
HAL Id: hal-01162086
https://hal.science/hal-01162086

Submitted on 9 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bootstrapping Software Defined Network for Flexible
and Dynamic Control Plane Management

Prithviraj Patil, Aniruddha Gokhale, Akram Hakiri

To cite this version:
Prithviraj Patil, Aniruddha Gokhale, Akram Hakiri. Bootstrapping Software Defined Network for
Flexible and Dynamic Control Plane Management. Network Softwarization (NetSoft), 2015 1st IEEE
Conference on, Apr 2015, Londres, United Kingdom. pp.1-5. �hal-01162086�

https://hal.science/hal-01162086
https://hal.archives-ouvertes.fr


Bootstrapping Software Defined Network for
Flexible and Dynamic Control Plane Management

Prithviraj Patil∗, Aniruddha Gokhale∗ and Akram Hakiri†
∗ISIS, Dept of EECS, Vanderbilt University, Nashville, TN, USA.

†CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
Email: {prithviraj.p.patil,a.gokhale}@vanderbilt.edu, hakiri@laas.fr

Abstract—To improve reliability and performance of Software
Defined Networking (SDN) architectures, a number of recent
efforts have proposed a logically centralized but physically
distributed controller design that overcomes the bottleneck intro-
duced by a single physical controller. Despite these advances, two
key problems still persist. First, the task of controlling the host
network and the task of controlling the control-plane network
remain tightly intertwined, which incurs unwanted complexity
in the controller design. Second, the task of deploying the
distributed controllers continues to be performed in a manual
and static way. To address these two problems, this paper
presents a novel approach called InitSDN to bootstrapping the
distributed software defined network architecture and deploying
the distributed controllers. InitSDN makes the SDN control
plane design less complex, makes coordination among controllers
flexible, provides additional reliability to the distributed control
plane.

I. INTRODUCTION:

A. Software Defined Networking and Emerging Challenges

SDN architecture envisions a centralized control plane,
which may result in adverse consequences to the reliability
and performance [?]. Recent efforts have proposed a logically
centralized but physically distributed control plane [?]. The
distributed control plane is more responsive to handle network
events because the controllers tend to be closer to the events
than the centralized architecture. However, these solutions
incur a different set of complexities for developing and man-
aging the controllers. One key limitation of these approaches
is that they club task of controlling the host network and task
of managing the distributed control plane together. Hence, the
developer of a distributed controller now has to take care of
all the concerns that arise out of distributed nature of the
system including controller synchronization, controller replica-
tion, controller logic partitioning and controller placement [?],
[?]. All the above issues are orthogonal to the fundamental
controller functionality. However current distributed control
plane architecture forces controller developer to invest energy
into addressing these issues which complicates the controller
design and management and makes control-plane inflexible.

B. Proposed Solution and Contributions

To address these problems, we propose a solution called
InitSDN, which is based on a bootstrapping mechanism that
helps to decouple the orthogonal distributed systems concerns
from the primary issues related to the controller. InitSDN is

designed to make SDN more flexible, reliable, fault-tolerant
without adding complexity to the controllers.

InitSDN divides a single physical network substrate into
two slices: a dataslice for controlling the hosts that run user
applications and a controlslice for controlling the controllers.
Based on the configuration or strategy defined by a network
operator, InitSDN allocates the right number of hosts be-
tween these two slices,1 selects an initial topology for the
controlslice, deploys required controllers in the controlslice,
sets the coordination mechanism among the controllers, maps
the switches in the dataslice to distributed controllers, and
kick-starts the operation of the real/actual SDN. Over the
course of the SDN operation, InitSDN can increase or decrease
the size of slices dynamically, change the topology of the
controlslice, change the coordination mechanism among the
controllers (e.g. use Zookeeper or Chubby, etc) to adapt to
network topology changes or to dynamic network loads or
simply as part of an upgrade.

In the context of our InitSDN ideas, we make the following
three contributions in this paper:

• We propose and describe the architecture of the InitSDN
controller used for bootstrapping a real SDN network,

• We describe the implementation details of the InitSDN
controller.

• We qualitatively evaluate the benefits of our approach
in terms of separation of concerns, reduced complexity
of the SDN controller, increased reliability and better
management of control-plane using various motivating
use cases.

II. PROBLEM DEFINITION

In this section, we provide a detailed motivation for a
initSDN controller.

A. Control Plane Message Types

We categorize messages that are being exchanged in the
SDN in three different categories as described below:

1) Control messages: These are the messages that are
used to control the communication between the
hosts. It includes various OpenFlow messages like

1In a shared or in-band control network, which is our focus, the controller
logic must reside on some host of that network and hence some hosts will be
used for hosting the controller logic while others will be used for application
logic.



OFPT_FLOW-MOD, OFPT_FLOW_REMOVED,
OFPT_PACEKT_IN, OFPT_PACKET_OUT,
OFPT_GET_CONFIG_REQUEST,
OFPT_SET_CONFIG, etc. These messages flow
between controller-switch pairs.

2) Data messsages: These are normal data packets
sent/received by hosts. These messages normally flow
between switch-host or switch-switch pairs.

3) Meta-control messages: We define meta-control
messages as those messages that are used to control the
communication between SDN infrastructure entities,
i.e. controllers, switches. It includes all the messages
that are required for controller-switch connection setup,
connection tear-down, controller-migration, switch-
migration, host-migration, network discovery and
topology services, controller logic synchronization
or backup, etc. These messages flow between
controller-switch, controller-controller and switch-
switch pairs. It can includes OpenFlow messages like
OFPT_FLOW-MOD, OFPT_FLOW_REMOVED,
OFPT_PACEKT_IN, OFPT_PACKET_OUT,
OFPT_GET_CONFIG_REQUEST,
OFPT_SET_CONFIG, etc. Also in addition to
above OpenFlow messages, it may include other
non-OpenFlow non-standardized messages and different
solutions may implement them in their own proprietary
manner.

B. Limitations of Existing Control Plane

A number of prior studies have proposed designs for a
distributed, scalable, and fault tolerant controller architecture
in the SDN [?], [?], [?]. A key commonality across these
approaches is to add a connection management module in
the controller alongside the Openflow module. This module
is responsible for tasks like leader election, synchronization,
participation in switch migration, managing backups, state
consistency, etc.

There are two basic problems with such distributed control
plane design. First, in such architectures, the data messages
flow in the SDN network but control messages flow in the non-
SDN legacy network. This occurs because currently, control
messages need to be exchanged to set up the SDN first. Then
only after SDN is setup (i.e. switches are configured with
correct controller references and flow-rules), data messages
can be exchanged. Hence control messages are thought to be
flowing in the pre-SDN (or non-SDN or legacy network).

Secondly, in these architectures, the control and meta-
control messages are clubbed together, i.e. they originate from
the same controller. This forces the controllers to handle many
of the distributed system complexities, such as handling parti-
tioning, placement, consensus, synchronization, coordination,
which complicates the design of the controller and violates
many of the software engineering principles resulting in code
that is hard to maintain and evolve.

III. DESIGN AND IMPLEMENTATION OF INITSDN
A. InitSDN Architecture

We now present the architecture and implementation details
of the InitSDN approach.

Figure 1 shows the architecture of InitSDN. It works in the
legacy network (i.e., non SDN) that uses the TCP/IP protocol.
InitSDN has a modular structure with various modules as
follows:

Fig. 1. InitSDN modular architecture

1) Network discovery & topology service: This is the
basic module of the InitSDN. It discovers the switches
and hosts in the network. It then creates the model
of the network topology using specialized packets. It
sends LLDP (Link Layer Discovery Protocol) packets
to switches, parses the reply messages and builds the
topology model.

2) Network Hypervisor: This module provides access to the
existing network hypervisors. A network hypervisor is
used to slice the network into control and data slice. Cur-
rently we have used Flowvisor [?]. This module is also
used to create virtual switches for multi-tenant network
applications. For this, currently we use OpenVirtex [?].
However, our design can accommodate other network
hypervisors.

3) Control-plane topology: This module allows the network
operator to specify the initial control plane topology.
By default, InitSDN uses the basic topology with one
centralized controller and one backup controller. Net-
work operators however, can provide their own control
plane topology as described below. This module then
slices the network into two slices using information
from the previous two modules (i.e., network hypervisor
configuration and discovery & topology service).

4) Control-plane partitioning: This module is used to slice
the control plane logic. This requires the controller to ex-
pose an API to perform this action. These APIs currently
are controller-specific. In our present implementation,
we have used a modified POX controller. For example,



Pyretic [?] has a modified POX client, which allows
us to specify the flows to be controlled by the POX
controller using a command line argument when starting
the controller.

5) Control-plane synchronization: This module is used to
specify the synchronization mechanism to be used in
the control plane, e.g., how to synchronize the backup
controller. Currently with the modified POX controller,
we use Apache Zookeeper for synchronization. The
modified POX controller writes its state (e.g. topology,
counter etc) to a file. This file then gets synchronized
across the control plane. This module allows an oper-
ator to use any other synchronization mechanism, e.g.,
Vagrant Serf, Google Chubby, etc.

6) Host Remote Access: Since InitSDN installs controllers
on the hosts, it needs access to do so on those hosts.
This module provides a way to configure such access.
At present this module uses a combination of SSH and
SCP through the Python command line tool Fabric [?].
However, based on the host access policy, the network
operator can use any other tool.

B. InitSDN in Action

Now we describe the steps involved in the booting of a
legacy network into a flexible, dynamic and fault tolerant SDN
network using InitSDN.

1) Initial Setup: We assume a network substrate which
uses a legacy network with Openflow-enabled switches.
InitSDN has remote access to all the hosts that are
supposed to host the control plane. The chosen SDN
controller exposes the API to configure the partitioning
and synchronization strategy.

2) InitSDN is started on one of the hosts in this net-
work substrate and is connected to all (top-level) main
switches statically.

3) An InitSDN network application will then configure the
InitSDN controller. This InitSDN application contains
configuration information of all the InitSDN control-
plane modules shown in Figure 1 and also described
in the previous Subsection III-A.

4) InitSDN will build a model of the topology of the
network using the discovery and topology module. The
topology contains all the hosts, switches and links
present in the network. It will also contain link properties
and switch configurations like the ones supported in the
OpenFlow version.

5) InitSDN then builds the control-plane topology based on
the configuration provided by the network operator and
network topology model from the previous step.

6) Using the network hypervisor (e.g. flowvisor), InitSDN
will slice the network into two slices namely data-slice
and control-slice. The number of hosts in both the slices
and their topology is determined by the control-plane
topology from the previous step.

7) InitSDN then remotely installs the controller in all the
hosts in the control plane.

8) InitSDN configures the controllers in the control plane
as per the control plane partitioning strategy provided
by the network operator, e.g., controller C1 handles
only secure flows while controller C2 handles only non-
secure flows, etc.

9) InitSDN configures the synchronization strategy in the
control plane as the controllers need to share the local
topology changes with the other (non-local or remote)
controllers, e.g., backup controllers need to be synchro-
nized with the respective primary controller, etc.

10) InitSDN then installs the default flow-rules in the
switches so that in case of control plane failure, switch
will notify InitSDN. This adds an additional level of
reliability to the SDN control plane.

11) InitSDN then configures all the switches with one or
more controllers from the control-slice.

12) At this point, SDN is considered to be booted as per
the configuration provided by the network operator and
InitSDN is out of the picture.

C. Implementation Details for Initial Prototype

The following tools and technologies were used to realize
InitSDN and evaluate its properties.

1) Network Emulation: Mininet [?].
2) Switch: OpenVswitch and Openflow’s Reference Switch

(ofdatapath) [?].
3) Controller: Openflow’s Reference Controller [?],

Apache Floodlight, Stanford University’s Pox and Ryu.
4) Host: Docker Containers and VirtualBox VMs.
5) Network Virtualization: Flowvisor [?], OpenVirtex [?].
6) Network Topologies: Real network topologies (built us-

ing traceroute) obtained from Stanford University [?],
[?].

7) Distributed Consensus and Synchronization: Hashicorp
Serf, Apache ZooKeeper, Google Chubby, Doozerd, etc.

8) Host Remote Access: Fabric SSH

IV. QUALITATIVE EVALUATIION OF INITSDN

In this section we provide a qualitative evaluation of
InitSDN’s capabilities. A rigorous quantitative evaluation is
part of our future work. In evaluating InitSDN qualitatively
we focus on properties such as the ease of performing some
of general use cases for the management of SDN control plane
with and without InitSDN.

A. Evaluation Criteria: Building Network Applications for
SDN Control Plane Management

This criteria is relevant to the SDN service providers. As
we discussed in the previous section, InitSDN separates the
control and meta-control messages. This helps to modularize
the network applications by providing separation of concerns
between two different types of applications as follows:

1) SDN network application: These are the network ap-
plications that instrument the network among the hosts.
These are developed by the SDN user or vSDN(virtual



Fig. 2. Legacy Network During the Bootstrapping Phase
(1) network slicing step has been executed (2) Brown colored hosts are chosen to be in the control plane as per topology and configuration

Fig. 3. Legacy Network turned into SDN Network After Bootstrapping is Completed
(1) InitSDN has taken a back seat (2) SDN controllers are placed in control plane, configured and have been activated

SDN) tenant. Examples of such applications are rout-
ing (OSPF, IS-IS, BGP etc), security, access control,
application-based forwarding, etc. These applications are
written against the controller that client is using in its
SDN (or vSDN).

2) InitSDN network application: There is another type
of application that instruments the network along the
control-plane. These are developed by the SDN service
providers. Examples of such applications are switch
migration, controller migration, VM network state mi-
gration, control-plane scale up/down, controller updates,
control-plane topology management, vSDN control-
plane management, etc. Without InitSDN, these appli-
cations have to be written for individual controllers. For
example, if SDN hosts three types of controllers, then
the controller migration application has to be written for
each of these controllers. However, these applications

become easier to develop with InitSDN since such ap-
plications now need to be written against only InitSDN
irrespective of the number of controllers, number of
vSDNs, or types of controllers present in the system.

In this way, InitSDN brings the separation of concerns in
the SDN control plane management.

B. Evaluation Criteria: Controller Scale-up/Scale-down

Controller scale-up or scale-down can be achieved easily
using InitSDN.

1) scale-up: InitSDN needs to find out idle hosts (or VMs)
for adding them to the control-plane. This has to be
programmed by a network operator through the InitSDN
application. InitSDN then adds such new hosts to the
control plane. InitSDN installs controllers on these new
hosts. It also modifies flow-rules on new switches, so
that they start to redirect their traffic to new controllers.



2) scale-down: InitSDN simply modifies the flow rules in
the switches to point them to controllers from to be
scaled-down control-plane only. After that InitSDN can
either shutdown hosts containing extra controllers (i.e.
those controllers which are now not connected to any
switches) or use them for other controllers (e.g. different
vSDN).

This way InitSDN provides scalability to the SDN control
plane. This also increases reliability of SDN control plane
against network load changes.

1) Make InitSDN build a new topology.
2) Compare old and new topology and find out the scale

up/down steps required.
3) Ask InitSDN to scale up/down accordingly.

C. Evaluation Criteria: Controller/switch Migration

In InitSDN, the controller or switch migration is reduced
simply to the task of updating the control-plane topology.
InitSDN builds new control-plane topology after notified by its
discovery module about the change in the network topology.
This new topology is then enforced on the control plane as
described in the previous subsection.

V. RELATED WORK

The authors in [?] propose a solution called the Pratyaastha
control plane to address a related but different controller
placement problem. Pratyaastha first partitions the SDN ap-
plication state into the lowest granularity possible so that
it can be distributed across the controllers. Subsequently,
based on the controller load, it decides the placement (in
this case, reassignment) policy that maps the switches and
application state to the out-of-band controller instances. This
placement problem is different than ours where the controllers
are mapped to the physical hosts. Hence, Pratyaastha does
not require the network hypervisors since the control plane
still resides on the dedicated network. Though, Prayaastha
provides elasticity to the control plane in the case of changing
controller load, it does not provide elasticity in the case of
major network topology changes or large-scale failures in the
initially assigned control plane physical hosts since the control
plane physical nodes are still statically assigned.

The authors in [?] describe a two-level controller hierar-
chy called “Kandoo” with the lower-level controllers being
responsible for handling the frequent events and short-lived
flows, while top-level controllers handle the other flows.
However, it is not flexible enough to adapt to the network
topology and load, e.g. in the case where most (or all) of
the network flows are long-lived. The authors in [?] discuss
the placement problem in the control plane and observe that
a single controller is sufficient for most of the use cases.
However, it does not consider the use case that requires robust
fault tolerance, virtual SDNs, multi-level controller hierarchy,
etc where multiple controllers are needed and hence placement
becomes more complex. Another effort [?] discusses the
controller placement problem but in the context of the network

load alone. It does not provide configurable control-plane
topology.

VI. CONCLUSION & FUTURE WORK:

In this paper we highlighted the limitations of the current
SDN distributed control plane in terms of controller complex-
ity, reduced flexibility, scalability and reliability. To address
these concerns, we described a solution approach that involves
a separate bootstrapping or initialization phase for the SDN
network. Our solution is called InitSDN and its architecture
involves a number of functionalities that relate to topology,
discovery, synchronization, and placement. Our current work
has qualitatively evaluated the benefits stemming from the
work in terms of ease of developing the controller logic and
operationalizing the SDN network for network operators using
real world network toplogies.


