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Indirect controllability of some linear parabolic systems of m equations with m -1 controls involving coupling terms of zero or first order

2) with coupling terms of first and zero order, and m -1 controls localized in some arbitrary nonempty open subset ω of Ω. In the case of constant coupling coefficients, we provide a necessary and sufficient condition to obtain the null or approximate controllability in arbitrary small time. In the case m = 2 and N = 1, we also give a generic sufficient condition to obtain the null or approximate controllability in arbitrary small time for general coefficients depending on the space and times variables, provided that the supports of the coupling terms intersect the control domain ω. The results are obtained thanks to the fictitious control method together with an algebraic method and some appropriate Carleman estimates.

Introduction

Presentation of the problem and main results

Let T > 0, let Ω be a bounded domain in R N (N ∈ N * ) of class C 2 and let ω be an arbitrary nonempty open subset of Ω. Let Q T := (0, T ) × Ω, q T := (0, T ) × ω, Σ T := (0, T ) × ∂Ω and m 2. We consider the following system of m parabolic linear equations, where the m -1 first equations are controlled:

                     ∂ t y 1 = div(d 1 ∇y 1 ) + m i=1 g 1i • ∇y i + m i=1 a 1i y i + 1 ω u 1 in Q T , ∂ t y 2 = div(d 2 ∇y 2 ) + m i=1 g 2i • ∇y i + m i=1 a 2i y i + 1 ω u 2 in Q T , . . . ∂ t y m-1 = div(d m-1 ∇y m-1 ) + m i=1 g 1(m-1)i • ∇y i + m i=1 a (m-1)i y i + 1 ω u m-1 in Q T , ∂ t y m = div(d m ∇y m ) + m i=1 g mi • ∇y i + m i=1 a mi y i in Q T , y 1 = . . . = y m = 0 on Σ T , y 1 (0, •) = y 0 1 , . . . , y m (0, •) = y 0 m in Ω, (1.1) 
where y 0 := (y 0 1 , . . . , y 0 m ) ∈ L 2 (Ω) m is the initial condition and u := (u 1 , . . . , u m-1 ) ∈ L 2 (Q T ) m-1 is the control. The zero and first order coupling terms (a ij ) 1 i,j m and (g ij ) 1 i,j m are assumed to be respectively in L ∞ (Q T ) and in L ∞ (0, T ; W 1 ∞ (Ω) N ). Given some l ∈ {1, ..., m}, the second order elliptic self-adjoint operator div(d l ∇) is given by

div(d l ∇) = m i,j=1 ∂ i (d ij l ∂ j ), with d ij l ∈ W 1 ∞ (Q T ), d ij l = d ji l in Q T ,
where the coefficients d ij l satisfy the uniform ellipticity condition N i,j=1

d ij l ξ i ξ j d 0 |ξ| 2 in Q T , ∀ξ ∈ R N ,
for a constant d 0 > 0.

In order to simplify the notation, from now on, we will denote by

D := diag(d 1 , . . . , d m ), G := (g ij ) 1 i,j m ∈ M m (R N ), A := (a ij ) 1 i,j m ∈ M m (R), B := diag(1, . . . , 1) 0 ∈ M m,m-1 (R),
so that we can write System (1.1) as

   ∂ t y = div(D∇y) + G • ∇y + Ay + 1 ω Bu in Q T , y = 0 on Σ T , y(0, •) = y 0
in Ω.

(1.

2)

It is well-known (see for instance [START_REF] Evans | Partial differential equations[END_REF]Th. 3 & 4,) that for any initial data y 0 ∈ L 2 (Ω) m and u ∈ L 2 (0, T ; H -1 (Ω)) m-1 , System (1.2) admits a unique solution y in W (0, T ) m , where W (0, T ) := L 2 (0, T ; H 1 0 (Ω)) ∩ H 1 (0, T ; H -1 (Ω)) → C 0 ([0, T ]; L 2 (Ω)).

(1.3) Moreover, one can prove (see for instance [START_REF] Evans | Partial differential equations[END_REF]Th. 5,p. 360]) that if y 0 ∈ H 1 0 (Ω) m and u ∈ L 2 (Q T ) m-1 , then the solution y is in W 2, 1 2 (Q T ) m , where

W 2,1 2 (Q T ) := L 2 (0, T ; H 2 (Ω) ∩ H 1 0 (Ω)) ∩ H 1 (0, T ; L 2 (Ω)) → C 0 ([0, T ]; H 1 0 (Ω)). (1.4) 
The main goal of this article is to analyse the null controllability and approximate controllability of System (1.1). Let us recall the definition of these notions. It will be said that

• System (1.1) is null controllable at time T if for every initial condition y 0 ∈ L 2 (Ω) m , there exists a control u ∈ L 2 (Q T ) m-1 such that the solution y in W (0, T ) m to System (1.1) satisfies y(T ) ≡ 0 in Ω.

• System (1.1) is approximately controllable at time T if for every ε > 0, every initial condition y 0 ∈ L 2 (Ω) m and every y T ∈ L 2 (Ω) m , there exists a control u ∈ L 2 (Q T ) m-1 such that the solution y in W (0, T ) m to System (1.1) satisfies

y(T ) -y T 2 L 2 (Ω) m ε.
Let us remark that if System (1.1) is null controllable on the time interval (0, T ), then it is also approximately controllable on the time interval (0, T ) (this is an easy consequence of usual results of backward uniqueness concerning parabolic equations as given for example in [START_REF] Bardos | Sur l'unicité rétrograde des équations paraboliques et quelques questions voisines[END_REF]).

Our first result gives a necessary and sufficient condition for null (or approximate) controllability of System (1.1) in the case of constant coefficients. This condition is the natural one that can be expected, since it only means that the last equation is coupled with at least one of the others.

Theorem 1. Let us assume that D, G and A are constant in space and time. Then System (1.1) is null (resp. approximately) controllable at time T > 0 if and only if there exists i 0 ∈ {1, ..., m -1} such that g mi0 = 0 or a mi0 = 0.

(1.5)

Our second result concerns the case of general coefficients depending on space and time variables, in the particular case of two equations and one space dimension (i.e. m = 2 and N = 1), and gives a controllability result under some technical conditions on the coefficients (see (1.7) and (1.8)) coming from the algebraic solvability (see Section 3.1). To understand why this kind of condition appears here, we refer to the simple example given in [START_REF] Lissy | Sur la contrôlabilité et son coût pour quelques équations aux dérivées partielles[END_REF]Ex. 1,Sec. 1.3]. Let us emphasize that Condition (1.8), which is clearly technical since it does not even cover the case of constant coefficients, is generic as soon as we restrict to the coupling coefficients verifying g 21 = 0 on (0, T ) × ω, in the following sense: it only requires some regularity on the coefficients and a given determinant, involving some coefficients and their derivatives, to be nonzero. Since this condition may seem a little bit intricate, we will give in Remark 1 some particular examples that clarify the scope of Theorem 2.

Theorem 2. Let us assume that m = 2, N = 1, Ω = (0, L) with L > 0, and consider the following system:

       ∂ t y 1 = ∂ x (d 1 ∂ x y 1 ) + g 11 ∂ x y 1 + g 12 ∂ x y 2 + a 11 y 1 + a 12 y 2 + 1 ω u in Q T , ∂ t y 2 = ∂ x (d 2 ∂ x y 2 ) + g 21 ∂ x y 1 + g 22 ∂ x y 2 + a 21 y 1 + a 22 y 2 in Q T , y 1 (•, 0) = y 2 (•, 0) = y 1 (•, L) = y 2 (•, L) = 0 on (0, T ), y 1 (0, •) = y 0 1 , y 2 (0, •) = y 0 2 , in (0, L), (1.6) 
where y 0 = (y 0 1 , y 0 2 ) ∈ L 2 (0, L) 2 is the initial condition. Then System (1.1) is null (resp. approximately) controllable at time T if there exists an open subset (a, b) × O ⊆ q T where one of the following conditions is verified:

(i) Coefficients of System (1.6) satisfy d i , g ij , a ij ∈ C 1 ((a, b), C 2 (O)) for i, j = 1, 2 and g 21 = 0 and a 21 = 0 in (a, b) × O, 1/a 21 ∈ L ∞ (O) in (a, b). (1.7) (ii) Coefficients of System (1.6) satisfy d i , g ij , a ij ∈ C 3 ((a, b), C 7 (O)) for i = 1, 2 and |det(H(t, x))| > C for every (t, x) ∈ (a, b) × O, (1.8) 
where 

H :=        -a 21 +
0 g 22 -2∂xd 2 -1 -d 2       
.

(1.9)

Remark 1. (a) We will see during the proof that, in Item (ii) of Theorem 2, taking into account the derivatives of the appearing in (1.9), (3.5) and (3.9), and the regularity needed for the control in Proposition 3.4, we need only the following regularity for the coefficients:

d i ∈ C 1 ((a, b), C 2 (O)), g ij ∈ C 0 ((a, b), C 2 (O)), a ij ∈ C 0 ((a, b), C 1 (O)) (1.10)
for all i, j ∈ {1, 2} in the first case (i) and

                   d 1 ∈ C 1 ((a, b), C 4 (O)) ∩ C 2 ((a, b), C 1 (O)), g 11 , g 12 ∈ C 0 ((a, b), C 4 (O)) ∩ C 1 ((a, b), C 1 (O)), a 11 , a 12 ∈ C 0 ((a, b), C 3 (O)) ∩ C 1 ((a, b), C 0 (O)), g 21 ∈ C 0 ((a, b), C 7 (O)) ∩ C 3 ((a, b), C 1 (O)), d 2 , g 22 ∈ C 0 ((a, b), C 6 (O)) ∩ C 2 ((a, b), C 2 (O)), a 22 ∈ C 0 ((a, b), C 5 (O)) ∩ C 2 ((a, b), C 1 (O)), a 21 ∈ C 0 ((a, b), C 6 (O)) ∩ C 3 ((a, b), C 0 (O)), (1.11) 
in the second case (ii).

(b) One can easily compute explicitly the determinant of matrix H appearing in (1.8): (c) We remark that Condition (1.8) implies in particular that

det(H) = 2
g 21 = 0 in (a, b) × O. (1.12) 
Our conjecture is that, as in the case of constant coefficients, either the first line of (1.7) or (1.12) is sufficient as soon as we restrict to the class of coupling terms that intersect the control region, since it is the minimal conditions one can expect (as in the case of constant coefficients, this only means that the last equation is coupled with one of the others).

(d) Even though Condition (1.8) seems complicated, it can be simplified in some cases. Indeed, for example, System (1.6) is null controllable at time T if there exists an open subset (a, b)×O ⊆ q T such that   

g 21 ≡ κ ∈ R * in (a, b) × O, a 21 ≡ 0 in (a, b) × O, ∂ x a 22 = ∂ xx g 22 in (a, b) × O.
Another simple situation is the case where the coefficients depend only on the time variable. In this case, it is easy to check that Condition (1.8) becomes simply: there exists an open interval (a, b) of (0, T ) such that

g 21 (t)∂ t a 21 (t) = a 21 (t)∂ t g 21 (t) in (a, b).
(e) In fact, it is likely that one could obtain a far more general result than the one obtained in Theorem 2. By using the same reasoning, one would be able to obtain a result of controllability for arbitrary m and N , however the generic Condition (1.8) would be far more complicated and in general impossible to write down explicitly. That is the reason why we chose to treat only the case m = 2 and N = 1.

This paper is organized as follows. In Section 1.2 we recall some previous results and explain precisely the scope of the present contribution. In Section 1.3 we present the main method used here, that is to say the fictitious control method together with some algebraic method. Section 2 is devoted to the proof of Theorem 1. We finish with the proof of Theorem 2 in Section 3. 

State of the art

The study of what is called the indirect controllability for linear or nonlinear parabolic coupled systems has been an intensive subject of interest these last years. The main issue is to try to control many equations with less controls than equations (and ideally only one control if possible), with the hope that one can act indirectly on the equations that are not directly controlled thanks to the coupling terms. For a recent survey concerning this kind of control problems, we refer to [START_REF] Ammar-Khodja | Recent results on the controllability of linear coupled parabolic problems: a survey[END_REF]. Here, we will mainly present the results related to this work, that is to say the case of the null or approximate controllability of linear parabolic systems with distributed controls.

First of all, in the case of zero order coupling terms, a necessary and sufficient algebraic condition is proved in [START_REF] Ammar-Khodja | A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems[END_REF] for the controllability of parabolic systems, for constant coefficients and diffusion coefficients d i that are equal to the identity matrices. This condition is similar to the usual algebraic Kalman rank condition for finite-dimensional systems. These results were then extended in [START_REF] Ammar-Khodja | A Kalman rank condition for the localized distributed controllability of a class of linear parbolic systems[END_REF], where a necessary and sufficient condition is given for constant coefficients but different diffusion coefficients d i (the Laplace operator ∆ can also be replaced by some general time-independent elliptic operator). Moreover, in [START_REF] Ammar-Khodja | A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems[END_REF], some results are obtained in the case of time-dependent coefficients under a sharp sufficient condition which is similar to the sharp Silverman-Meadows Theorem in the finitedimensional case.

Concerning the case of space-varying coefficients, there is currently no general theory. In the case where the support of the coupling terms intersect the control domain, the most general result is proved in [START_REF] González-Burgos | Controllability results for cascade systems of m coupled parabolic PDEs by one control force[END_REF] for parabolic systems in cascade form with one control force (and possibly one order coupling terms). We also mention [START_REF] Ammar-Khodja | Null-controllability of some reaction-diffusion systems with one control force[END_REF], where a result of null controllability is proved in the case of a system of two equations with one control force, with an application to the controllability of a nonlinear system of transport-diffusion equations. In the case where the coupling regions do not intersect the control domain, only few results are known and in general there are some technical and geometrical restrictions (see for example [START_REF] Alabau-Boussouira | A hierarchic multi-level energy method for the control of bidiagonal and mixed n-coupled cascade systems of PDE's by a reduced number of controls[END_REF], [START_REF] Alabau-Boussouira | Indirect controllability of locally coupled wave-type systems and applications[END_REF] or [START_REF] Rosier | Exact controllability of a cascade system of conservative equations[END_REF]). These restrictions come from the use of the transmutation method that requires a controllability result on some related hyperbolic system. Let us also mention [START_REF] Ammar-Khodja | Minimal time of controllability of two parabolic equations with disjoint control and coupling domains[END_REF], where the authors consider a system of two equations in one space dimension and obtain a minimal time for null controllability, when the supports of the coupling terms do not intersect the control domain.

Concerning the case of first order coupling terms, there are also only few results. The first one is [START_REF] Guerrero | Null controllability of some systems of two parabolic equations with one control force[END_REF], where the author studies notably the case of m coupled heat equations with m -1 control forces and obtains the null controllability of System (1.1) at any time when the following estimate holds:

u H 1 (Ω) C g 21 • ∇u + a 21 u L 2 (Ω) , (1.13) 
for all u ∈ H 1 0 (Ω). Let us emphasize that inequality (1.13) is very restrictive, because it notably implies that g 21 has to be nonzero on each of its components (due to the H 1 -norm appearing in the left-hand side). Another case is the null controllability at any time T > 0 of m equations with one control force, which is studied in [START_REF] González-Burgos | Controllability results for cascade systems of m coupled parabolic PDEs by one control force[END_REF], under many assumptions: the coupling matrix G has to be upper triangular (except on the controlled equation) and many coefficients of A have to be non identically equal to zero on ω, notably, in the 2 × 2 case, we should have g 21 ≡ 0 in q T and (a 21 > a 0 in q T or a 21 < -a 0 in q T ), (1.14) for a constant a 0 > 0. The last result concerning first order coupling terms is the recent work [START_REF] Benabdallah | Controllability to trajectories for some parabolic systems of three and two equations by one control force[END_REF], where the case of 2 × 2 and 3 × 3 systems with one control force is studied under some technical assumptions. Notably, in the 2 × 2 case, the authors assume that there exists an nonempty open subset γ of ∂ω ∩ ∂Ω, ∃x 0 ∈ γ s.t. g 21 (t, x 0 ) • ν(x 0 ) = 0 for all t ∈ [0, T ],

(1.15) Here we detail how our results differ from the existing ones:

1. In the case of constant coefficients, we are able to obtain a necessary and sufficient condition in the case of m equations, m -1 controls and coupling terms of order 0 or 1, which is the main new result. Moreover, the diffusion coefficients can be different, we are able to treat the case of as many equations as wanted and we use an inequality similar to Condition (1.13) but with the L 2 -norm in the left-hand side (see Lemma 2.4). To finish, we do not need the control domain to extend up to the boundary as in Condition (1.15). The main restriction is that all the coefficients of System (1.1) must be constant.

2. In the case N = 1 and m = 2, we are able to obtain the controllability in arbitrary small time under some generic conditions which are purely technical (at least in the second item). In Theorem 2, the geometric condition (1.15) is not necessary, which is very satisfying, moreover, in the case g 21 = 0, we do not need a condition of constant sign like in (1.14) on a 21 , and the conditions on a 21 and g 21 given in (1.7) have to be verified only locally in space and time (contrary to (1.14) where it is local only in space).

Strategy

The method described in this section is sometimes called fictitious control method and has already been used for instance in [START_REF] González-Burgos | Controllability results for some nonlinear coupled parabolic systems by one control force[END_REF], [START_REF] Coron | Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components[END_REF] and [START_REF] Alabau-Boussouira | Internal controllability of first order quasilinear hyperbolic systems with a reduced number of controls[END_REF]. One important limitation of this method is that it will never be useful to treat the case where the support of the coupling terms do not intersect the control region, because, in what we call the algebraic resolution, we have to work locally on the control region.

Roughly, the method is the following: we first control the equations with m controls (one on each equation) and we try to eliminate the control on the last equation thanks to algebraic manipulations. Let us be more precise and decompose the problem into two different steps:

Analytic problem: Find a solution (z, v) in an appropriate space to the control problem by m controls which are regular enough and are in the range of a differential operator. More precisely, solve

   ∂ t z = div(D∇z) + G • ∇z + Az + N (1 ω v) in Q T , z = 0 on Σ T , z(0, •) = y 0 , z(T, •) = 0 in Ω, (1.16) 
where N is some differential operator to be chosen later and ω is strongly included in ω. Solving Problem (1.16) is easier than solving the null controllability at time T of System (1.1), because we control System (1.16) with a control on each equation. The important points (and somehow different from the usual method) are that:

1. The control has to be of a special form (it has to be in the range of a differential operator N ),

2. The control has to be regular enough, so that it can be differentiated a certain amount of times with respect to the space and/or time variables (see the next section about the algebraic resolution).

If we look for a control v in the weighted Sobolev space L 2 (Q T , ρ -1/2 ) for some weight ρ, it is well known (see, e.g. [12, Th. 2.44, p. 56-57]) that the null controllability at time T of System (1.16) is equivalent to the following observability inequality:

Ω |ψ(0, x)| 2 dx C obs q T ρ|N * ψ(t, x)| 2 dxdt, (1.17) 
where ψ is the solution to the dual system

   -∂ t ψ = div(D∇ψ) -G * • ∇ψ + A * ψ in Q T , ψ = 0 on Σ T , ψ(T, •) = ψ 0 in Ω.
Inequalities like (1.17) can be proved thanks to some appropriate Carleman estimates. The weight ρ can be chosen to be exponentially decreasing at times t = 0 and t = T , which will be useful later. In fact, we will have to adapt the usual HUM duality method to ensure that one can find such controls.

Algebraic problem: For f := 1 ω v, find a pair ( z, v) (where v now acts only on the first m -1 equations) in an appropriate space satisfying the following control problem:

   ∂ t z = div(D∇ z) + G • ∇ z + A z + B v + N f in Q T , z = 0 on Σ T , z(0, •) = z(T, •) = 0 in Ω, (1.18) 
and such that the spatial support of v is strongly included in ω. We will solve this problem using the notion of algebraic resolvability of differential systems, which is based on ideas coming from [21, Section 2.3.8] and was already widely used in [START_REF] Coron | Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components[END_REF] and [START_REF] Alabau-Boussouira | Internal controllability of first order quasilinear hyperbolic systems with a reduced number of controls[END_REF]. The idea is to write System (1.18) as an underdetermined system in the variables z and v and to see N f as a source term, so that we can write Problem (1.18) under the abstract form

L( z, v) = N f, (1.19) 
where

L( z, v) := ∂ t z -div(D∇ z) -G • ∇ z -A z -B v. (1.20)
The goal will be then to find a partial differential operator M satisfying

L • M = N . (1.21)
When (1.21) is satisfied, we say that System (1.18) is algebraically resolvable. This exactly means that one can find a solution ( z, v) of System (1.18) which can be written as a linear combination of some derivatives of the source term N f . The main advantage of this method is that one can only work locally on q T , because the solution depends locally on the source term and then has the same support as the source term (to obtain a solution which is defined everywhere on Q T , one just extends it by 0). This part will be explained in more details in Sections 2.1 and 3.1.

Conclusion:

If we can solve the analytic and algebraic problems, then it is easy to check that (y, u) := (z -z, -v) will be a solution to System (1.1) in an appropriate space and will satisfy y(T ) ≡ 0 in Ω (for more explanations, see [START_REF] Coron | Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components[END_REF]Prop. 1] or Sections 2.4 and 3.3 of the present paper).

Proof of Theorem 1

Let us remind that in this case, D, G and A are constant. In Section 2.1, 2.2 and 2.3, we will always consider some i 0 ∈ {1, ..., m -1} such that g mi0 = 0 or a mi0 = 0.

(2.1)

We will follow the strategy described in Section 1.3, and we first begin with finding some appropriate operator N .

Algebraic resolution

We will here explain how to choose the differential operator N used in the next section. We will assume from now on that all differential operators of this section are defined in C ∞ (Q T ). The appropriate spaces will be precised in Section 2.4. We consider N as the operator defined for all f := (f 1 , . . . , f m ) by

N (f ) :=     N 1 f N 2 f . . . N m f     :=     (-g mi0 • ∇ -a mi0 )f 1 (-g mi0 • ∇ -a mi0 )f 2 . . . (-g mi0 • ∇ -a mi0 )f m     . (2.2)
Let us recall that the definition of L is given in (1.20).

As explained in Section 1.3, we want find a differential operator M such that

L • M = N . (2.3)
We have the following proposition:

Proposition 2.1. Let N be defined as in (2.2). Then there exists a differential operator M of order 1 in time and 2 in space, with constant coefficients, such that (2.3) is verified.

Proof of Proposition 2.1. We can remark that equality (2.3) is equivalent to

M * • L * = N * . (2.4) 
The adjoint

L * of the operator L is given for all ϕ ∈ C ∞ (Q T ) m by L * ϕ :=   L * 1 ϕ . . . L * 2m-1 ϕ   =         -∂ t ϕ 1 -d 1 ∆ϕ 1 + m j=1 {g j1 • ∇ϕ j -a j1 ϕ j } . . . -∂ t ϕ m -d m ∆ϕ 1 + m j=1 {g jm • ∇ϕ j -a jm ϕ j } ϕ 1 . . . ϕ m-1         .
(2.5)

Now we apply g mi0 •∇-a mi0 to the (m+i) th line for i ∈ {1, ..., m-1} and we add

(∂ t +d i0 ∆)L * m+i0 ϕ+ m-1 j=1 (-g ji0 •∇+a ji0 )L * m+j ϕ to the (i 0 ) th line. Hence, remarking that L * m+i ϕ = ϕ i (i ∈ {1, ..., m-1}), we obtain     (g mi0 • ∇ -a mi0 )L * m+1 ϕ . . . (g mi0 • ∇ -a mi0 )L * 2m-1 ϕ L * i0 ϕ + (∂ t + d i0 ∆)L * m+i0 ϕ + m-1 j=1 (-g ji0 • ∇ + a ji0 )L * m+j ϕ     = N * ϕ. Thus if we define M * for ψ := (ψ 1 , ..., ψ 2m-1 ) ∈ C ∞ (Q T ) 2m-1 by M *   ψ 1 . . . ψ 2m-1   :=     (g mi0 ∇ -a mi0 )ψ m+1 . . . (g mi0 ∇ -a mi0 )ψ 2m-1 ψ i0 + (∂ t + d i0 ∆)ψ m+i0 + m-1 j=1 (-g ji0 • ∇ + a ji0 )ψ m+j     , (2.6)
then equality (2.4) is satisfied and hence equality (2.3) also. Moreover, the coefficients of M * are constant, hence it is also the case for the coefficients of M.

An appropriate Carleman estimate

Let us consider the following dual system associated to System (1.16)

   -∂ t ψ = div(D∇ψ) -G * • ∇ψ + A * ψ in Q T , ψ = 0 on Σ T , ψ(T, •) = ψ 0 in Ω.
(2.7)

The two main results of this section are Propositions 2.2 and 2.3, which are respectively some Carleman estimate and observability inequality. The particularity of theses equalities is that the observation will not be directly the L 2 -norm of the solution ψ to System (2.7) on the subset ω, but it will be the L 2 -norm of some linear combination of ψ and its derivatives of first order on the subset ω. This particular form will be used in the next section to construct a solution to the analytic control Problem (1.16).

Let ω 0 , ω 1 and ω 2 be three nonempty open subsets included in ω satisfying

ω 2 ⊂ ω 1 , ω 1 ⊂ ω 0 and ω 0 ⊂ ω.
Before stating the Carleman estimate, let us introduce some notations. For s, λ > 0, let us define

I(s, λ; u) := s 3 λ 4 Q T e -2sα ξ 3 |u| 2 dxdt + sλ 2 Q T e -2sα ξ|∇u| 2 dxdt, (2.8) 
where 5 and ξ(t, x) 5 .

α(t, x) := exp(12λ η 0 ∞ ) -exp[λ(10 η 0 ∞ -η 0 (x))] t 5 (T -t)
:= exp[λ(10 η 0 ∞ -η 0 (x))] t 5 (T -t)
(2.9) Here, for all t ∈ (0, T ).

η 0 ∈ C 2 (Ω) is a function satisfying |∇η 0 | κ in Ω\ω 2 , η 0 > 0 in

Some auxiliary results

Let us now give some useful auxiliary results that we will need in our proofs. The first one is a Carleman estimate which holds for solutions of the heat equation with non-homogeneous Neumann boundary conditions:

Lemma 2.1. Let us assume that d > 0, u 0 ∈ L 2 (Ω), f 1 ∈ L 2 (Q T ) and f 2 ∈ L 2 (Σ T ).
Then there exists a constant C := C(Ω, ω 2 ) > 0 such that the solution to the system

   -∂ t u -d∆u = f 1 in Q T , ∂u ∂n = f 2 on Σ T , u(T, •) = u 0 in Ω, satisfies I(s, λ; u) C s 3 λ 4 (0,T )×ω2 e -2sα ξ 3 |u| 2 dxdt + Q T e -2sα |f 1 | 2 dxdt +sλ Σ T e -2sα * ξ * |f 2 | 2 dσdt ,
for all λ C and s C(T 5 + T 10 ).

The proof of Lemma 2.1 can essentially be found in [START_REF] Fernández-Cara | Null controllability of the heat equation with boundary Fourier conditions: the linear case[END_REF]. In fact, in this article, the weights are a little bit different (t(T -t) instead of t 5 (T -t) 5 ) but the proof just needs to be slightly adapted to obtain the present result.

From Lemma 2.1, one can deduce the following result:

Lemma 2.2. Let h ∈ L 2 (Σ T ) m .
Then there exists a constant C := C(Ω, ω 2 ) > 0 such that for every ϕ 0 ∈ L 2 (Ω) m , the solution ϕ to the system

   -∂ t ϕ = D∆ϕ -G * • ∇ϕ + A * ϕ in Q T , ∂ϕ ∂n = h on Σ T , ϕ(T, •) = ϕ 0 in Ω (2.11) satisfies I(s, λ; ϕ) C s 3 λ 4 (0,T )×ω2 e -2sα ξ 3 |ϕ| 2 dxdt + sλ Σ T e -2sα * ξ * |h| 2 dσdt ,
for every λ C and s s 0 = C(T 5 + T 10 ).

Proof of Lemma 2.2.

For i ∈ {1, ..., m}, we will apply first the Carleman inequality of Lemma 2.1 to the i th equation of System (2.11) with f 1 := m j=1 {-g ji • ∇ϕ j + a ji ϕ j } and f 2 := ∂ϕi ∂n . Then we have, for every s C(T 5 + T 10 ),

I(s, λ; ϕ i ) C s 3 λ 4 (0,T )×ω2 e -2sα ξ 3 |ϕ i | 2 dxdt + Q T e -2sα m j=1 {-g ji • ∇ϕ j + a ji ϕ j } 2 dxdt +sλ Σ T e -2sα * ξ * ∂ϕ i ∂n 2 dσdt .
The sum of the expressions above for i ∈ {1, ..., m} leads to the estimate

I(s, λ; ϕ) C s 3 λ 4 (0,T )×ω2 e -2sα ξ 3 |ϕ| 2 dxdt + Q T e -2sα {|∇ϕ| 2 + |ϕ| 2 }dxdt + sλ Σ T e -2sα * ξ * ∂ϕ ∂n 2 dσdt .
Going back to the definition of I(s, λ; ϕ) (see (2.8)), we observe that one can absorb the global terms in ∇ϕ and ϕ of the right-hand side by taking s large enough (more precisely s C(T 5 + T 10 ) with C large enough), which concludes the proof.

In this section, we will use also the following estimate.

Lemma 2.3. Let r ∈ R. Then there exists C := C(r, ω 2 , Ω) > 0 such that, for every T > 0 and every u ∈ L 2 (0, T ; H 1 (Ω)),

s r+2 λ r+2 Q T e -2sα ξ r+2 |u| 2 dxdt C s r λ r Q T e -2sα ξ r |∇u| 2 dxdt +s r+2 λ r+2 (0,T )×ω2 e -2sα ξ r+2 |u| 2 dxdt ,
for every λ C and s C(T 5 + T 10 ).

The proof of this lemma can be found for example in [13, Lemma 3]. Our next Lemma is some Poincaré-type inequality involving the differential operator N * .

Lemma 2.4. There exists a constant C := C(Ω) > 0 such that for every u ∈ H 1 0 (Ω), the following estimate holds:

Ω u 2 C Ω |N * u| 2 ,
(2.12)

where N * := g mi0 • ∇ -a mi0 .

Proof of Lemma 2.4 Using Condition (2.1), the proof is obvious if g mi0 = 0. Then, let us assume from now on that g mi0 = 0. Let us treat first the particular case g mi0 = e 1 with e 1 the first element of the canonical basis of R N and consider the set

Ω ⊥ := { x 1 := (x 2 , ..., x N ) ∈ R N -1 : ∃ x 1 ∈ R s.t. (x 1 , x 1 ) ∈ Ω} ⊂ R N -1 .
We can decompose the term in the right-hand side of inequality (2.12) as follows:

Ω |N * u| 2 dx = Ω ⊥ {x1∈R:(x1, x1)∈Ω} (∂ x1 (u) -a mi0 u) 2 dx 1 d x 1 = Ω ⊥ {x1∈R:(x1, x1)∈Ω} {|∂ x1 (u)| 2 -2a mi0 ∂ x1 (u)u + a 2 mi0 u 2 }dx 1 x 1 .
We remark that for every

x 1 ∈ Ω ⊥ {x1∈R:(x1, x1)∈Ω} 2a mi0 ∂ x1 (u)udx 1 = a mi0 {x1∈R:(x1, x1)∈Ω} ∂ x1 (u 2 )dx 1 = 0.
Moreover, using the usual Poincaré inequality, for every

x 1 ∈ Ω ⊥ , {x1∈R:(x1, x1)∈Ω} u 2 dx 1 κ|Ω| 2 {x1∈R:(x1, x1)∈Ω} |∂ x1 (u)| 2 dx 1 ,
where κ does not depend on Ω. Thus for every

x 1 ∈ Ω ⊥ {x1∈R:(x1, x1)∈Ω} (∂ x1 (u) -a mi0 u) 2 dx 1 (a 2 mi0 + κ -1 |Ω| -2 ) {x1∈R:(x1, x1)∈Ω} u 2 dx 1 .
We conclude by integration on Ω ⊥ of the last inequality.

To treat the general case g mi0 = e 1 , we just use an appropriate change of coordinates in which g mi0 can be seen as e 1 and we apply exactly the same reasoning.

In order to deal with more regular solutions, one needs the following lemma:

Lemma 2.5. Let z 0 ∈ H 1 0 (Ω) m and f ∈ L 2 (Q T ) m . Let us denote by R := -D∆ -G • ∇ -A and consider z the solution in W 2,1 2 (Q T ) to the system    ∂ t z = D∆z + G • ∇z + Az + f in Q T , z = 0 on Σ T , z(0, •) = z 0 in Ω.
(2.13)

Let d ∈ N. Let us assume that z 0 ∈ H 2d+1 (Ω) m , f ∈ L 2 (0, T ; H 2d (Ω) m ) ∩ H d (0, T ; L 2 (Ω) m
) and satisfy the following compatibility conditions:

       g 0 := z 0 ∈ H 1 0 (Ω) m , g 1 := f (0, •) -Rg 0 ∈ H 1 0 (Ω) m , . . . g d := ∂ d-1 t f (0, •) -Rg d-1 ∈ H 1 0 (Ω) m .
Then z ∈ L 2 (0, T ; H 2d+2 (Ω) m ) ∩ H d+1 (0, T ; L 2 (Ω) m ) and we have the estimate

z L 2 (0,T ;H 2d+2 (Ω) m )∩H d+1 (0,T ;L 2 (Ω) m ) C( f L 2 (0,T ;H 2d (Ω) m )∩H d (0,T ;L 2 (Ω) m ) + z 0 H 2d+1 (Ω) m ). (2.14)
It is a classical result that can be easily deduced for example from [16, Th. 6, p. 365].

Carleman inequality

We are now able to prove the following inequality:

Proposition 2.2. There exists a constant C := C(ω 0 , Ω) > 0 such that for every ψ 0 ∈ L 2 (Ω) m , the corresponding solution ψ to System (2.7) satisfies

Q T e -2sα {s 7 λ 8 ξ 7 |N * ψ| 2 + s 5 λ 6 ξ 5 |∇N * ψ| 2 + s 3 λ 4 ξ 3 |∇∇N * ψ| 2 + sλ 2 ξ|∇∇∇N * ψ| 2 }dxdt Cs 7 λ 8 (0,T )×ω0 e -2sα ξ 7 |N * ψ| 2 dxdt,
(2.15) for every λ C and s s 0 = C(T 5 + T 10 ).

Remark 2. It may be quite surprising that one can put so much derivatives at the left-hand-side of equality (2.15), because the initial condition ψ 0 is only supposed to be L 2 , hence ψ is only assumed to be in W (0, T ) (see (1.3). However, because of the fact that the exponential weight e -2sα is strong enough to absorb the singularity that only exists at initial time t = 0, it is quite easy to prove that all the integrals appearing in the left-hand side of (2.15) exist (this can notably be deduced for example from inequalities like (2.26), (2.27) or (2.28)).

Proof of Proposition 2.2.

The proof is inspired by [START_REF] Coron | Null controllability of the N -dimensional Stokes system with N -1 scalar controls[END_REF]. The main difference here is that we keep N * ψ at the right-hand side, which complicates a little bit the proof. Let us denote by

R := -D∆ + G * • ∇ -A * .
(2.16)

We can assume without loss of generality that

ψ 0 ∈ H 5 (Ω) and ψ 0 , Rψ 0 , R 2 ψ 0 ∈ H 1 0 (Ω) m
(The general case follows from a density argument). Thus, using Lemma 2.5, the solution ψ to System (2.7) is an element of L 2 (0, T ; H 6 (Ω) m ) ∩ H 3 (0, T ; L 2 (Ω) m ). First of all let us apply the differential operator

∇∇N * = ∇∇(-a mi0 + g mi0 • ∇)
to System (2.7) satisfied by ψ. Thus, if we call φ := (φ ij ) 1 i,j N with φ ij := ∂ i ∂ j N * ψ, then one observes that φ is a solution of the following system:

   -∂ t φ ij = D∆φ ij -G * • ∇φ ij + A * φ ij in Q T , ∂φ ∂n = ∂(∇∇N * ψ) ∂n on Σ T , φ(T, •) = ∇∇N * ψ 0 in Ω.
(2.17)

By applying Lemma 2.2 to φ, we have

I(s, λ, φ) C s 3 λ 4 (0,T )×ω2 e -2sα ξ 3 |φ| 2 dxdt + sλ Σ T e -2sα * ξ * ∂(∇∇N * ψ) ∂n 2 dσdt ,
(2.18) for every λ C and s C(T 5 + T 10 ).

The proof will be divided into three steps :

• In the first step, we will estimate the boundary term in the right-hand side of inequality (2.18) with some global interior term involving ψ that will be absorbed later.

• In the second step, we will compare I(s, λ, φ) with the left-hand side of inequality (2.15).

• Finally, in the last step, we will estimate the local term of high order appearing in inequality (2.18) thanks to some local terms that will be absorbed in the left-hand side of inequality (2.18) and also thanks to the local term of the right-hand side of inequality (2.15).

Step 1: Let us consider a function θ ∈ C 2 (Ω) such that ∂θ ∂n = θ = 1 on ∂Ω.

After an integration by parts of the boundary term, we obtain

sλ T 0 e -2sα * ξ * ∂Ω ∂φ ∂n 2 dσdt = sλ T 0 e -2sα * ξ * ∂Ω ∂φ ∂n ∇φ • ∇θdσdt = sλ T 0 e -2sα * ξ * Ω ∆φ∇φ • ∇θdσdt + sλ T 0 e -2sα * ξ * Ω ∇(∇θ • ∇φ) • ∇φdσdt + sλ 2 T 0 e -2sα * ξ * Ω ∇ |∇φ| 2 • ∇θdσdt.
Using successively Cauchy-Schwarz inequality and Young's inequality, we deduce that

sλ T 0 e -2sα * ξ * ∂Ω ∂φ ∂n 2 dσdt Cλ T 0 e -2sα * (sξ * ) 4/5 ψ H 4 (Ω) m (sξ * ) 1/5 ψ H 5 (Ω) m dt Cλ T 0 e -2sα * (sξ * ) 4/5 ψ 2 H 4 (Ω) m dt +Cλ T 0 e -2sα * (sξ * ) 1/5 ψ 2 H 5 (Ω) m dt. (2.19) Let us introduce ψ := ρψ with ρ ∈ C ∞ ([0, T ]) to be chosen later satisfying ρ(0) = ∂ t ρ(0) = ∂ tt ρ(0) = ∂ ttt ρ(0) = 0. Then ψ is solution to the system      -∂ t ψ = D∆ ψ -G * • ∇ ψ + A * ψ -ρ t ψ in Q T , ψ = 0 on Σ T , ψ(T, •) = 0 in Ω.
(2.20) Lemma 2.5 gives for ψ the estimate Step 2: We apply Lemma 2.3 successively to N * ψ with r = 5, then to ∇N * ψ with r = 3, and we obtain

ψ L 2 (0,T ;H 2d+2 (Ω) m )∩H d+1 (0,T ;L 2 (Ω) m ) C ρ t ψ L 2 (0,T ;H 2d (Ω) m )∩H d (0,T ;L 2 (Ω) m ) , (2.21 
I(s, λ; φ) C s 3 λ 4 (0,T )×ω2 e -2sα ξ 3 |φ| 2 dxdt +λs 32/5 (T 2 + T 5/2 ) Q T e -2sα * (ξ * ) 32/5 |ψ| 2 dxdt ,
s 7 λ 8 Q T e -2sα ξ 7 |N * ψ| 2 dxdt C s 5 λ 6 Q T e -2sα ξ 5 |∇N * ψ| 2 dxdt +s 7 λ 8 (0,T )×ω2 e -2sα ξ 7 |N * ψ| 2 dxdt
(2.31) and

s 5 λ 6 Q T e -2sα ξ 5 |∇N * ψ| 2 dxdt C s 3 λ 4 Q T e -2sα ξ 3 |∇∇N * ψ| 2 dxdt +s 5 λ 6 (0,T )×ω2 e -2sα ξ 5 |∇N * ψ| 2 dxdt , (2.32)
for every λ C and s C(T 5 + T 10 ). A combination of inequalities (2.30)-(2.32) gives

Q T e -2sα {s 7 λ 8 ξ 7 |N * ψ| 2 + s 5 λ 6 ξ 5 |∇N * ψ| 2 + s 3 λ 4 ξ 3 |∇∇N * ψ| 2 + sλ 2 ξ|∇∇∇N * ψ| 2 }dxdt C λs 34/5 Q T e -2sα * (ξ * ) 34/5 |ψ| 2 dxdt + (0,T )×ω2 e -2sα {s 7 λ 8 ξ 7 |N * ψ| 2 + s 5 λ 6 ξ 5 |∇N * ψ| 2 + s 3 λ 4 ξ 3 |∇∇N * ψ| 2 }dxdt .
(2.33)

Step 3: Let us consider θ 1 ∈ C 2 (Ω) such that    supp(θ 1 ) ⊆ ω 1 , θ 1 ≡ 1 in ω 2 , 0 θ 1 1 in Ω.
Then, after an integration by parts,

s 3 λ 4 (0,T )×ω2 e -2sα ξ 3 |∇∇N * ψ| 2 dxdt s 3 λ 4 (0,T )×ω1 θ 1 e -2sα ξ 3 |∇∇N * ψ| 2 dxdt = -s 3 λ 4 (0,T )×ω1 N i,j=1 {∂ i (θ 1 e -2sα ξ 3 )∂ i ∂ j N * ψ + θ 1 e -2sα ξ 3 ∂ 2 i ∂ j N * ψ}∂ j (N * ψ)dxdt Cs 3 λ 4 (0,T )×ω1 {|∇(θ 1 e -2sα ξ 3 )||∇∇N * ψ||∇N * ψ| + θ 1 e -2sα ξ 3 |∇∇∇N * ψ||∇N * ψ|}dxdt.
(2.34) Using the definition of ξ and α given in (2.9), we deduce that (2.37) Again, let us consider

|∇(θ 1 e -2sα ξ 3 )| Csλe -2sα ξ 4 , ( 2 
θ 0 ∈ C 2 (Ω) such that    supp(θ 0 ) ⊆ ω 0 , θ 0 ≡ 1 in ω 1 , 0 θ 0 1 in Ω.
Then, after an integration by parts, e -2sα ξ 7 |N * ψ| 2 dxdt .

s 5 λ 6 (0,T )×ω1 e -2sα ξ 5 |∇N * ψ| 2 dxdt s 5 λ 6 (0,T )×ω0 θ 0 e -2sα ξ 5 |∇N * ψ| 2 dxdt = -s 5 λ 6 (0,T )×ω0 N i=1 {∂ i (θ 0 e -2sα ξ 5 )∂ i N * ψ + θ 0 e -2sα ξ 5 ∂ 2 i N * ψ}N * ψdxdt
(2.39) Applying now Lemma 2.4, and using the definitions of α * and ξ * given in (2.10), we obtain the following inequalities: Thanks to our Carleman inequality, we can deduce the following observability inequality:

s 7 λ 8 Q T (ξ * ) 7 e -2sα * |ψ| 2 dxdt Cs 7 λ 8 Q T (ξ * ) 7 e -2sα
Proposition 2.3. Then for every ψ 0 ∈ L 2 (Ω) m , the solution ψ in W (0, T ) m to System (2.7) satisfies Ω |ψ(0, x)| 2 dx C obs (0,T )×ω0 e -2s0α ξ 7 |N * ψ| 2 dxdt, (2.41) 
where C obs := Ce C(1+T +1/T 5 ) .

The proof of Proposition 2.3 is very classical and is mainly based on dissipation estimates and the fact that the weights are bounded from below by some positive constant as soon as we are far from 0 and T (for example on (T /4, 3T /4), together with the fact that Lemma 2.4 leads to the inequality

(T /4,3T /4)×Ω |ψ| 2 dxdt C (T /4,3T /4)×Ω |N * ψ| 2 dxdt.

Analytic resolution

This section is devoted to constructing a solution to the analytic control problem (1.16), with a control regular enough belonging to the range of the differential operator N . We recall that the definition of N is given in (2.2). Let us consider θ ∈ C 2 (Ω) such that

   supp(θ) ⊆ ω, θ ≡ 1 in ω 0 , 0 θ 1 in Ω.
(2.42) Proposition 2.4. Let us assume that Condition (2.1) holds. Consider the system

   ∂ t z = D∆z + G • ∇z + Az + N (θv) in Q T , z = 0 on Σ T , z(0, •) = y 0 in Ω.
(2.43)

Then System (2.43) is null controllable at time T , i.e. for every y 0 ∈ L 2 (Ω) m , there exists a control v ∈ L 2 (Q T ) m such that the solution z to System (2.43) satisfies z(T ) ≡ 0 in Ω. Moreover, for every

K ∈ (0, 1) we have e Ks0α * v ∈ W 2,1 2 (Q T ) m (the definition of W 2,1 2 (Q T ) is given in (1.4)) and e Ks0α * v W 2,1 2 (Q T ) m e C(1+T +1/T 5 ) y 0 L 2 (Ω) m . (2.44)
Proof of Proposition 2.4.

We will use the usual duality method developed by Fursikov and Imanuvilov in [START_REF] Fursikov | Controllability of evolution equations[END_REF] in the spirit of what was done in [START_REF] Barbu | Exact controllability of the superlinear heat equation[END_REF] to obtain more regular controls. Let y 0 ∈ L 2 (Ω) m and ρ be the weight defined by ρ := ξ 7 e -2s0α .

Analytic resolution
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Let k ∈ N * and let us consider the following optimal control problem

   minimize J k (v) := 1 2 Q T ρ -1 |v| 2 dxdt + k 2 Ω |z(T )| 2 dx, v ∈ L 2 (Q T , ρ -1/2 ) m , (2.45) 
where z is the solution in W (0, T ) m to System (2.43). The functional J k : L 2 (Q T , ρ -1/2 ) m → R + is differentiable, coercive and strictly convex on the space L 2 (Q T , ρ -1/2 ) m . Therefore there exists a unique solution to the control optimal problem (2.45) (see [24, p. 128]) and the optimal control v k is characterized thanks to the solution z k of the primal system   

∂ t z k = D∆z k + G • ∇z k + Az k + N (θv k ) in Q T , z k = 0 on Σ T , z k (0, •) = y 0 in Ω, (2.46) 
the solution ϕ k to the dual system

   -∂ t ϕ k = D∆ϕ k -G * • ∇ϕ k + A * ϕ k in Q T , ϕ k = 0 on Σ T , ϕ k (T, •) = kz k (T, •)
in Ω

(2.47) and the relation

v k = -ρθN * ϕ k in Q T , v k ∈ L 2 (Q T , ρ -1/2 ) m . (2.48) 
The rest of the proof is divided into two steps. In the first step, we will prove that the sequence

(v k ) k∈N * converges to a control v ∈ L 2 (Q T , ρ -1/2
) m with an associated solution z to System (2.43) satisfying z(T ) ≡ 0 in Ω. Then, in the second step, we will establish (2.44).

Step 1: Firstly, the characterization (2.46), (2.47) and (2.48) of the minimizer v k of J k in L 2 (Q T , ρ -1/2 ) m leads to the following computations

J k (v k ) = - 1 2 T 0 θN * ϕ k , v k L 2 (Ω) m dt + 1 2 z k (T ), ϕ k (T ) L 2 (Ω) m = - 1 2 T 0 ϕ k , N (θv k ) L 2 (Ω) m dt + 1 2 T 0 { z k , ∂ t ϕ k L 2 (Ω) m + ∂ t z k , ϕ k L 2 (Ω) m }dt + 1 2 y 0 , ϕ k (0, •) L 2 (Ω) m = 1 2 y 0 , ϕ k (0, •) L 2 (Ω) m .
Then, for every ε > 0,

J k (v k ) ε 4 ϕ k (0, •) 2 L 2 (Ω) m + 1 4ε y 0 2 L 2 (Ω) m . (2.49) 
Moreover, using the definition of J k , the definition of θ and our observability inequality (2.41),

ϕ k (0, •) 2 L 2 (Ω) m C obs Q T ρθ 2 |N * ϕ k | 2 dxdt = C obs Q T ρ -1 |v k | 2 dxdt 2C obs J k (v k ). (2.50)
Then, using inequalities (2.49) and (2.50),

J k (v k ) ε 2 C obs J k (v k ) + 1 4ε y 0 2 L 2 (Ω) m .
Thus, for ε :

= C -1 obs , J k (v k ) C obs 2 y 0 2 L 2 (Ω) m .
(2.51) Furthermore, we have (see [START_REF] Lions | Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles[END_REF])

z k W (0,T ) m C N (θv k ) L 2 (0,T ;H -1 (Ω)) m + y 0 L 2 (Ω) m , C v k L 2 (Q T ) + y 0 L 2 (Ω) m , C(1 + C obs ) y 0 L 2 (Ω) m , (2.52) 
where C does not depend on y 0 , T and k. Then, using inequalities (2.51) and (2.52), we deduce that there exist subsequences, which are still denoted v k , z k , such that the following weak convergences hold:

   v k v in L 2 (Q T , ρ -1/2 ) m , z k z in W (0, T ) m , z k (T ) 0 in L 2 (Ω) m .
Passing to the limit in k, z is solution to System (2.43). As W (0,

T ) m is compactly included in C([0, T ]; L 2 (Ω) m ) (see for example [15, p. 570]) then z k → z strongly in C([0, T ]; L 2 (Ω) m ) and z(T ) ≡ 0 in Ω. Thus the solution z to System (2.43) with control v ∈ L 2 (Q T , ρ -1/2
) m satisfies z(T ) ≡ 0 in Ω and using (2.51), we obtain the inequality

v 2 L 2 (Q T ,ρ -1/2 ) m C obs y 0 2 L 2 (Ω) m . (2.53) 
Step 2: One remarks that for every K ∈ (0, 1), there exists a constant C > 0 such that e 2Ks0α * Cξ -7 e 2s0α . This inequality and estimate (2.51) imply that

e Ks0α * v k 2 L 2 (Q T ) m C Q T ξ -7 e 2s0α |v k | 2 dxdt J(v k ) e C(1+T +1/T 5 ) y 0 2 L 2 (Ω) m .
(2.54)

We recall that v k is defined in (2.48), moreover, thanks to the definitions of ξ and α given in (2.9), one has, for every η 0 , |∇(ξ η e -2s0α )| Cξ η+1 e -2s0α , |∆(ξ η e -2s0α )| Cξ η+2 e -2s0α , |∂ t (ξ η e -2s0α )| CT ξ η+6/5 e -2s0α .

These above inequalities, for η := 7, lead to the fact that

e Ks0α * ∇v k 2 L 2 (Q T ) m C Q T e -4s0α+2Ks0α * {ξ 14 |∇N * ϕ k | 2 + ξ 16 |N * ϕ k | 2 }dxdt, (2.55) e Ks0α * ∆v k 2 L 2 (Q T ) m C Q T e -4s0α+2Ks0α * {ξ 14 |∇∇N * ϕ k | 2 + ξ 16 |∇N * ϕ k | 2 + ξ 18 |N * ϕ k | 2 }dxdt
(2.56) and

∂ t (e Ks0α * v k ) 2 L 2 (Q T ) m CT Q T e -4s0α+2Ks0α * {ξ 14 |N * ∂ t ϕ k | 2 + ξ 82/5 |N * ϕ k | 2 }dxdt CT Q T e -4s0α {ξ 14 (|N * ϕ k | 2 + |∆N * ϕ k | 2 + |∇N * ϕ k | 2 ) + ξ 82/5 |N * ϕ k | 2 }dxdt.
(2.57)

For every η, ν > 0 there exists a constant C η,ν such that

|ξ η e -4sα+2Ks0α * | C η,ν ξ ν e -2sα .
Combining the last inequality with (2.54)-(2.57), we deduce that

e Ks0α * v k 2 W 2,1 2 (Q T ) m e C(1+T +1/T 5 ) Q T e -2s0α {(s 0 ξ) 7 |N * ϕ k | 2 + (s 0 ξ) 5 |∇N * ϕ k | 2 + (s 0 ξ) 3 |∇∇N * ϕ k | 2 dxdt.
Using (2.15), we obtain that e Ks0α * ∇v k , e Ks0α * ∆v k , ∂ t (e Ks0α * v k ) ∈ L 2 (Q T ) m , and that

e Ks0α * v k 2 W 2,1 2 (Q T ) m e C(1+T +1/T 5 ) Q T e -2sα (s 0 ξ) 7 |θN * ϕ k | 2 dxdt = e C(1+T +1/T 5 ) v k 2 L 2 (Q T ) m .
The estimate (2.51) of v k gives

e Ks0α * v k W 2,1 2 (Q T ) m e C(1+T +1/T 5 ) y 0 L 2 (Ω) m .
We conclude by letting k → +∞ (after extracting an adequate subsequence) in the equalities above.

End of the proof of Theorem 1

Let us assume that Condition 1.5 holds. We will prove first the null controllability at time T of System (1.1). Let y 0 ∈ L 2 (Ω) m . We follow the method explained in Section 1.3. Let us remind that θ is defined in (2.42). Using Proposition 2.4, the following system:

   ∂ t z = D∆z + G • ∇z + Az + N (θv) in Q T , z = 0 on Σ T , z(0, •) = y 0 in Ω (2.58)
is null controllable at time T , thus there exists a control v ∈ L 2 (Q T ) m such that the solution z in W (0, T ) m to System (2.58) satisfies z(T ) ≡ 0 in Ω. 

Moreover e Ks0α * v ∈ W 2,1 2 (Q T ) m . ( 2 
M : W 2,1 2 (Q T ) m → L 2 (Q T ) m × L 2 (Q T ) m-1 f → Mf, defined by Mf =                             0 . . . 0 f m (i th 0 line) 0 . . . 0 -(g mi0 • ∇ + a mi0 )f 1 + (g 1i0 • ∇ + a 1i0 )f m . . . -(g mi0 • ∇ + a mi0 )f i0-1 + (g (i0-1)i0 • ∇ + a (i0-1)i0 )f m (-∂ t + d i0 ∆)f m -(g mi0 • ∇ + a mi0 )f i0 + (g i0i0 • ∇ + a i0i0 )f m -(g mi0 • ∇ + a mi0 )f i0-1 + (g (i0-1)i0 • ∇ + a (i0-1)i0 )f m Let ( z, v) be defined by z v := M (θv) .
Using (2.59) and the fact that M is a differential operator of order 1 in time and 2 in space (see Proposition 2.1) with bounded coefficients, we obtain that ( z, v) ∈ L 2 (Q T ) m ×L 2 (Q T ) m-1 . Moreover, using (2.59) we have z(0, •) = z(T, •) = 0 in Ω and we remark that ( z, v) is a solution to the control problem   

∂ t z = D∆ z + G • ∇ z + A z + B v + N (θv) in Q T , z = 0 on Σ T , z(0, •) = z(T, •) = 0 in Ω, (2.60) in particular L • M = N . Finally, ( z, v) ∈ W (0, T ) m × L 2 (Q T ) m-1
thanks to the usual parabolic regularity. Thus the pair (y, u)

:= (z -z, -v) is a solution to System (1.1) in W (0, T ) m × L 2 (Q T ) m-1
and satisfies y(T, •) ≡ 0 in Ω.

Let us assume now that Condition (1.5) does not hold, and let us prove that the approximate controllability at time T of System (2.43) does not hold. Let us consider the adjoint system

                                     -∂ t ψ 1 = d 1 ∆ψ 1 - m-1 j=1 g j1 • ∇ψ j + m-1 j=1 a j1 ψ j in Q T , -∂ t ψ 2 = d 2 ∆ψ 2 - m-1 j=1 g j2 • ∇ψ j + m-1 j=1 a j2 ψ j in Q T , . . . -∂ t ψ m-1 = d m-1 ∆ψ m-1 - m-1 j=1 g j(m-1) • ∇ψ j + m-1 j=1 a j(m-1) ψ j in Q T , -∂ t ψ m = d m ∆ψ m - m j=1 g jm • ∇ψ j + m j=1 a jm ψ j in Q T , ψ 1 = . . . = ψ m = 0 on Σ T , ψ 1 (T, •) = ψ 0 1 , . . . , ψ m (T, •) = ψ 0 m in Ω.
(2.61)

It is well-known (see [START_REF] Coron | Control and nonlinearity[END_REF]Th. 2.43,p. 56])) that the approximate controllability to System (2.43) is equivalent to the following unique continuation property for the solutions to System (2.61):

ψ 1 = . . . = ψ m-1 ≡ 0 in q T ⇒ ψ ≡ 0 in Q T . (2.62) 
But for ψ 0 1 = . . . = ψ 0 m-1 ≡ 0 in Ω and every ϕ 0 m ≡ 0, Property (2.62) is not satisfied. Indeed, we remark first that in this case, we have ψ 1 = . . . = ψ m-1 ≡ 0 in Q T (and hence notably on q T ) but ψ m ≡ 0 in Q T . Thus System (2.43) is not approximately controllable at time T . This completes the proof of Theorem 1 since we have Condition (1.5) ⇒ Null Controllability ⇒ Approximate Controllability ⇒ Condition (1.5).

Proof of Theorem 2

Let us remind that in this case, we have only 2 equations and 1 space dimension.

Algebraic resolution

We will assume in this section that all differential operators are defined in C ∞ (Q T ). We recall that N is simply the identity operator and L is given in (1.20). We want to find a differential operator M satisfying L • M = Id.

Let us emphasize that when coefficients are depending on time and space, we prove equality (1.21) with the identity operator in the right-hand side (and not N as defined in (2.2)), that is equality (3.1), because Proposition 2.4 holds only for constant coefficients and does not seem to be adapted to the case of nonconstant coefficients. We have the following proposition: Taking into account the definition of L given in (1.20), the adjoint L * of the operator L is given by

L * ϕ :=   L * 1 ϕ L * 2 ϕ L * 3 ϕ   =   -∂ t ϕ 1 -∂ x (d 1 ∂ x ϕ 1 ) + ∂ x (g 11 ϕ 1 ) + ∂ x (g 21 ϕ 2 ) -a 11 ϕ 1 -a 21 ϕ 2 -∂ t ϕ 2 -∂ x (d 2 ∂ x ϕ 2 ) + ∂ x (g 12 ϕ 1 ) + ∂ x (g 22 ϕ 2 ) -a 12 ϕ 1 -a 22 ϕ 2 ϕ 1   . (3.3)
We remark first that 

L * 1 ϕ + {∂ t + ∂ x (d 1 ∂ x •) -∂ x (g 11 •) + a 11 } • L * 3 ϕ = ∂ x (g 21 ϕ 2 ) -a 21 ϕ 2 . (3.4) 
M * ψ := ψ 3 -ψ1+{∂t+∂x(d1∂x•)-∂x(g11•)+a11}ψ3 a21 , (3.5) 
so that equality (3.2) is satisfied. Moreover, the coefficients of M * (and hence of M) are bounded.

(ii) Under Condition (1.8), one can proceed as follows: we consider the operator

Q(ϕ) =           L * 3 ϕ L * 1 ϕ + {∂ t + ∂ x (d 1 ∂ x •) -∂ x (g 11 •) + a 11 } • L * 3 ϕ ∂ x (L * 1 ϕ + {∂ t + ∂ x (d 1 ∂ x •) -∂ x (g 11 •) + a 11 } • L * 3 ϕ) ∂ t (L * 1 ϕ + {∂ t + ∂ x (d 1 ∂ x •) -∂ x (g 11 •) + a 11 } • L * 3 ϕ) ∂ xx (L * 1 ϕ + {∂ t + ∂ x (d 1 ∂ x •) -∂ x (g 11 •) + a 11 } • L * 3 ϕ) L * 2 ϕ + {a 12 -∂ x (g 12 •)} • L * 3 ϕ, ∂ x (L * 2 ϕ + {a 12 -∂ x (g 12 •)} • L * 3 ϕ)           , (3.6) 
i.e.

Q(ϕ) =          ϕ1 (-a21 + ∂xg21)ϕ2 + g21∂xϕ2 (-∂xa21 + ∂xxg21)ϕ2 + (-a21 + 2∂xg21)∂xϕ2 + g21∂xxϕ2 (-∂ta21 + ∂txg21)ϕ2 + ∂tg21∂xϕ2 + (-a21 + ∂xg21)∂tϕ2 + g21∂xtϕ2 (-∂xxa21 + ∂xxxg21)ϕ2 + (-2∂xa21 + 3∂xxg21)∂xϕ2 + (-a21 + 3∂xg21)∂xxϕ2 + g21∂xxxϕ2 (-a22 + ∂xg22)ϕ2 + (-∂xd2 + g22)∂xϕ2 -∂tϕ2 -d2∂xxϕ2 (-∂xa22 + ∂xxg22)ϕ2 + (-∂xxd2 -a22 + 2∂xg22)∂xϕ2 + (-2∂xd2 + g22)∂xxϕ2 -∂txϕ2 -d2∂xxxϕ2          . (3.7)
It is easy to see that there are only 7 different derivatives of ϕ appearing in (3.6), which are the following ones:

ϕ 1 , ϕ 2 , ∂ x ϕ 2 , ∂ t ϕ 2 , ∂ xx ϕ 2 , ∂ xt ϕ 2 , ∂ xxx ϕ 2 .
Hence, we can see the operator Q as a matrix M acting on these derivatives (see [START_REF] Coron | Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components[END_REF]Sec. 3.2]), so that M is a square matrix of size 7 × 7. More precisely, one has

Q(ϕ) = M (ϕ 1 , ϕ 2 , ∂ x ϕ 2 , ∂ t ϕ 2 , ∂ xx ϕ 2 , ∂ xt ϕ 2 , ∂ xxx ϕ 2 ), with M :=          1 0 0 0 0 0 0 0 -a21 + ∂xg21 g21 0 0 0 0 0 -∂xa21 + ∂xxg21 -a21 + 2∂xg21 0 g21 0 0 0 -∂ta21 + ∂txg21 ∂tg21 -a21 + ∂xg21 0 g21 0 0 -∂xxa21 + ∂xxxg21 -2∂xa21 + 3∂xxg21 0 -a21 + 3∂xg21 0 g21 0 -a22 + ∂xg22 -∂xd2 + g22 -1 -d2 0 0 0 -∂xa22 + ∂xxg22 -∂xxd2 -a22 + 2∂xg22 0 -2∂xd2 + g22 -1 -d2          . (3.8)
Matrix M is invertible since Condition (1.8) is verified. Let us call P the projection on the two first components

P (x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 ) = (x 1 , x 2 ).
Then, by definition of the inverse, we have

P M -1 M (ϕ 1 , . . . , ∂ xxx ϕ 2 ) = ϕ.
Using (3.6), we remark that the previous equality can be rewritten as

P M -1 Q(ϕ) = P M -1 S • L * ϕ = ϕ,
where

S :=           0 0 1 1 0 R 1 ∂ x 0 ∂ x • R 1 ∂ t 0 ∂ t • R 1 ∂ xx 0 ∂ xx • R 1 0 1 R 2 0 ∂ x ∂ x • R 2           , (3.9) 
with R

1 := ∂ t + ∂ x (d 1 ∂ x •) -∂ x (g 11 •) + a 11 and R 2 := a 12 -∂ x (g 12 •). Hence equality (3.2) is satisfied for M * := P M -1 S. (3.10) 
Moreover, thanks to Conditions (1.8), the coefficients of M * (and hence of M) are bounded.

Analytic resolution

Let ω 1 be a nonempty open subsets included in ω satisfying We are going to explain what are the main differences with Subsection 2.2 in order to obtain a Carleman inequality. First of all, we need to find an equivalent to Lemma 2.1, which is the following: The proof of Lemma 2.1 can be easily obtained by using the method of [START_REF] Fernández-Cara | Null controllability of the heat equation with boundary Fourier conditions: the linear case[END_REF] together with the Carleman estimate proved in [START_REF] Imanuvilov | Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations[END_REF]. Let us consider the backward system

       -∂ t ψ 1 = ∂ x (d 1 ∂ x ψ 1 ) -∂ x (g 11 ψ 1 ) -∂ x (g 21 ψ 2 ) + a 11 ψ 1 + a 21 ψ 2 in Q T , -∂ t ψ 2 = ∂ x (d 2 ∂ x ψ 2 ) -∂ x (g 12 ψ 1 ) -∂ x (g 22 ψ 2 ) + a 12 ψ 1 + a 22 ψ 2 in Q T , ψ 1 = ψ 2 = 0 on Σ T , ψ 1 (T, •) = ψ 0 1 , ψ 2 (T, •) = ψ 0 2 in Ω, (3.12) 
where ψ 0 := (ψ 0 1 , ψ 0 2 ) ∈ L 2 (Ω) 2 . From the last Lemma, one can deduce: The proof is very similar to the proof of Proposition 2.2, the only difference is the beginning of the proof, we apply the operator ∇ to the equation (3.12) in the case (1.7) and the operators ∇∇∇ in the case (1.8). After that we exactly follow the steps 1,2, and 3 of the proof of Proposition 2.2.

As a consequence, we also can derive the following observability inequality, whose proof is very classical (see also Proposition where s 0 := C(T 5 + T 10 ) and C obs := e C(1+T +1/T 5 ) .

To conclude, one can obtain the following controllability result:

Proposition 3.4. Consider the following system: 

       ∂ t z 1 = ∂ x (
X := L 2 (0, T ; H 4 (Ω) ∩ H 1 0 (Ω)) ∩ H 2 (0, T ; L 2 (Ω)). (3.16) 
(ii) Under Conditions (1.8) and (1.11), X is defined by X := L 2 (0, T ; H 2 (Ω) ∩ H 1 0 (Ω)) ∩ H 1 (0, T ; L 2 (Ω)).

(3.17)

Moreover in the both cases, we have the estimate e Ks0α * v X 2 e C(1+T +1/T 5 ) y 0 L 2 (Ω) 2 .

(3.18)

One more time, the proof is very similar to the proof of Proposition 2.3, notably and one can recover easily estimates on the derivatives of order 1 and 2 in time of the control by using equation (3.12) verified by ϕ and estimates similar to (2.57).

Proof of Theorem 2

The proof is totally similar to the one of Theorem 1. Let us assume that one of the two Conditions (1.7) or (1.8) holds, and let us prove that System (1.6) is null controllable at time T (which will imply the approximate controllability at time T ). Let y 0 ∈ L 2 (Ω) 2 . Using Proposition 3.4, System (3.15) is null controllable at time T , more precisely there exists a control v ∈ L 2 (Q T ) 2 such that the solution z in W (0, T ) 2 to System (3.15) satisfies z(T ) ≡ 0 in Ω. Let us remind that θ was defined in (3.11). Let ( z 1 , z 2 , v) be defined by

  z 1 z 2 v   := M θv 1 θv 2 ,

1. 2
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  Ω and η 0 = 0 on ∂Ω, with κ > 0. The proof of the existence of such a function η 0 can be found in [18, Lemma 1.1, Chap. 1] (see also [12, Lemma 2.68, Chap. 2]). We will use the two notations α * (t) := max x∈Ω α(t, x) and ξ * (t) := min x∈Ω ξ(t, x), (2.10)

for every s C(T 5 +T 2 + T 5 / 2

 5252 T 10 ) and λ C. Hence, since Cs 2/5 , we haveI(s, λ; φ) C s 3 λ 4 (0,T )×ω2 e -2sα ξ 3 |φ| 2 dxdt + λs 34/5 Q T e -2sα * (ξ * ) 34/5 |ψ| 2 dxdt ,(2.30)for every s C(T 5 + T 10 ) and λ C.

Cs 5 λ 6 (

 6 0,T )×ω0 {|∇(θ 0 e -2sα ξ 5 )||∇N * ψ||N * ψ| + θ 0 e -2sα ξ 5 |∇∇N * ψ||N * ψ|}dxdt. Similarly to inequality (2.35), we have |∇(θ 0 e -2sα ξ 5 )| Csλe -2sα ξ 6 , which, combined with Young's inequality, leads, for every ε > 0, to s 5 λ 6 (0,T )×ω1 e -2sα ξ 5 |∇N * ψ| 2 dxdt (0,T )×ω0

Proposition 3 . 1 .

 31 One has (i) Under Conditions (1.7) and (1.10), there exists a differential operator M of order at most 1 in time and 2 in space, with bounded coefficients on (a, b) × O, such that equality (3.1) holds. (ii) Under Condition (1.8) and (1.11), there exists a differential operator M of order at most 2 in time, 4 in space, and 1 -2 respectively in crossed space-time, with bounded coefficients on (a, b) × O, such that equality (3.1) holds. Proof of Proposition 3.1. Equality (3.1) is equivalent to M * • L * = Id. (3.2)

(i) Since g 21

 21 = 0 in (a, b) × O, one can just consider M * defined for every ψ := (ψ 1 , ψ 2 , ψ 3 ) ∈ C ∞ (Q T ) 3 , locally on (a, b) × O (where a 21 = 0 thanks to Condition (1.7)), by

ω 1 ⊂ ω 0 .

 10 Let us consider θ ∈ C 2 (Ω) such that

Lemma 3 . 1 .

 31 Let us assume that u 0 ∈ L 2 (Ω),f 1 ∈ L 2 (Q T ) and d ∈ W 1 ∞ (Q T ) such that d > C > 0 in Q T .Then there exists a constant C := C(Ω, ω 2 ) > 0 such that the solution to the system   -∂ t u -∂ x (d∂ x u) = f 1 in Q T , ∂u ∂n = f 2 on Σ T , u(T, •) = u 0 in Ω, satisfies I(s, λ; u) C s 3 λ 4 (0,T )×ω2 e -2sα ξ 3 |u| 2 dxdt + Q T e -2sα |f 1 | 2 dxdt +sλ Σ T e -2sα * ξ * |f 2 | 2 dσdt ,for all λ C and s C(T 5 + T 10 ).

Proposition 3 . 2 .e -2sα {s 5 λ 6 ξ 5 |ψ| 2 + s 3 λ 4 ξ 3 |∇ψ| 2 + sλ 2 ξ|∇∇ψ| 2 }dxdt Cs 5 λ 6 (e -2sα ξ 5

 322265 One has (i) Under Condition (1.7) and (1.10), there exists a constant C := C(ω 1 , Ω) > 0 such that for every ψ 0 := (ψ 0 1 , ψ 0 2 ) ∈ L 2 (Ω) 2 , the corresponding solution ψ := (ψ 1 , ψ 2 ) of the backward problem (3.12) satisfies Q T e -2sα {s 9 λ 10 ξ 9 |ψ| 2 + s 7 λ 8 ξ 7 |∇ψ| 2 + s 5 λ 6 ξ 5 |∇∇ψ| 2 +s 3 λ 4 ξ 3 |∇∇∇ψ| 2 + sλ 2 ξ|∇∇∇∇ψ| 2 Cs 9 λ 10 (0,T )×ω1 e -2sα ξ 9 |ψ| 2 dxdt. (3.13) (ii) Under Condition (1.8) and (1.11), we obtain the same conclusion as in item (i) by replacing estimate (3.13) by Q T |ψ| 2 dxdt.

Proposition 3 . 3 .

 33 2.3): Under assumptions (1.7) and (1.10) or under assumptions (1.8) and (1.11), for every ψ 0 ∈ L 2 (Ω) 2 , the solution to System (3.12) satisfies Ω |ψ(0, x)| 2 dx C obs (0,T )×ω1 e -2s0α ξ 9 |ψ| 2 dxdt, (3.14)

  Thus, thanks to inequalities (2.33) and (2.34), one can absorb (by taking ε small enough) the local terms involving |∇∇N * ψ| 2 and |∇∇∇N * ψ| 2 into the right-hand side of inequality (2.36) and obtain Q T e -2sα {s 7 λ 8 ξ 7 |N * ψ| 2 + s 5 λ 6 ξ 5 |∇N * ψ| 2 + s 3 λ 4 ξ 3 |∇∇N * ψ| 2 + sλ 2 ξ|∇∇∇N * ψ| 2 }dxdt -2sα {s 7 λ 8 ξ 7 |N * ψ| 2 + s 5 λ 6 ξ 5 |∇N * ψ| 2 }dxdt .

	C λs 34/5	e -2sα *	(ξ * ) 34/5 |ψ| 2 dxdt
	Q T		
		+	
		(0,T )×ω1
			.35)
	which, combined with Young's inequality, leads, for every ε > 0, to
		s 3 λ 4
			(0,T )×ω2

e -2sα ξ 3 |∇∇N * ψ| 2 dxdt C (0,T )×ω1 e -2sα {εs 3 λ 4 ξ 3 |∇∇N * ψ| 2 + εsλ 2 ξ|∇∇∇N * ψ| 2 + C ε s 5 λ 6 ξ 5 |∇N * ψ| 2 }dxdt, (2.36) where C ε depends only on ε. e

  e -2sα {εs 5 λ 6 ξ 5 |∇N * ψ| 2 + εs 3 λ 4 ξ 3 |∇∇N * ψ| 2 + C ε s 7 λ 8 ξ 7 |N ψ| 2 and |∇∇N * ψ| 2 in the right-hand side and obtainQ T e -2sα {s 7 λ 8 ξ 7 |N * ψ| 2 + s 5 λ 6 ξ 5 |∇N * ψ| 2 + s 3 λ 4 ξ 3 |∇∇N * ψ| 2 + sλ 2 ξ|∇∇∇N * ψ| 2 }dxdt

	C λs 34/5	e -2sα *	(ξ * ) 34/5 |ψ| 2 dxdt + s 7 λ 8
	Q T		(0,T )×ω0

* ψ| 2 }dxdt,

(2.38) 

where C ε depends only on ε. Thus, thanks to inequalities (2.37) and (2.38), one can absorb (by taking ε small enough) the local terms involving |∇N *

  -2sα {s 7 λ 8 ξ 7 |N * ψ| 2 + s 5 λ 6 ξ 5 |∇N * ψ| 2 + s 3 λ 4 ξ 3 |∇∇N * ψ| 2 + sλ 2 ξ|∇∇∇N * ψ| 2 }dxdt |N * ψ| 2 dxdt .Hence, since 34/5 < 7, one can absorb the global term of the right-hand side by taking s large enough and obtain inequality (2.15).
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	The two last inequalities (2.39) and (2.40) give
	s 7 λ 8	(ξ * ) 7 e -2sα *	|ψ| 2 dxdt	
	Q T			
	+			
	Q T		
		C λs 34/5	e -2sα *	(ξ * ) 34/5 |ψ| 2 dxdt + s 7 λ 8	e -2sα ξ 7
			Q T	(0,T )×ω0
					(2.40)

* |N * ψ| 2 dxdt Cs 7 λ 8 Q T ξ 7 e -2sα |N * ψ| 2 dxdt.

e

  d 1 ∂ x z 1 ) + g 11 ∂ x z 1 + g 12 ∂ x z 2 + a 11 z 1 + a 12 z 2 + θv 1 in Q T , ∂ t z 2 = ∂ x (d 2 ∂ x z 2 ) + g 21 ∂ x z 1 + g 22 ∂ x z 2 + a 21 z 1 + a 22 z 2 + θv 2 in Q T , z 1 = z 2 = 0 on Σ T , z 1 (0, •) = y 0 1 , z 2 (0, •) = y 0Under Conditions (1.7) and (1.10) or under Condition (1.8) and (1.11), System (3.15) is null controllable at time T , that is for everyy 0 ∈ L 2 (Ω) 2 there exists a control v := (v 1 , v 2 ) ∈ L 2 (Q T ) 2 suchthat the solution z to System (3.15) satisfies z(T ) ≡ 0 in Ω. Moreover foreveryK ∈ (0, 1), we have e Ks0α

		(3.15)
	2	in Ω.

* v ∈ X 2 where: (i) Under Conditions (1.7) and (1.11), X is defined by
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with M : X 2 → L 2 (Q T ) 2 × L 2 (Q T ) given as the adjoint of M * defined in (3.5) and (3.10). Thanks to the definition of θ given in (3.11), the fact the coefficients of M are necessarily at least in L ∞ ((a, b) × ω 0 ), the definition of X given in (3.16)-(3.17) and the fact that M is of order 1 in time and 2 in space under Condition (1.7) and is of order 2 in time, 4 in space and 1 -2 in crossed time-space (which is an interpolation space between L 2 ((0, T ), H 4 (0, L)) and H 2 ((0, T ), L 2 (0, L)) thanks to [25, 13.2, P. 96]) under Condition (1.8), we obtain