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Can a periodic unit cell (PUC), whose local characteristic lengths have been identified as governing compressional sound wave properties in solid foams, provide a basis to model their linear elastic properties? How do elastic properties depend on membranes or solid films which may partially close the interconnections between the pores of solid foams? These two questions are the basis of the paper. A positive answer to the first question leads to foam microstructures with a full set of macroscopic parameters entering into the Biot-Allard poroelastic equations, which are critical for the sound insulation problem. Contributing factors such as membrane content, and thickness, are shown to have a significant effect on mechanical properties such as Young's modulus and Poisson ratio. Acoustical properties including sound transmission loss calculations and measurements indicate that this multi-scale approach is a reliable and insofar promising first attempt to bridge the gap between microstructure and the long-wavelength full acoustic properties (visco-inertial, thermal, elastic) of real poroelastic materials.

Introduction

A main original standpoint of our study is the combination of the identification of local characteristic lengths governing sound wave properties in solid foams [START_REF] Hoang | Identifying local characteristic lengths governing sound wave properties in solid foams[END_REF] with linear elastic property simulations by applying a version of periodic homogenization method [START_REF] Bornert | Homogenization in mechanics of materials[END_REF] in the presence of polyhedral unit cells with cubic symmetry (namely non-elongated Kelvin cell models). Fluid-flow and heat transfer simulations in three-dimensional periodic unit cells of solid foams lead to the formation of structured materials with essentially two local characteristic lengths, the pore and throat sizes [START_REF] Perrot | Microstructure, transport, and acoustic properties of open-cell foam samples: Experiments and threedimensional numerical simulations[END_REF][START_REF] Hoang | Solid films and transports in cellular foams[END_REF]; Fig. 1. Importantly, the introduction of solid films or membranes at the interconnection between pores that partially close them allows the capturing of visco-inertial and thermal dissipation mechanisms in a consistent way at both micro and macro scales. The resultant bicontinuous structure is supposed to be non-deformable at first, allowing for the identification of the PUC local characteristic lengths. Then, by using as the unit cell a representative volume which is compatible with the visco-inertial and thermal response, the linear elastic properties of the generated structures can be studied. Using a finite element based micromechanics procedure, we calculate the elastic properties of unit cells obtained by simulated visco-thermal dissipations. This strategy is distinguished from other micromechanical methods which take into account the presence of membranes [START_REF] Gong | Compressive response of open-cell foams. Part I: Morphology and elastic properties[END_REF][START_REF] Sullivan | A general tetrakaidecahedron model for open-celled foams[END_REF][START_REF] Sullivan | Elongated Tetrakaidecahedron micromechanics model for space shuttle external tank foams[END_REF][START_REF] Jang | On the compressive strength of open-cell metal foams with Kelvin and random cell structures[END_REF][START_REF] Thiyagasundaram | Elastic properties of open-cell foams with tetrakaidecahedral cells using finite element analysis[END_REF]. Indeed, these previous works use fully opened or fully closed cells.

Microporoelastic analysis

Elastic stiffnesses and compliances

With respect to a fixed coordinate system x 1 = x 2 = x 3 , let σ ij and ε ij be the stresses and strains, respectively, in an anisotropic elastic material. The stress-strain law can be written as

σ ij = C ijks ε ks , [ 1 
] in which C ijks are the elastic stiffness coefficients which are components of a fourth rank tensor. They satisfy symmetry conditions. The inverse of this relation is written as ε ij = S ijks σ ks , [START_REF] Bornert | Homogenization in mechanics of materials[END_REF] where S ijks are the elastic compliances which are components of a fourth rank tensor. They possess the same symmetry conditions as the stiffness tensor.

Contracted notations

Introducing the contracted notation (Voigt, 1910) the stress-strain law [START_REF] Hoang | Identifying local characteristic lengths governing sound wave properties in solid foams[END_REF] can be written as

σ i = c ij ε j , c ij = c ji [3]
In other words, due to the symmetry (σ ij = σ ji , and ε ij = ε ji ), only six independent components can appear in the stress and strain tensors. These six independent components of stress and strain can be "contracted" to a single index notation by writing:

σ ij = σ k , ε ij = ε k ;
[4] and using, for the substitution (i, j) →k, the rule, (1,1) →1, (2,2)→2, (3,3)→3, (2,3) and (3, 2) → 4, (1,3) and (3,1) → 5, (1,2) and (2,1) → 6. As a consequence, the fourth order elastic constant tensor may be contracted to a two-index notation by the application of the following conventions: 

σ σ σ σ σ σ σ σ           → =           ɶ , and 11 
ε ε ε ε ε ε ε ε           → =           ɶ ;[5] [4]
the factor of √2 being inserted in order that the equality : . σ ε σ ε = ɶ ɶ holds true. Following this convention, the generalized Hooke's law relationship between the elements of the stress and strain tensor (represented as six element column vectors) can be compactly written in matrix notations as

. c σ ε = ɶ ɶ ɶ ɶ , [6]
where c ɶ ɶ is a six-by-six symmetric matrix. An expanded form of the matrix notation is given below: . [START_REF] Sullivan | Elongated Tetrakaidecahedron micromechanics model for space shuttle external tank foams[END_REF] As indicated previously, it is frequently useful to express the strain in terms of the stress,

. s ε σ = ɶ ɶ ɶ ɶ , [8]
where s ɶ ɶ

is the compliance tensor made of the 21 independent elements ij s . The quantity s ɶ ɶ is the inverse of c ɶ ɶ in the matrix sense

1 s c - = ɶ ɶ
. The twenty-one coefficients, ij s , are called the compliance constants.

Material symmetries

This paper addresses the linear elastic properties of partially closed cell solid foams with membranebased tetrakaidecahedral cellular morphologies. This geometry exhibits a cubic symmetry. In this case, the elasticity tensor is defined by three independent coefficients, the elastic stiffnesses: 

0 cubic C C C C C C C C sym C C         =             [9]
Consequently, the elastic behavior can be described based on only three independent elastic parameters e.g. C 11 , C 12 , C 44 . Alternatively, the elastic compliances S ij might be expressed in terms of the elastic stiffnesses: 

C C S S S C C C C C S S S S S S C C C C S S S C  + = = =  + -   - = = = = = =  + -   = = =   [10]
Attention will be directed in the next sections to (1) the specification of two kinds of numerical experiments required to completely characterize the elastic compliances and stiffnesses in terms of the base material's properties and to (2) the obtention of averaged (i) transversely isotropic properties or (ii) isotropic properties obtained from the results of the numerical experiments. 

Numerical experiments A simple tensile numerical experiment is such that

S S S ε σ ε σ ε σ ε ε ε =   =   =   = = =  [11]
The longitudinal elastic modulus and Poisson ratios were deduced by definition: .

L E S S S S S σ ε ε ν ε ε ν ε  = =    = = -    = = -   [12]
For materials with cubic symmetry, substituting the expressions in [START_REF]Homogenization in mechanics of materials[END_REF] into equation [START_REF] Panneton | A missing mass method to measure the open porosity of porous solids[END_REF] 2 ,

, L C C C C E C C C C C ν ν  + - =  +    = =  +  [13]
which relates the longitudinal modulus and Poisson ratios to the elastic constants. To calculate the macroscopic elastic constants of materials a macroscopic strain is applied to the unit cell (Fig. 2). The displacement field inside the cell is the solution of the cell problem obtained from the homogenization of periodic media. It is given by: . = + per u

x u E , [START_REF] Panneton | Acoustical determination of the parameters governing viscous dissipation in porous media[END_REF] where per u complies with periodicity conditions on the cell boundary. It can be shown [START_REF]Homogenization in mechanics of materials[END_REF] 

1 V V dV V σ σ Σ = = ∫ ɶ ɶ . [15]
But, from another point of view, the macroscopic stress tensor is related to the macroscopic strain tensor by, , = .

V E C σ ∀ Σ = ɶ ɶ ɶ ɶ ɶ ɶ E . [16]
This computation produces therefore some components of the elasticity tensor.

For the materials with cubic symmetry which contain only three independent elastic coefficients, only two numerical experiments are required to find out completely the elasticity matrix, one by using a macroscopic tensile strain and another one by using a macroscopic shear strain.

In a first step we pay attention to a tensile strain numerical experiment (Fig. 2) for which we impose a uniform macroscopic strain,

11 1 1 E E ⊗ = e e , from
which two elastic constants are found from the macroscopic stress tensor: ,

.

C E C E = Σ   = Σ  [17]
In a second step, we impose a uniform macroscopic strain ( )

12 1 2 2 1 E E ⊗ ⊗
= + e e e e to model a shear strain numerical experiment. This leads to 44 [START_REF] Panneton | A missing mass method to measure the open porosity of porous solids[END_REF] 12

C E = Σ
. [START_REF] Champoux | Dynamic tortuosity and bulk modulus in air-saturated porous media[END_REF] This completes the elasticity tensor.

Macroscopically transversely isotropic and isotropic material configurations

The cubic cell used previously has been built by using some properties of the local geometry. However, the real material seen in Fig. 1 presents cells which are similar with the cubic cell, but whose shape and orientation departs from regularly aligned cells. In practice, real foams display either transversely isotropic properties (with a rotational symmetry axis along the growth direction of the fibers) or fully isotropic properties. The properties of an equivalent isotropic material can be built on the basis of the cubic cell by considering that the real material is made of cubic cells which have an arbitrary orientation. It can be obtained by computing the elasticity tensor ' ( , , ) ij S ψ θ ϕ for an arbitrary orientation of the axes of the cell, using the usual axes transformation of a tensor, and by averaging these properties over all orientations, i.e. on all possible Euler angles ( , , ) ψ θ ϕ . This leads to an upper bound of the compliance tensor and to a lower bound of the elasticity tensor, . [START_REF] Lafarge | Dynamic compressibility of air in porous structures at audible frequencies[END_REF] This produces finally a relationship between the lower bound of the components of the equivalent isotropic tensor I ij S and those of the elastic properties of the cubic material. 

+ +  = = =   + -  = = = = = =   - +  = = =   [20]
For a transversely isotropic material, the computation is the same, but by restricting the orientation of the axes to the ones perpendicular to the growth direction, i.e. by averaging over only all values of θ :

/2 ' 0 2 ( ) TI ij ij S S d π θ θ π = ∫ . [21]
This produces finally an upper bound of the components of the compliance tensor, which possess the properties of a transversely isotropic tensor, including S 22 -S 23 = S 44 : 

 =  + +  = =   - +  =   = =   = = = =  + -  = =   = =   = =  [22]

Results and discussion

Geometrical and transport macroscopic properties

Before looking at the mechanical results, it is of interest to consider the purely geometrical macroscopic properties (φ , ' Λ ) and transport parameters ( 0 k , Λ , α ∞ ) which were obtained on the cubic cell.

The porosity φ was measured with a reasonable accuracy from the missing mass method [START_REF] Panneton | A missing mass method to measure the open porosity of porous solids[END_REF]. The permeability 0 k was also directly measured as in Stinson and Daigle [START_REF] Stinson | Electronic system for the measurement of flow resistance[END_REF], after having removed a film at the surface of foam sample H 1 whose presence is due to the injection process. Then, the determination of the missing parameters, ' Λ , Λ , α ∞ , and 0 ' k is based on an inverse procedure [START_REF] Panneton | Acoustical determination of the parameters governing viscous dissipation in porous media[END_REF][START_REF] Olny | Acoustical determination of the parameters governing thermal dissipation in porous media[END_REF] using an analytical inversion from standing wave tube measurements [START_REF] Utsuno | Transfer function method for measuring characteristic impedance and propagation constant of porous materials[END_REF] and Johnson-Champoux-Allard-Lafarge [START_REF] Johnson | Theory of dynamic permeability and tortuosity in fluid-saturated porous media[END_REF][START_REF] Champoux | Dynamic tortuosity and bulk modulus in air-saturated porous media[END_REF][START_REF] Lafarge | Dynamic compressibility of air in porous structures at audible frequencies[END_REF] model.

The purely geometrical macroscopic properties ( ' Λ )

and transport parameters ( Λ , α ∞ , 0 '

k ) computed
from the course of this multi-scale approach are in a rather good agreement with experimental data ( '

Λ , Λ , α ∞ , 0 '
k ), especially when standard deviations are taken into account as seen in Table 1.

Considering the experimental characterization as the ground truth, one might however estimate the coefficients Λ to be slightly overestimated by the local geometry model, which occurs for idealized unit cells with monodisperse throat sizes. Indeed, computed and measured values are of similar magnitude for the H 1 foam sample (32% of relative difference), whereas for the H 2 foam sample a factor of two is observed (116% of relative difference). Because the viscous characteristic length was determined for a periodic unit cell with a single closure rate of membranes, the later model is insensitive to polydispersity of the throat sizes. More complex structures that contain, for example, additional throats of very small sizes could be used to extend this analysis. In agreement with this explanation, a microstructure analysis from SEM images is conducted in the next section, confirming that the overestimation of Λ calculation was due to the fact that the model ignores the presence of many very small wholes inside membranes. Together with a relatively close match between the measured and computed macroscopic parameters ( '

Λ , α ∞ , 0 ' k ),
this analysis about the origin of Λ small discrepancies and the microstructural results below indicate that the local geometry models presented in Fig. 1 capture the essential physics of the transport phenomena inside the foams.

Linear elastic properties

The basic ingredients of flexible urethane foams of the type considered in this study are ester resin (or polyol), diisocyanate, water, catalysts and surfactants. [START_REF] Artavia | Polyurethane flexible foam formation[END_REF] Foam H 1 was manufactured from the standpoint of these typical ingredients with a view of lowering significantly the Young's modulus of the resulting porous material when compared to standard plastic foams, and foam H 2 is a commercial product.

The samples represent cylindrical subsections of large panels of diameter equal to 44.5 mm. Their heights are equal to 25 mm for H 1 ; and 10 mm, 15 mm, and 20 mm for H 2 .

Accurate literature values for the microscopic Young's modulus E µ and Poisson ratio µ ν are not available because these values are depending on processing strategy. The values obtained in the literature for E µ are scattered within a range of more than one order of magnitude, they are typically lying between 2 and 30 MPa. [START_REF] Lecomte-Beckers | Cours de physique des matériaux : Partie Polymères[END_REF] By contrast, the microscopic Poisson ratio seems relatively stable, with ν µ ≃ 0.25. As mentioned by Gong et al. [5], some foam chemists believe that the polymer flow resulting from the foaming process may cause preferential alignment of the long molecules of the material along the ligaments. Since these characteristics may not be easily achievable in bulk material, they recommend that the mechanical properties of the polymer be measured directly from foam ligaments. Therefore, the main conclusion which can be drawn is that specific measurements should be made on the material. Microscopic Young's modulus was estimated from Mercury Intrusion Porosimetry (MIP) for foam sample H 1 , yielding E µ ≃ 7.07 ± 1.18 MPa. This method failed at estimating the microscopic Young's modulus of foam sample H 2 , presumably because foam sample H 2 may also contain an occluded porosity, which prevents mercury to saturate all of the fluid phase, and renders experimental data difficult to interpret. Without these complete measurements at the present time, the base material of foam sample H 2 , which must have a higher Young's modulus than the base material of foam sample H 1 , is characterized by E µ ≃ 25 MPa, this value being justified in the following.

From the above analysis it can be concluded that because of the strong dependence of the foam properties on the base material, it is better to replace all results of the computations performed along the lines of the previous section by non-dimensional values; for instance Obviously, the range of the experimental relative moduli E exp /E µ follows the one of the polyurethane base material modulus E µ . However, some conclusions can still be drawn. It can be seen for H 1 that the estimation of the relative modulus with membranes is not far from the experimental one, providing that the Young's modulus of the base material is in the vicinity of the smallest values available in the literature (this is rather consistent with previously mentioned estimates of the microscopic Young's modulus obtained by MIP). For H 2 foam sample, the value of the relative Young's modulus obtained with membranes is clearly inside the admissible range of relative moduli, within the higher values so that the Young's modulus of the base material must also be relatively low. From the above examples it can be concluded that membranes must be modeled when the goal is to determine the homogenized linear elastic properties for foams containing a high closure rate of membranes.

Conclusion

Let us have an overall view of the results that were derived from this multi-scale approach with the poroelastic foam samples used in this paper (Fig. 1).

For the sake of clarity, let us recall the procedure.

The porosity φ , permeability 0 k and ligament length L are assumed to be known from measurements. In the multi-scale approach, the extension of the solid film constituting the membranes was implemented at growing rates. The cell size is known from SEM experiments and the closure rate of membranes is adjusted for obtaining the experimental permeability. Macroscopic parameters are then computed from numerical homogenization and compared to the values that were measured at macro-scale in Sec. 3 and gathered in Table 1. These later values serve in a sense as bridges between microstructure and acoustical macro-behavior with microphysical and micromechanical foundations. The numerical simulations are generally in good agreement with the standing wave tube measured values. As also shown above the proposed micromechanical method can provide reasonable estimates of linear elastic properties for poroelastic foams including the significant effects of membranes' closure rate and thickness. The method is an idealized periodic cell one, based on the use of a simplified cellular morphology with identified local characteristic lengths. Further systematic investigation on the sensitivity of the results with regard to choice of particular features of the cellular morphology should be carried out. It is noted that accurate values for the Young's modulus and Poisson ratio of the base material are difficult to obtain because of the variability of the base material itself encountered in the foaming process and the need to implement advanced characterization techniques at this scale.

In other words extending this multi-scale method to real life sound insulation optimization problems is not straightforward but the present methodology should readily be extended.
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 1 Figure 1: Geometrical characteristics of two different solid foam samples, H1 (top) and H2 (bottom).
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 2 Fig. 2: Numerical experiments allowing identification of the elastic constants (illustrated with sample H 2 ).
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Table 1 .

 1 Macroscopic parameters: comparison between computational and experimental results.

	Foam Method	φ	Λ' (µm)	k0 (×10 -10 m 2 )	Λ (µm)	α∞	k0' (×10 -10 m 2 )
		Computation		146 ± 22		55 ± 6 1.40 ± 0.26 28 ± 12
	H1	Measurements	0.93 ± 0.01		5.35 ± 0.42		
		Characterization		143 ± 57		33 ± 4 1.05 ± 0.08 55 ± 28
		Computation		179 ± 46		53 ± 9 2.40 ± 0.55 48 ± 26
	H2	Measurements	0.97 ± 0.01		2.56 ± 0.60		
		Characterization		424 ± 92		13 ± 6 1.58 ± 0.64 53 ± 16
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