
The static (traditional) evaluation requires that
pre-obligation actions be taken before access
requests are made. The dynamic evaluation, on
the other hand, enables the fulfillment of pre-
obligation requirements after access requests.

This is an extended version of the paper (El-
rakaiby, Cuppens, & Cuppens-Boulahia, 2010)
which appeared in ARES 2010. In particular, we
extend our pre-obligation selection algorithm
to clarify the formal model and we detail the
different aspects of our approach. Furthermore,
we consider state contexts in the policy language
to simplify policy specification. The remainder
of the paper is organized as follows. Section
two presents some motivating examples. In
Section three, we present our formalization
language and introduce the basic entities used
to describe the application domain. In Section
four, we introduce our policy language. Sec-
tion five formalizes policy management and
enforcement using active rules. In Section six,
we present the derivation of pre-obligations
from the domain description and then present the
enforcement of the policy. In Section seven, we

2

present an application example. Finally, Section
eight discusses related works and Section nine
concludes the paper.

Motivating Example

We consider the following access control
requirement:

r1. Mobile users may use the Video on
Demand (VoD) service provided that
they have paid 2$. In a traditional ac-
cess control system, this requirement is
enforced as follows: when a user requests
to use the VoD service, the request is
authorized only if the subject has paid
2$. Otherwise, the request is denied.
This means that the verification of the
fulfillment of pre-obligations consists
of checking a history of previous action
occurrences. This approach is inflexible
for the enforcement of r1 since it would
be more convenient to allow the subject
to pay for the service after s\he requests
to use it. Then, when the subject success-
fully makes the payment, s/he is allowed
access.

Thus, when pre-obligations are evaluated
dynamically, the system would appear more
flexible to the user. To provide such flexibility
in the enforcement of access control require-
ments, we consider that requirements denoting
user-actions may be defined as pre-obligations.
In this case, when an access request is made,
the subject is requested to satisfy the missing
pre-obligation requirements (pay 2$). When
these pre-obligations are fulfilled, the requested
access is granted. Figure 1 compares the tradi-
tional enforcement of access control policies
with their enforcement when pre-obligations
are supported.

We now consider this second access control
rule:

r2. Mobile users having WiFi coverage may
use the VoD service provided that they
have paid 1$.

Assume that the policy includes both the
rules r1 and r2 and that it is possible to ask
users to move to an area where there is WiFi
coverage. In this case, when a user who has
not paid for the VoD Service and has not WiFi

Figure	1.	Enforcement	of	access	control	policies

3

coverage requests to use the VoD service, two
alternative sets of pre-obligations are possible:
(1) pay 2$ as specified in r1, (2) or pay 1$ and
move to a WiFi covered area as specified in r2.
One possible way to deal with this situation is to
randomly select one of these two pre-obligation
sets and ask the user to fulfill it. This however
clearly represents an unacceptable behavior.
Therefore, we choose to allow the association
of pre-obligations with weights. For instance,
if the pre-obligation to pay 2$ is given a lower
weight than the sum of the weights of the two
preobligations to pay 1$ and to move to a
WiFi covered area, the pre-obligation set with
the lowest weight (pay 2$) is selected. On the
other hand, if the user is located in an area
which has WiFi, s/he is asked to pay 1$ since
the pre-obligation to pay 1$ would have lower
weight than the one associated with the pre-
obligation to pay 2$. This situation illustrates
the importance of the dynamic selection of
pre-obligations which takes into account which

pre-obligations are and which are not fulfilled
at the moment of the access request.

The Formalization Language

To formalize the effects of the support of pre-
obligations on the authorization and policy states
and to enable the study of their properties, we
consider the language Lactive (Baral & Lobo,
1996). Lactive enables the description of change
in state using concepts from action languages.
It also supports the specification of reactive
behavior in the form of Event Condition Action
(ECA) rules. This gives operational semantics
for the enforcement of pre-obligations. Sorts
and propositions of Lactive are given in Tables
1 and 2.

In the language, a state is a set of fluents.
A fluent literal is either a fluent symbol or a
fluent symbol preceded by ￢ (￢￢f is equiv-
alent to f). The semantics of Lactive defines a
transition function which given a state and a
(possibly empty) sequence of actions produces

Table	1.	Sorts	of	Lactive

Type Description

Fluents Facts describing the system state.

Actions Possible actions in the system. Action occurrences update the fluent state by adding or
removing fluents to or from the state.

Events Define moments at which the policy needs to be updated.

Rule
Names

ECA rule identifiers. An ECA rule states that when some event occurs and if some
conditions are true, then some actions are executed. ECA rules (also called active rules)

update the applied policy when particular events are detected.

Table	2.	Propositions	of	Lactive

Type Syntax Description

Effect Law acausesf
ifp1,…,pn

An effect law proposition states that the execution of a
in a state where the fluents p1,…,pn are true causes f to be

true in the next state.

Event Definition eaftera
ifp1,…,pn

An event definition proposition states that if the condi-
tions p1,…,pn are true in the state following the execution

of the action a, then event e is produced.

Active Rule R:	e
initiatesα
ifp1,…,pn

An active rule proposition states that every new detection
of the event e triggers the execution of the sequence of

actions α if the rule conditions are true.

4

a new state as follows. Actions in the input
sequence are processed successively. For every
action, effect laws are evaluated and the fluent
state is updated. If after the execution of the
action, conditions in some event definition are
true, the event is generated. The newly gener-
ated events trigger active rules. Identifiers of
these triggered rules are added to the triggered
rules set. When the last action in the input se-
quence is evaluated, if the triggered rules set is
not empty, an action selection function selects
the sequence of actions appearing in one of the
rules in the triggered rules set to process. Active
rules are assigned priorities.

Therefore, the action selection function
returns the sequence of actions appearing in
one of the rules which have the highest priority
in the triggered rule set. The state stops evolv-
ing after the processing of all the actions in an
input sequence if the triggered rule set is empty.

Basic Entities of the
Application Domain

We consider that the application domain in-
cludes finite sorts of the entities: subjects S,
objects O, actions A and contexts C. Entities may
have attributes. For instance, the application
dependent Name(s,n) means that the name of s
is n. We also consider three relations to enable
the specification of security rules for groups of
subjects, actions and objects respectively: Sub-
jects are empowered into roles using the relation
Empower(Subject;Role), actions, i.e. programs,
are considered implementation of some activity
using the relation Consider(Action;	Activity)
and objects are used in views using the rela-
tion Use(Object;	V	iew). Security rules may be
specified using the abstract entities of roles,
activities and views or using the concrete enti-
ties of subjects, actions and objects.

Description of Change in
the Application Domain

To study the evolution of the policy state when
change in state occurs, we assume that the
system state is dynamic. More precisely, the
system state may change after the execution of

actions. We consider that actions of the form
Do(S,A,O) indicate that subject S has taken
the action A on the object O.The effects of the
execution of actions on the state are described
using effect law propositions.

For instance, we may specify the effect
of the action pay_2$ on the state as follows.

Do(S,pay_2$,payment server)
causesPaid_2$(S)

This effect law specifies that the fluent
Paid_2$(S) starts to hold (be true) in the state
after the action pay_2$ is executed by S on a
payment server. In our example, we will assume
that a payment of 2$ is consumed when users
use the VoD service. Therefore, we specify that
the fluent Paid_2$(S) ceases to hold when S
uses the VoD service as follows.

Do(S,use,video_on_demand)
causes ￢Paid_2$(S)

A set of effect laws is consistent if it does
not contain two effect laws for the same action
which have contradictory effects and whose
conditions are not disjoint. These conditions are
verified by considering the ground instances of
effect laws in the application domain: If there is
two effect laws “acausesf if p1,…	pi,	…,pn” and
“acausesgifq1,…,	qj,	…,qm”, then they should
have either non-contradictory effects (f ≠ ￢g)
or disjoint conditions (∃i; j: pi = ￢qj).

The Policy Language

In this section, we first introduce our context
language and show how we manage context
activation and deactivation. We then present
our security rules and show how they are used
to specify system requirements.

CONTEXT LANGUAGE AND
CONTEXT MANAGEMENT

We separate the definition of security rule
conditions from the definition of security rules
using contexts (Cuppens & Cuppens-Boulahia,

5

2008). A context defines a set of security rule
conditions. The association of security rules
with contexts allows the abstraction of complex
conditions in security rules and thus, simplifies
the interpretation of the policy. Contexts also
allow context reuse in different security rules.

Context Rules: Security rule conditions define
when some subject S is allowed, prohib-
ited or obliged to take some action A on
some object O. Therefore, contexts enable
the definition of constraints on the security
rule triple (S,A,O). Our context rules are
expressions of the following form:

Holde(S,A,O, start/end(Ctx))
afterDo(S,A,O)ifp1,…,pn

Context rules define the moments at which
the conditions identified by the context Ctx start
and seize to be true for the subject S, action A
and object O. More precisely, the context rules
for start(Ctx) define the conditions at which Ctx
begins to hold. On the other hand, context rules
for end(Ctx) specify when Ctx ceases to hold.

For instance, consider the following con-
text rules.

Holde(S,A,O, start(in_WiFi_Area))
afterDo(S,enter,L)ifWiFi_Area(L)
Holde(S,A,O, end(in_WiFi_Area))
afterDo(S,exit,L)ifWiFi_Area(L)

These two rules specify that the context
in_WiFi_Area remains true for some subject S
from the moment this subject enters a location
which is covered by WiFi until the moment the
subject exists such location. These two mo-
ments are defined in terms of the event contexts
start(in_	WiFi_Area) and end(in_WiFi_Area).

We also consider a second type of context
rules which we call state context rules. State
context rules define conditions on the sys-
tem state and are particularly suitable for the
specification of conditions of permission and

prohibition rules. State contexts are specified
using expressions of the following form.

Hold(S,A,O,Ctx) ← L1,...,Ln

Where L1,...,Ln are conditions on the state.
To support this form of context rules called
state context rules, we transform state context
rules into event context rules (given a domain
description) (Elrakaiby, Cuppens, & Cuppens-
Boulahia, 2009b). In other words, we transform
every state context rule into event context rules
of the form start(Ctx) and end(Ctx). For instance,
consider the following rule.
Hold(S,A,O,paid_2$) ← Paid_2$(S)

The rule above specifies that the context
paid 2$ holds for the subject S and any action/
object while the fluent Paid_2$(S) is true.
Given this state context rule and the effect
laws presented in the previous section, we use
an algorithm (Elrakaiby et al., 2009b) which
transforms this state context into two event
contexts start(Ctx) and end(Ctx). For instance,
the following event context rules are derived
for the context paid_2$.

Holde(S,A,O,start(paid_2$))
afterDo(S,pay_2$,payment_server)
Holde(S,A,O,end(paid_2$))
afterDo(S,use,video_on_demand)

Our context language allows the expression
of other important context types. For example,
our context language supports the specification
of temporal contexts. Temporal contexts are
specified using the action Clock. This action
updates fluents which represent calendars avail-
able in the system, such as Minutes, Hours, Day,
etc. Temporal contexts enable the specification
of absolute and periodic temporal conditions.

For instance, we may specify a temporal
context working hours which holds everyday
from 8 until 18 as follows.

6

Holde(S,A,O, start(working_hours))
afterClockifHours(08)
Holde(S,A,O,end(working_hours))
afterClockifHours(18)

We also consider the specification of rela-
tive temporal deadlines for obligations using the
state context delay(Nb.TimeUnit). This special
context holds for some security rule after the
elapse of Nb time units after its activation. We
also allow context composition (Cuppens &
Cuppens-Boulahia, 2008) using the logic op-
erators of conjunction (&), disjunction (⊕) and
negation (−). The semantics of these operators
is defined by the following rules.

Hold(S,A,O, C1&C2) ←
Hold(S,A,O,C1)∧ Hold(S,A,O,C2)
Hold(S,A,O, C1⊕C2) ←
Hold(S,A,O,C1)∨ Hold(S,A,O,C2)
Hold(S,A,O, −C1) ← ￢Hold(S,A,O,C)

Context Management: In this paper, we
consider persistent contexts. A persistent
context Ctx holds from the moment the
event start(Ctx)until the occurrence of
end(Ctx). To enable the reasoning about
which contexts hold in every state, we as-
sociate every persistent context Ctx with a
fluent Hold(S,A,O,Ctx). This fluent holds
from the detection of the event context
start(Ctx)until the occurrence of the event
context end(Ctx). This is enforced using
the following two active rules.

activate_Context:
Holde(S,A,O,start(Ctx))
initiatesInsert(Hold(S,A,O,Ctx))
deactivate_Context:
Holde(S,A,O,end(Ctx))
initiatesRemove(Hold(S,A,O,Ctx))

The rules above specify that the flu-
ent Hold(S,A,O,Ctx) should be inserted into
(removed from) the state when start(Ctx)
(end(Ctx)) is detected. We consider the context
state to be the subset of fluents which are of

the form Hold(S,A,O,Ctx). In our framework,
the context state is always updated before the
evaluation of the policy. Therefore, the previous
active rules are given higher priority than the
rules which enforce the security policy. We pres-
ent policy enforcement in the following section.

Security Policy Language

We consider security rules which are close
ground facts of the following form.

Permission(N, SR, AA, OV, Ctx)
Obligation(N, SR, AA, OV, Ctx, Ctxv)

Where N is a rule identifier, SR is a subject
or a role, AA is an action or an activity and OV
is an object or a view. These expressions are
called abstract security rules. A permission rule
has one state context Ctx. This context is called
the permission context. A permission is effec-
tive only while this context is true, i.e. after the
event context start(Ctx) occurs and before the
event context end(Ctx) occurs.

For example, consider the permission
“mobile users may use the VoD service if they
have paid 2$”. This permission is specified as
follows:

Permission(p, mobile_users, use,
video_on_demand,
paid_2$)

This permission specifies that subjects as-
signed to the role of mobile users may use the
VoD service when the context paid_2$ is true.

On the other hand, obligations are associ-
ated with two contexts: an obligation context
(Ctx) and a violation context (Ctxv). The obliga-
tion is effective while the context Ctx holds. It
is violated if the context Ctxv is detected while
the obligation is effective. An obligation ceases
to be effective when it is fulfilled, i.e. when
the subject executes the obliged action on the
corresponding object.

For instance, consider the obligation
“When users are in a WiFi covered area, they

7

should turn on their WiFi connectivity within 3
minutes”. This rule may be specified as follows:

Obligation(o1,mobile_users,turn_
on,wifi_connectivity,
in_WiFi_ area,delay(3.minutes))

Specification of Pre-obligations: A permission
rule is contextual. For instance, permis-
sion p specifies that users are allowed to
use the VoD service if they have paid 2$.
This contextual permission is enforced
as follows in traditional systems: When
a request to use the VoD service is made,
if a payment of 2$ had been made, access
is authorized. Otherwise, the request is
denied. This enforcement model may be
sometimes too inflexible since it may be
required to ask users to pay after the ac-
cess request (if the payment is not already
made). To simplify the specification that
some requirements should be evaluated
dynamically, we associate every user
defined context in the policy Ctx with
another context denoted d_Ctx, called
the dynamic version of Ctx. When some
context d_Ctx is used in some security
rule, this means that this requirement
may be fulfilled dynamically after the
access request.

For instance, consider our example. To
specify that users may be allowed to pay 2$
for the VoD service after they request to use it,
we specify a permission rule using the context
d_paid_2$ as follows.

Permission(p1, mobile_users, use,
video_on_demand,
d_paid_2$)

In this case, when a user requests to use
the VoD service and s\he has not paid for the
service, the user is asked to pay 2$. This require-
ment is enforced using an obligation to pay 2$
for using the service. When this obligation is
fulfilled, access is allowed.

It is necessary to associate every obligation
with a deadline condition. For instance, it may
be required to specify that the mobile user should
pay within 5 minutes. For this reason, we allow
the association of every dynamic context with a
deadline in the form of an attribute Violation. For
instance, we specify that the obligation associ-
ated with the context d_paid_2$ has a deadline
of 5 minutes by updating the value of its attri-
bute Violation to Violation(d_paid_2$,delay(5.
minutes)). For every dynamic context, a default
deadline defined by the policy administrator is
used unless this attribute is updated. We also
give pre-obligations weights to enable the selec-
tion of the simplest set of pre-obligations for a
given access request. Therefore, we consider a
second attribute Weight for dynamic contexts.
The default value of this attribute is 1. For
instance, consider the following permission.
Permission(p2, mobile_users, use,
video_on_demand,
d_paid_1$ & d_in_WiFi_area)

Where the context paid_1$ is defined
similarly to the context paid_2$.To specify that
a 1$ payment is simpler to a 2$ payment, we
assign the contexts d_paid_1$ and d_paid_2$
the weights of 2 and 3 respectively. Now,
assume that the context d_in	 _WiFi_area is
given a weight of 4. In this setting, when a
user requests to use the VoD service, there are
several possibilities. For instance, if s\he has
not paid and is in a WiFi covered area, s\he is
asked to pay 1$. If s\he has not paid and is not
in a WiFi covered area, s\he is asked to pay 2$.

Policy Management
and Enforcement

We distinguish between abstract and concrete
security rules as follows: Abstract policy rules
describe the global system policy and is speci-
fied by policy administrators. Concrete rules,
on the other hand, are the security rules which
are derived from the abstract policy as follows.

8

Permission(N,S,A,O,Ctx) ←
Permission(N,SR,AA,OV,Ctx) Empower’(S,
SR),Consider’(A,AA),Use’(O,OV)

The predicate Empower′(S,SR) specifies
that S should be either SR if SR is a subject or
a subject empowered into the role of SR if SR
is a role. It is specified as follows.

Empower’(S,SR) ← Subject(SR)
Empower’(S,SR) ← Role(SR,
Empower(S,SR)

Similarly, the predicate Consider′(A,AA)
states that A should be either the action AA if
AA is an action or an action considered in AA
if AA is an activity. The predicate Use′(O,OV)
dictates that O should be either the object
OV or an object used in OV if OV is a view.
Concrete obligation rules are also derived for
individual subjects, actions and objects from
abstract obligation rules. In the following, we
give formal operational semantics for policies
which consist of concrete security rules using
active rules.

Permission Activation
and Deactivation

Every concrete permission rule is associated
with a context which defines when it is effec-
tive. We therefore associate every permission in
the state with a fluent Permitted(N,S,A,O,Ctx).
This fluent starts to hold when the permission’s
context begins to hold. It ceases to hold when the
permission’s context is ended. This is specified
using the following active rules:

activate_Permission:
Holde(S,A,O,start(Ctx))
initiatesInsert(Permitted(N,S,A,O,C
tx))ifPermission(N,S,A,O,Ctx)
deactivate_Permission:
Holde(S,A,O,end(Ctx))
initiatesRemove(Permitted(N,S,A,O,C
tx))ifPermitted(N,S,A,O,Ctx)

The rules above specify that the action
Insert(Permitted(N,S,A,O,Ctx)) should be taken

when the context of some permission’s is acti-
vated. This action makes the fluent Permitted
hold as specified in the following effect law.

Insert(Permitted(N,S,A,O,Ctx))
causesPermitted(N,S,A,O,Ctx)

Reciprocally, we specify that Permitted
ceases to hold after the execution of the ac-
tion Remove on the fluent Permitted. In the
policy, an access may be authorized by more
than one permission. Therefore, we consider
an additional fluent Permitted(S,A,O) which
holds for some access (S,A,O) while this access
is allowed. This fluent begins to hold for some
access (S,A,O) whenever some permission for
(S,A,O) is activated. It ceases to hold after the
deactivation of a permission for (S,A,O) only
if there is no other permission for (S,A,O) in
the state.

Obligation Activation
and Deactivation

To manage obligations, we associate
every concrete obligation with a fluent
Obliged(N,S,A,O,Ctx,Ctxv). This fluent rep-
resents that there is an effective obligation for
S to take A on O before Ctxv is detected. An
obligation is deactivated when its context Ctx
is ended while it is effective. When an obliga-
tion is deactivated, the fluent Obliged ceases
to hold. This is formalized using the following
two active rules.

activate_Obligation:
Holde(S,A,O,start(Ctx))
initiatesInsert(Obliged(N,S,A,O,Ctx,Ct
xv))ifObligation(N,S,A,O,Ctx,Ctxv)
deactivate_Obligation:
Holde(S,A,O,end(Ctx))
initiatesRemove(Obliged(N,S,A,O,Ctx,Ct
xv))ifObliged(N,S,A,O,Ctx,Ctxv)

Obligation Fulfillment
and Violation

As opposed to permissions, obligations may ad-
ditionally be violated and fulfilled. An effective

9

obligation is fulfilled when its required action
is taken. Actions required by obligations are
monitored using the following context.

Holde(S,A,O,start(ctx_fulfillment))
afterDo(S,A,O)
ifObliged(N,S,A,O,Ctx,Ctxv)

The context ctx_fulfillment holds for
some (S,A,O) when the action Do(S,A,O) is
taken and there is an effective obligation re-
quiring (S,A,O). When start(S,A,O,start(ctx_	
fulfillment)) is detected, effective obligations
for (S,A,O) are fulfilled using the following
active rule.

fulfill_Obligation:
Holde(S,A,O,start(ctx_fulfillment))
initiatesFulfill(N,S,A,O)
ifObliged(N,S,A,O,Ctx,Ctxv)

Reciprocally, the detection of the deadline
context of an effective obligation violates this
obligation. This is specified as follows.

violate_Obligation:
Holde(S,A,O,start(Ctxv))
initiatesViolate(N,S,A,O)
ifObliged(N,S,A,O,Ctx,Ctxv)

The actions Fulfill and Violate indicate the
fulfillment and violation of obligations respec-
tively. In this paper, we assume for simplicity
that obligations are deactivated whenever they
are violated/fulfilled. Therefore, the fluent
Obliged ceases to hold when the actions Fulfill
and Violate are taken.

Derivation of Dynamic
Contexts and Enforcement
of Pre-Obligations

To simplify the specification of pre-obligations,
we consider that every user-specified context
Ctx has a corresponding dynamic context d_Ctx.
This simplifies the specification of the policy
by enabling policy administrators to easily

choose whether a context should be statically
or dynamically evaluated.

Dynamic contexts and their associated
pre-obligations are automatically derived from
the definition of user-specified contexts using
Algorithm 1 (Figure 2). This algorithm takes
the set of user-defined event context defini-
tions E as input, and produces the definition
of dynamic contexts. It also derives for every
dynamic context d_C an obligation rule O(d_C).
This obligation O(d_C) defines the action
which should be taken for the context d_C to
be activated. The fulfillment of this obligation
activates the context d_C (as well as the context
C) for the access requester.

The algorithm verifies every user-defined
event context rule as follows. First, if the context
is of the form start(C) and is started by some
action A (line 5), then a dynamic context d_C
is defined similarly to C, i.e.	d_C is associated
with the same actions which start and end C
(lines 7-10). An obligation is then constructed.
The obligation’s identifier is O(d_C) (line 12).
Its role and view are initialized using the role
any_subject and the view any_object (line 13).
These entities represent all subjects and all
objects in the system respectively.

Constraints over the parameters of the
action which starts C in the after part (lines
13-14) and in the if part (lines 15-19) of the
context definition of start(C) are then checked.
If some constraint over the action’s subject or
object (S,A,O) is specified, it is used as the
subject/role and object/view of the obligation
respectively.

An event context identifier of the form
start(O(d_C)) is then used to denote the
activation conditions of the obligation (line
20). The context start(O(d_C)) is then de-
fined (lines 21-23). Its definition states that it
should be detected after the execution of the
action Find_Obligations(S′,A′,O′) if the flu-
ent Obl_For_Access(O(d	 C),S,A,O,S′,A′,O′)
holds. The action Find_Obligations checks the
policy for possible pre-obligations when the
access (S′,A′,O′) is not authorized. The fluent
Obl_For_Access, on the other hand, denotes
that the obligation associated with d_C for the

10

subject S to take the action A on the object O has
been selected for the authorization of (S′,A′,O′).

Finally, if a user-specified Violation Con-
text attribute for d_C exists, it is used as the
obligation violation context. Otherwise, the
default context is used (lines(24-27)). The algo-
rithm returns the constructed event definitions,
obligation rules and context attributes. These
elements are added to the policy.

For instance, the application of the algo-
rithm to the context start(paid_2$) produces: (1)
the dynamic context definition for d_paid_2$.
This context is defined similarly to the user-
defined context paid_2$, (2) The context at-
tribute Type(d_paid_2$,dynamic), and (3) The
obligation and the event context rule specified
below.

Obligation(O(d_paid_2$),any_
subject,pay_2$,any_object,
start(O(d_paid_2$)), delay(3.Minutes))
Holde(S, pay_2$, O, start(O(d_
paid_2$)))
afterFind Obligations(S’,A’,O’)
ifObl_For_Access(O(d_paid_2$),S,
pay_2$,O, S’,A’,O’)

This obligation rule defines an obligation
O(d_paid_2$) which states that the action
pay_2$ should be taken by any subject on any
object when the context start(d_paid_2$) is
detected. This context is detected for the sub-
ject S and object O if S and O were selected
to fulfill the obligation after the execution of
the action Find_Obligations for the access

Figure	2.	Algorithm	1:	derivation	of	dynamic	contexts

11

request (S′,A′,O′). The selected S and O for
the obligation are the ones specified using
the fluent Obl_For_Access(O(d_paid_2$),S,	
pay_2$,O,S′,A′,O′).

Authorization Policy Enforcement

When pre-obligations are supported, the autho-
rization policy is enforced as follows: When
an access request is made, access is granted
if it is authorized by an effective permission.
Otherwise, the authorization policy is checked
for pre-obligations which would allow the
access. If none is found, access is denied. If
pre-obligations are activated, they are enforced
as follows. Whenever an effective permission
for the requested access is activated or if one
of the pre-obligations is violated/deactivated,
pre-obligations are deactivated. When all pre-
obligations are successfully fulfilled, access
is granted.

Authorization Policy Enforcement: To en-
force the authorization policy, we con-
sider the context access_req_ctx. This
context is specified as follows.

Holde(S,A,O,start(access_req_ctx))
afterRequest(S,A,O)

The context access_req_ctx holds for an
access (S,A,O) after the occurrence of the special
action Request(S,A,O). This action indicates that
S has requested to take A on O. This context
holds until this access request is honored, i.e.
when the access is either allowed or denied.
The end of access_req_ctx is therefore speci-
fied as follows.

Holde(S,A,O,end(access_req_ctx))
afterAllow(S,A,O)
Holde(S,A,O,end(access_req_ctx))
afterDeny(S,A,O)

When an access request is made, it is
directly granted if it is authorized by an ef-

fective permission. This is specified using the
following rule.

allow_Access:
Holde(S,A,O,start(access_req_ctx))
initiatesAllow(S,A,O)
ifPermitted(N,S,A,O,Ctx,Ctxv)

If there is no effective permission for the
requested access, we check the authorization
policy for pre-obligations.

find_Obligations:
Holde(S,A,O,start(access_req_ctx))
initiatesFind_Obligations(S,A,O)if
￢Permitted(N,S,A,O,Ctx,Ctxv)

The action Find_Obligations selects (if
possible) the simplest set of pre-obligations re-
quired to allow (S,A,O) by executing Algorithm
2 (Figure 3). This algorithm works as follows: it
checks every permission which permits (S,A,O).
First, the permission context Ctx into the dis-
junctive normal form (DNF) to identify the sets
of basic contexts which have to hold simultane-
ously to allow the requested access. A set of basic
contexts (CN) is considered valid if: (1) all its
non-dynamic contexts are true, (2) each of its
dynamic contexts which does not hold can be
activated. A dynamic context C can be activated
if there exists (S′,A′,O′) and a dynamic event
definition Holde(S,A,O,start(C)) such that the
conditions of this event definition are true. This
ensures that when Do(S′,A′,O′) is preformed, C
is activated. For every inactive dynamic context
which can be activated, a fluent of the form
Obl_For_Access(O(C),S′,A′,O′,S,A,O) is added
to the set Obligations. This fluent specifies that
Do(S′,A′,O′) should be taken to activate the
dynamic context O(C) and, subsequently allow
the requested access (S,A,O). Then, the weight
assigned with O(C) is added to the CN_Weight.
After the evaluation of every CNi, if the sum of
the weights of its pre-obligations CN_Weight is
less than the minimum weight Min_Weight, the
pre-obligations of this CNi are selected. After
the evaluation of the authorization policy, the

12

algorithm returns No_Obl_For_Access(S,A,O)
if no preobligations are possible for the access.
Otherwise, the set of pre-obligations selected
for the access is returned.

If no pre-obligations are returned after the
execution of Find_Obligations, the context
no_pre_obligations holds and access is denied.
We specify access denial as follows.

Holde(S,A,O,start(no_pre_obligations))
afterFind_Obligations(S,A,O)ifNo_Obl_
For_Access(S,A,O)
deny_Access: Holde(S,A,O,start(no_pre_
obligations))
initiatesDeny(S,A,O)

The fluent No_Obl_For_Access(S,A,O) as
well as the context no_pre_obligations seize to

hold when the access request is honored to allow
the reevaluation of the authorization policy at
subsequent access requests.

Enforcement of Pre-Obligation
Sets

After the activation of a set of pre-obligations
for an access (S,A,O), pre-obligations are en-
forced as follows.

Permission Activation: Whenever a permis-
sion is activated for (S,A,O) and there is
a request to take (S,A,O), pre-obligations
for (S,A,O) are deactivated and ac-
cess is allowed. The following context
authorized_request starts to hold when

Figure	3.	Algorithm	2:	selection	of	pre-obligations

13

some requested access (S,A,O) become
authorized.

Holde(S,A,O,start(authorized_request))
afterInsert(Permitted(N,S,A,O,Ctx))
ifHold(S,A,O,access_req_ctx)

When an access request for (S,A,O) is
authorized, the following rule deactivates pend-
ing pre-obligations for (S,A,O) (if any exists).

deactivate_Pre:
Holde(S,A,O,start(authorized_request))
initiatesRemove(Obl_For_
Access(N,S’,A’,O’,S,A,O))ifObl_For_
Access(N,S’,A’,O’,S,A,O)

We also accept the requested access by
initiating the action Allow using the following
active rule.
Allow_access*:
Holde(S,A,O,start(authorized_request))
initiatesAllow(S,A,O)

Violation of Pre-obligations: When a pre-
obligation is violated, the fulfillment of
other pre-obligations becomes unneces-
sary since the access will not be allowed.
Therefore, we deactivate in this case
other related pre-obligations (i.e. pre-
obligations for the same access request)
and deny access. We define the context
pre_obl_violated which holds when pre-
obligations are violated as follows.

Holde(S,A,O,start(pre_obl_violated))
afterViolate(N,S’,A’,O’)ifObl_For_Ac-
cess (N,S’,A’,O’,S,A,O)

When pre_obl_violated starts to hold, we
deactivate pre-obligations and deny the access
requested.

violate_Pre: Holde(S,A,O,start(pre_
obl_violated))
initiatesRemove(Obl_For_
Access(N,S’,A’,O’,S,A,O)ifObl_For_
Access(N,S’,A’,O’,S,A,O)
deny_access*: Holde(S,A,O,start(pre_
obl_violated))
initiatesDenys(S,A,O)

Pre-obligation Fulfillment: When pre-obliga-
tions are fulfilled, they are removed from
the state using the following active rule.

violate_Pre: Holde(S,A,O,start(ctx_
fulfillment))
initiatesRemove(Obl_For_
Access(N,S,A,O,S’,A’,O’))ifObl_For_
Access(N,S,A,O,S’,A’,O’)

Application Example

To illustrate the concepts presented in this
paper and discuss the evolution of the au-
thorization and obligation policy states when
pre-obligations are supported, we consider an
example policy that includes the following
permission rules.

Permission(p1,mobile_users,use,video_
on_demand, d_paid_2$)
Permission(p2,mobile_users,use,video_
on_demand,
d_in_WiFi_area & d_paid_1$)

Table 3 shows the values given to the at-
tributes Weight and Violation of each context.

Table	3.	Context	attributes	

Context Weight Violation

d_paid_1$ 2 delay(3.minutes)

d_paid_2$ 3 delay(4.minutes)

d_in_WiFi_area 4 delay(5.minutes)

14

We first discuss the selection of pre-obligations
after a user requests to use the VoD service in
the following situations:

• (S1) The user has paid 2$: Access is directly
granted since permission p1 is effective.

• (S2) The user has paid 1$ and is not in a
WiFi covered area: the user is asked to pay
2$ since this pre-obligation is assigned
lower weight than the weight given to the
obligation to move to a WiFi covered area.

• (S3) The user has not paid and is in an area
having WiFi: the user is asked to pay 1$.

Assume we replace the permission p1 in
the policy above with the following permission.

Permission(p′1,mobile_users,use,video_
on_demand,
working_hours & d_paid_2$)

The permission p′1 specifies that users
may use the VoD service during working hours
provided that they have paid 2$. In this case,
pre-obligations are selected as follows:

• (S4) During working hours, the user has
not paid nor is in a WiFi covered area and
is requesting to use the VoD service: the
user is asked to pay 2$.

• (S5) Outside of working hours, the user
has not paid nor is in a WiFi area and is
requesting to use the VoD service: the user

is asked to pay 1$ and to move to an area
with WiFi since only p2 can be activated.

Table 4 and Figure 4 show the selection of
pre-obligations and discusses the evolution of
the state of authorizations and obligations in
the different situations just described. Each
table row represents the state obtained by the
execution of the action appearing in the right-
most column of the row above. The obligations
to pay 2$, to pay 1$ and to move to a WiFi
covered area are denoted o2$, o1$ and owf respec-
tively. We only give identifiers for situations
when it is necessary. We will now consider the
evolution of the authorization and obligation
policy states for the situation (S3) where a user
is asked to pay 1$ (within 3 minutes). In this
scenario, the following may occur.

• The user pays 1$ successfully and access
is granted.

• The user pays 2$. In this case, the permis-
sion p1 is activated and the obligation to
pay 1$ is deactivated.

• The user fails to pay within 3 minutes and
access is denied.

We now consider the situation (S5) where
a user is asked to pay 1$ (within 3 minutes)
and to move to a WiFi covered area within (5
minutes). The following may happen.

Figure	4.	Policy	state	evolution

15

• The user successfully fulfills the two pre-
obligations. In this case, the permission
p2 will be activated and access is granted.

• The user fails to pay within 3 minutes. In
this case, the second pre-obligation to move
to a WiFi covered area is deactivated and
access is denied.

• The user pays within 3 minutes but fails
to move to a WiFi covered area within 5
minutes. In this case, access is denied.

Related Work

Other models have been proposed to support
preobligations in access control policies. To our
knowledge, the notion of provisional actions
was first introduced by Kudo and Hada (2000)
to enable the association of access control se-
curity rules for XML documents with actions
that should be triggered by access requests. In
Kudo (2002), multiple hierarchies and property
propagation are studied. In contrast, we study
provisional actions in the form of user actions
which are monitored for fulfillment/violation
and formalize policy enforcement and evolution.

In (Jajodia, Kudo, & Subrahmanian, 2001),
the ASL access control language (Jajodia et al.,
1997) is extended to allow the association of
security rules with provisional actions. An archi-
tecture for the enforcement of these provisional
actions is proposed. Bettini et al. (2002, 2003)
study the association of access control rules
with provisions and obligations and propose
algorithms for the computation a minimal provi-
sions and obligations set. Obligation definition
and monitoring in the framework is discussed in
(Bettini, Wang, Jajodia, & Wijesekera, 2002). In
comparison, the main advantage of our work is
that we consider a formal description of change
in state using the concepts of action specifica-
tion languages. This enables us to formalize the
activation, deactivation, violation and fulfill-
ment of pre-obligations and the effects of these
operations on the authorization and obligation
states. Consequently, we clarify the semantics
of pre-obligations by giving their enforcement
declarative semantics. In addition, our formal
model for pre-obligations is given operational
semantics using ECA rules.

Table	4.	Policy	state	evolution	

Ctx_State A_State O_State

Paid_2$ Paid_1$ Wifi_
area p1 p2 o2$ o1$ owf Action

s1
X
X

.

.
.
.

X
X

.

.
.
.

.

.
.
.

Req(use_vod)
Allow(use_

vod)

s2

.

.
X

X
X
X

.

.

.

.

.
X

.

.

.

.

.

.

.

.

.

.

.

.

Req(use_vod)
Do(pay_2$)
Allow(use_

vod)

s3
s’

3
s’’

3

.

.

.

.

.
X

X
X
X

.

.

.

.

.
X

.
X
,

.
X
.

.

.

.

Req(use_vod)
Do(pay_1$)
Allow(use_

vod)

s’
3

.

.
.
X

X
X

.

.
.
X

X
.

X
.

.

.

Do(pay_2$)
Allow(use_

vod)

s’
3

.

.
.
.

X
X

.

.
.
.

X
.

X
.

.

.

Delay(3.
minutes)

Deny(use_vod)

16

In Ni et al. (2008), an obligation model
supporting the specification of pre- and post-
obligations is presented. The paper studies
two interactions between permissions and
obligations namely invalid permission due
to obligation cascading and the dominance
of obligations. With respect to our work, the
model subordinates obligations to permissions,
only considers temporal obligation deadlines
and does not consider the selection of pre-
obligations after access requests. Furthermore,
in our policy language, obligations are specified
separately from access control rules and provi-
sions are specified in the form of contexts in
permission rules (as opposed to the specifica-
tion of obligations embedded in access control
rules). This simplifies the representation of the
access control policy and, additionally, enables
us to support general obligations which do
not depend of access requests. Moreover, we
provide formal declarative semantics for the
enforcement of pre-obligations.

The UCON model (Park & Sandhu,
2004) introduces obligations to deal with us-
age control requirements and introduces the
notion of attribute mutability. The model is
formalized in Zhang, Parisi-Presicce, Sandhu,
and Park (2005). Pre-obligations in UCON are
evaluated using the functional predicate “preB”
which checks, when an access request is made,
whether pre-obligations required for this ac-
cess have been fulfilled. Formally, checking
pre-obligation fulfillment in UCON is similar
to checking regular permission conditions. By
contrast, in our framework, pre-obligations are
activated just after an access request if their
fulfillment is required to enable the access. This
is an important advantage since, whenever nec-
essary, subjects may be assisted by the system
in accessing resources. Additionally, the UCON
model does not support the specification of
general or global obligations since obligations
are always associated with resource usage.

Other works on trust management (Becker
& Nanz, 2008 ; Bonatti, Olmedilla, & Peer,
2006 ; Koshutanski & Massacci, 2004) studied
the use of abduction in explaining access deni-
als to users by searching for missing facts or

credentials which would allow the requested
access. The work that is most relevant to ours
is Becker and Nanz (2007) where a logic
and an inference system for reasoning about
sequences of user-actions and their effects on
the authorization policy state are presented.
This work is complementary to ours since we
essentially study the enforcement and manage-
ment of pre-obligations as opposed to how to
derive the actions that should be taken to obtain
particular permissions.

CONCLUSION

In this paper, we studied the specification, selec-
tion and enforcement of pre-obligations. First,
we have proposed to specify pre-obligations in
access control rules in the form of permission
contexts to simplify both the specification and
interpretation of the access control policy. We
have also considered the notion of dynamic
context attributes to allow the association of
dynamic contexts (denoting preobligations)
with different weights and deadlines. We have
then studied the selection of pre-obligations
after access requests and formalized the en-
forcement of pre obligations and its effects on
the policy state.

Future work consists of modeling con-
sent requirements in the form of special
pre-obligations and the integration of group
pre-obligations (Elrakaiby, Cuppens, & Cup-
pens-Boulahia, 2009a) to enable the specifica-
tion of pre-obligations which may be fulfilled
in different ways.

REFERENCES

Abou El Kalam, A., Benferhat, S., Balbiani, P.,
Miège, A., El Baida, R., Cuppens, F., et al. (2003).
Organization based access control. In Proceedings	
of	the	4th	IEEE	International	Workshop	on	Policies	
for	Distributed	Systems	and	Networks (pp. 120-131).
Washington, DC: IEEE Computer Society.

Baral, C., & Lobo, J. (1996). Formal characterization
of active databases. In Proceedings	of	the	Interna-
tional	Workshop	on	Logic	in	Databases (pp. 175-195).

17

Becker, M. Y., & Nanz, S. (2007). A logic for state
modifying authorization policies. ACM	Transactions	
on	Information	and	System	Security, 13(3), 20.

Becker, M. Y., & Nanz, S. (2008). The role of abduc-
tion in declarative authorization policies. In Proceed-
ings	of	the	10th	International	Conference	on	Practical	
Aspects	of	Declarative	Language (pp. 84-99).

Bettini, C., Jajodia, S., Wang, X. S., & Wijesekera,
D. (2002). Provisions and obligations in policy
management and security applications. In Proceeding	
of	the	28th	International	Conference	on	Very	Large	
Data	Bases (pp. 502-513). Washington, DC: IEEE
Computer Society.

Bettini, C., Jajodia, S., Wang, X. S., & Wijesekera,
D. (2003). Provisions and obligations in policy
rule management. Journal	of	Network	and	Systems	
Management, 11(3). doi:10.1023/A:1025711105609

Bettini, C., Wang, X., Jajodia, S., & Wijesekera, D.
(2002). Obligation monitoring in policy management.
In Proceedings	of	the	IEEE	International	Workshop	
on	Policies	for	Distributed	Systems	and	Networks
(pp. 2-12). Washington, DC: IEEE Computer Society.

Bonatti, P. A., Olmedilla, D., & Peer, J. (2006).
Advanced policy explanations on the web. In
Proceeding	 of	 the	 17th	 European	 Conference	 on	
Artificial	 Intelligence (pp. 200-204). Amsterdam,
The Netherlands: IOS Press.

Craven, R., Lobo, J., Ma, J., Russo, A., Lupu, E.,
& Bandara, A. (2009). Expressive policy analysis
with enhanced system dynamicity. In Proceedings	
of	the	4th	International	Symposium	on	Information,	
Computer,	and	Communications	Security (pp. 239-
250). New York, NY: ACM Press.

Cuppens, F., & Cuppens-Boulahia, N. (2008).
Modeling contextual security policies. International	
Journal	 of	 Information	 Security, 7(4), 285–305.
doi:10.1007/s10207-007-0051-9

Cuppens, F., Cuppens-Boulahia, N., & Sans, T.
(2005). Nomad: A security model with non atomic
actions and deadlines. In Proceedings	of	the	18th	IEEE	
Workshop	on	Computer	Security	Foundations (pp.
186-196). Washington, DC: IEEE Computer Society.

Elrakaiby, Y., Cuppens, F., & Cuppens-Boulahia,
N. (2009a). Formalization and management of
group obligations. In Proceedings	of	the	10th	IEEE	
International	Conference	on	Policies	for	Distributed	
Systems	and	Networks (pp. 158-165). Los Alamitos,
CA: IEEE Press.

Elrakaiby, Y., Cuppens, F., & Cuppens-Boulahia, N.
(2009b). From state-based to event-based contex-
tual security policies. In Proceedings	of	the	Fourth	
International	 Conference	 on	 Digital	 Information	
Management, Ann Arbor, MI (pp. 1-7). Washington,
DC: IEEE Computer Society.

Elrakaiby, Y., Cuppens, F., & Cuppens-Boulahia,
N. (2010). From contextual permission to dynamic
preobligation: An integrated approach. In Proceed-
ings	of	the	International	Conference	on	Availability,	
Reliability,	and	Security (p. 70). Washington, DC:
IEEE Computer Society.

Ferraiolo, D. F., & Kuhn, D. R. (1992). Role-based
access control. In Proceedings	of	the	15th	National	
Computer	Security	Conference (pp. 554-563).

Gelfond, M., & Lifschitz, V. (1993). Represent-
ing action and change by logic programs. The	
Journal	 of	 Logic	 Programming, 17, 301–322.
doi:10.1016/0743-1066(93)90035-F

Jajodia, S., Kudo, M., & Subrahmanian, V. (2001).
Provisional authorizations. In E-commerce	security	
and	privacy (pp. 133–159). Amsterdam, The Neth-
erlands: Kluwer Academic.

Jajodia, S., Samarati, P., & Subrahmanian, V. S.
(1997). A logical language for expressing authori-
zations In Proceedings	of	the	IEEE	Symposium	on	
Security	and	Privacy (p. 0031). Washington, DC:
IEEE Computer Society.

Jordan, C. (1987). A	guide	to	understanding	discre-
tionary	access	control	in	trusted	systems. Retrieved
from http://oai.dtic.mil/oai/oai?verb=getRecord&m
etadataPrefix=html&identifier=ADA392813

Koshutanski, H., & Massacci, F. (2004). Interactive
access control for web services. In Proceedings	of	
the	 19th	 International	 Conference	 on	 Information	
Security (pp. 151-166).

Kudo, M. (2002). PBAC: Provision-based access con-
trol model. International	Journal	of	Information	Se-
curity, 1(2), 116–130. doi:10.1007/s102070100010

Kudo, M., & Hada, S. (2000). Xml document security
based on provisional authorization. In Proceedings	
of	the	7th	ACM	Conference	on	Computer	and	Com-
munications	Security (pp. 87-96). New York, NY:
ACM Press.

Ni, Q., Bertino, E., & Lobo, J. (2008). An obligation
model bridging access control policies and privacy
policies. In Proceedings	of	the	13th	ACM	Symposium	
on	Access	Control	Models	 and	Technologies (pp.
133-142). New York, NY: ACM Press.

18

Park, J., & Sandhu, R. (2004, February). The UCO-
NABC usage control model. ACM	Transactions	on	
Information	 and	 System	 Security, 7(1), 128–174.
doi:10.1145/984334.984339

Zhang, X., Parisi-Presicce, F., Sandhu, R., &
Park, J. (2005). Formal model and policy speci-
fication of usage control. ACM	 Transactions	 on	
Information	 and	 System	 Security, 8(4), 351–387.
doi:10.1145/1108906.1108908

Yehia	Elrakaiby	holds	a	Ph.D.	degree	from	the	National	School	of	Telecommunication	(TELECOM-
Bretagne),	France	in	2010.	He	received	his	Engineering	degree,	in	2003,	from	the	Department	of	
Electronics	and	Communications	Engineering,	Cairo	University,	Egypt.	He	pursued	his	studies	at	
the	National	School	of	Telecommunications	(TELECOM-Bretagne)	where	he	obtained	an	Engi-
neering	degree,	in	2005.	His	research	interests	include	the	formal	modeling	of	security	concepts	
and	the	specification	and	application	of	security	policies	to	network	and	information	systems.

Frédéric	Cuppens	is	a	full	professor	at	the	TELECOM	Bretagne	LUSSI	department.	He	holds	
an	engineering	degree	in	computer	science,	a	PhD	and	an	HDR.	He	has	been	working	for	more	
20	years	on	various	topics	of	computer	security	including	definition	of	formal	models	of	security	
policies,	access	control	to	network	and	information	systems,	intrusion	detection,	reaction	and	
counter-measures,	and	formal	techniques	to	refine	security	policies	and	prove	security	properties.	
He	has	published	more	than	120	technical	papers	in	refereed	journals	and	conference	proceed-
ings.	He	served	on	several	conference	program	committees	and	was	the	Program	Committee	
Chair	of	ESORICS	2000,	IFIP	SEC	2004,	of	SARSSI	2006	and	general	chair	of	ESORICS	2009,	
DPM	2010	and	SETOP	2010.

Nora	Cuppens-Boulahia	is	an	associate	researcher	at	the	TELECOM	Bretagne	LUSSI	depart-
ment.	She	holds	an	engineering	degree	in	computer	science	and	a	PhD	from	SupAero	and	an	
HDR	from	University	Rennes	1.	Her	research	interest	includes	formalization	of	security	proper-
ties	and	policies,	cryptographic	protocol	analysis,	formal	validation	of	security	properties	and	
thread	and	reaction	risk	assessment.	She	has	published	more	than	80	technical	papers	in	refereed	
journals	and	conference	proceedings.	She	has	been	member	of	several	international	program	
commitees	in	information	security	system	domain	and	the	PC	Chair	of	Setop	2008,	Setop2009,	
SAR-SSI	2008,	CRISIS	2010	and	the	co-general	chair	of	ESORICS	2009	and	SETOP	2010.	She	
is	the	French	representative	of	IFIP	TC11	"Information	Security"	and	she	is	he	co-responsible	
of	the	information	system	security	axis	of	SEE.

19

