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Abstract: Can a periodic unit cell (PUC), whose 
local characteristic lengths have been identified as 
governing compressional sound wave properties in 
solid foams, provide a basis to model their linear 
elastic properties? How do elastic properties depend 
on membranes or solid films which may partially 
close the interconnections between the pores of 
solid foams? These two questions are the basis of 
the paper. A positive answer to the first question 
leads to foam microstructures with a full set of 
macroscopic parameters entering into the Biot-Allard 
poroelastic equations, which are critical for the 
sound insulation problem. Contributing factors such 
as membrane content, and thickness, are shown to 
have a significant effect on mechanical properties 
such as Young’s modulus and Poisson ratio. 
Acoustical properties including sound transmission 
loss calculations and measurements indicate that 
this multi-scale approach is a reliable and insofar 
promising first attempt to bridge the gap between 
microstructure and the long-wavelength full acoustic 
properties (visco-inertial, thermal, elastic) of real 
poroelastic materials. 

Keywords: unit-cell, scaling, transport parameters, 
membrane effect, elastic properties, poro-elasticity, 
unified approach. 

1. Introduction 

A main original standpoint of our study is the 
combination of the identification of local 
characteristic lengths governing sound wave 
properties in solid foams [1] with linear elastic 
property simulations by applying a version of 
periodic homogenization method [2] in the presence 
of polyhedral unit cells with cubic symmetry (namely 
non-elongated Kelvin cell models). Fluid-flow and 
heat transfer simulations in three-dimensional 
periodic unit cells of solid foams lead to the 
formation of structured materials with essentially two 
local characteristic lengths, the pore and throat sizes 
[3-4]; Fig. 1. Importantly, the introduction of solid 
films or membranes at the interconnection between 
pores that partially close them allows the capturing 
of visco-inertial and thermal dissipation mechanisms 
in a consistent way at both micro and macro scales.  
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Figure 1: Geometrical characteristics of two different 
solid foam samples, H1 (top) and H2 (bottom). 

The resultant bicontinuous structure is supposed to 
be non-deformable at first, allowing for the 
identification of the PUC local characteristic lengths. 
Then, by using as the unit cell a representative 
volume which is compatible with the visco-inertial 
and thermal response, the linear elastic properties of 
the generated structures can be studied. Using a 
finite element based micromechanics procedure, we 
calculate the elastic properties of unit cells obtained 
by simulated visco-thermal dissipations. This 
strategy is distinguished from other micromechanical 
methods which take into account the presence of 
membranes [5-9]. Indeed, these previous works use 
fully opened or fully closed cells. 

2. Microporoelastic analysis  

2.1 Elastic stiffnesses and compliances 

With respect to a fixed coordinate system x1 = x2 = 
x3, let σij and εij be the stresses and strains, 
respectively, in an anisotropic elastic material. The 
stress-strain law can be written as 

σij = Cijks εks, [1] 

in which Cijks are the elastic stiffness coefficients 
which are components of a fourth rank tensor. They 



 Page 2/7 

satisfy symmetry conditions. The inverse of this 
relation is written as 

εij = Sijks σks, [2] 

where Sijks are the elastic compliances which are 
components of a fourth rank tensor. They possess 
the same symmetry conditions as the stiffness 
tensor. 

2.2 Contracted notations 

Introducing the contracted notation (Voigt, 1910) the 
stress-strain law [1] can be written as 

σi = cij εj, cij = cji [3] 
In other words, due to the symmetry (σij = σji, and εij 
= εji), only six independent components can appear 
in the stress and strain tensors. These six 
independent components of stress and strain can be 
“contracted” to a single index notation by writing: 

σij = σk, εij = εk ; [4] 
and using, for the substitution (i, j) →k, the rule, (1,1) 
→1, (2,2)→2, (3,3)→3, (2,3) and (3, 2) → 4, (1,3) 
and (3,1) → 5, (1,2) and (2,1) → 6. As a 
consequence, the fourth order elastic constant 
tensor may be contracted to a two-index notation by 
the application of the following conventions:  
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;[5] [4] 

the factor of √2 being inserted in order that the 

equality : .σ ε σ ε=
ɶ ɶ

 holds true. Following this 

convention, the generalized Hooke’s law relationship 
between the elements of the stress and strain tensor 
(represented as six element column vectors) can be 
compactly written in matrix notations as 

.cσ ε=
ɶ ɶ ɶɶ

, [6] 

where c
ɶɶ

 is a six-by-six symmetric matrix. An 

expanded form of the matrix notation is given below: 
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As indicated previously, it is frequently useful to 
express the strain in terms of the stress, 

.sε σ=
ɶ ɶ ɶɶ

, [8] 

where s
ɶɶ

 is the compliance tensor made of the 21 

independent elements 
ijs . The quantity s

ɶɶ

 is the 

inverse of c
ɶɶ

 in the matrix sense 
1

s c
−=

ɶ ɶ
. The 

twenty-one coefficients, 
ijs , are called the 

compliance constants. 

2.3 Material symmetries 

This paper addresses the linear elastic properties of 
partially closed cell solid foams with membrane-
based tetrakaidecahedral cellular morphologies. This 
geometry exhibits a cubic symmetry. In this case, the 
elasticity tensor is defined by three independent 
coefficients, the elastic stiffnesses: 
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[9]  

Consequently, the elastic behavior can be described 
based on only three independent elastic parameters 
e.g. C11, C12, C44. Alternatively, the elastic 
compliances Sij  might be expressed in terms of the 
elastic stiffnesses: 
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[10] 

Attention will be directed in the next sections to (1) 
the specification of two kinds of numerical 
experiments required to completely characterize the 
elastic compliances and stiffnesses in terms of the 
base material’s properties and to (2) the obtention of 
averaged (i) transversely isotropic properties or (ii) 
isotropic properties obtained from the results of the 
numerical experiments. 

2.4 Numerical experiments  

A simple tensile numerical experiment is such that 

11σ  is different from zero and all other loads deleted. 

Under these loading conditions, the relationship 

Sε σ=
ɶ ɶ ɶɶ

 greatly simplifies to yield 
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The longitudinal elastic modulus and Poisson ratios 
were deduced by definition: 
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Fig. 2: Numerical experiments allowing identification 
of the elastic constants (illustrated with sample H2). 
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For materials with cubic symmetry, substituting the 

expressions in [10] into equation [12] leads to 
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which relates the longitudinal modulus and Poisson 
ratios to the elastic constants.    
To calculate the macroscopic elastic constants of 
materials a macroscopic strain is applied to the unit 
cell (Fig. 2).  The displacement field inside the cell is 
the solution of the cell problem obtained from the 
homogenization of periodic media. 
It is given by:  

.= +
per

u x uE  ,  [14] 

where 
per

u  complies with periodicity conditions on 

the cell boundary. It can be shown [10] that, 
accounting for the symmetries of the cell, these 
periodicity conditions can be changed into mixed 
boundary conditions enforcing that some 
components of u  are equal to the similar 

components of .xE , while expressing that the other 

components of the traction vector are null. For 
further details the reader is referred to Sec. 4.2.1 of 
Ref. [11] from J.C. Michel et al. entitled “Symmetry 
conditions” and in Appendix A of the same paper.  
The components of the macroscopic effective stress 
tensor Σ

ɶ
 induced by the macroscopic strain E are 

obtained by averaging the local stress tensor σ
ɶ

 

obtained after solving the cell problem,  

1
V

V

dV
V

σ σΣ = = ∫
ɶ ɶ

 .  [15] 

But, from another point of view, the macroscopic 
stress tensor is related to the macroscopic strain 
tensor by, 

,        = .
V

E Cσ∀ Σ =
ɶ ɶ ɶɶ ɶɶ

E  .  [16] 

This computation produces therefore some 
components of the elasticity tensor. 
For the materials with cubic symmetry which contain 
only three independent elastic coefficients, only two 
numerical experiments are required to find out 
completely the elasticity matrix, one by using a 
macroscopic tensile strain and another one by using 
a macroscopic shear strain. 
In a first step we pay attention to a tensile strain 
numerical experiment (Fig. 2) for which we impose a 

uniform macroscopic strain, 11 1 1E E ⊗= e e , from 

which two elastic constants are found from the 
macroscopic stress tensor: 

11 11 11

12 22 11

,

.

C E

C E

= Σ


= Σ
   [17] 

In a second step, we impose a uniform macroscopic 

strain ( )12 1 2 2 1
E E ⊗ ⊗= +e e e e to model a shear 

strain numerical experiment. This leads to 

                       44 12 12C E= Σ   . [18] 

This completes the elasticity tensor. 

2.5 Macroscopically transversely isotropic and 
isotropic material configurations 

The cubic cell used previously has been built by 
using some properties of the local geometry. 
However, the real material seen in Fig. 1 presents 
cells which are similar with the cubic cell, but whose 
shape and orientation departs from regularly aligned 
cells. In practice, real foams display either 
transversely isotropic properties (with a rotational 
symmetry axis along the growth direction of the 
fibers) or fully isotropic properties. 
The properties of an equivalent isotropic material 
can be built on the basis of the cubic cell by 
considering that the real material is made of cubic 
cells which have an arbitrary orientation. It can be 
obtained by computing the elasticity tensor 

' ( , , )ijS ψ θ ϕ  for an arbitrary orientation of the axes 

of the cell, using the usual axes transformation of a 
tensor, and by averaging these properties over all 
orientations, i.e. on all possible Euler angles 

( , , )ψ θ ϕ . This leads to an upper bound of the 

compliance tensor and to a lower bound of the 
elasticity tensor, 
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Foam Method φ  Λ’ (µm) 
k0 (×10

-10
 

m
2
) 

Λ (µm) α∞
 k0’ (×10

-

10
 m

2
) 

H1 

Computation  146 ± 22  55 ± 6 1.40 ± 0.26 28 ± 12 

Measurements 
0.93 ± 

0.01 
 

5.35 ± 

0.42 
  

 

Characterization  143 ± 57  33 ± 4 1.05 ± 0.08 55 ± 28 

        

H2 

Computation  179 ± 46  53 ± 9 2.40 ± 0.55 48 ± 26 

Measurements 
0.97 ± 

0.01 
 

2.56 ± 

0.60 
  

 

Characterization  424 ± 92  13 ± 6 1.58 ± 0.64 53 ± 16 

 
 

Table 1. Macroscopic parameters: comparison 
between computational and experimental results. 

 
2 2

'

2

0 0 0

1
( , , )sin

8

I

ij ijS S d d d

π π π

ψ θ ϕ θ ψ θ ϕ
π

= ∫ ∫ ∫  .

  

[19] 

This produces finally a relationship between the 
lower bound of the components of the equivalent 

isotropic tensor 
I

ij
S

 
and those of the elastic 

properties of the cubic material. 
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[20] 

For a transversely isotropic material, the 
computation is the same, but by restricting the 
orientation of the axes to the ones perpendicular to 
the growth direction, i.e. by averaging over only all 

values of θ : 
 

                           

/2

'
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2
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TI

ij ijS S d

π

θ θ
π

= ∫  .  [21] 

This produces finally an upper bound of the 
components of the compliance tensor, which 
possess the properties of a transversely isotropic 
tensor, including S22 –S23 = S44 : 

                          

11 11

11 12 44
22 33

11 12 44
44

55 66 44

12 21 13 31 12

12 11 44
23 32

24 42

34 43

,

3
,

4

,
2

,

,

3
,

4

0,

0.

TI

TI TI

TI

TI TI

TI TI TI TI

TI TI

TI TI

TI TI

S S

S S S
S S

S S S
S

S S S

S S S S S

S S S
S S

S S

S S

 =


+ + = =

 − +
 =

 = =
 = = = =


+ −
= =


= =


= =

   

[22] 

3. Results and discussion 

3.1 Geometrical and transport macroscopic 
properties 

Before looking at the mechanical results, it is of 
interest to consider the purely geometrical 

macroscopic properties (φ , 'Λ ) and transport 

parameters ( 0k , Λ , α∞ ) which were obtained on 

the cubic cell. 

The porosity φ  was measured with a reasonable 

accuracy from the missing mass method [12]. The 

permeability 0k  was also directly measured as in 

Stinson and Daigle [13], after having removed a film 
at the surface of foam sample H1 whose presence is 
due to the injection process. Then, the determination 

of the missing parameters, 'Λ , Λ , α∞ , and 0 'k  is 

based on an inverse procedure [14-15]
 
using an 

analytical inversion from standing wave tube 
measurements [16] and Johnson-Champoux-Allard-
Lafarge [17-19] model.  

The purely geometrical macroscopic properties ( 'Λ ) 

and transport parameters ( Λ ,α∞ , 0 'k ) computed 

from the course of this multi-scale approach are in a 

rather good agreement with experimental data ( 'Λ , 

Λ , α∞ , 0 'k ), especially when standard deviations 

are taken into account as seen in Table 1. 

Considering the experimental characterization as the 
ground truth, one might however estimate the 

coefficients Λ  to be slightly overestimated by the local 
geometry model, which occurs for idealized unit cells 
with monodisperse throat sizes. Indeed, computed and 
measured values are of similar magnitude for the H1 
foam sample (32% of relative difference), whereas for 
the H2 foam sample a factor of two is observed (116% 
of relative difference). Because the viscous 
characteristic length was determined for a periodic unit 
cell with a single closure rate of membranes, the later 
model is insensitive to polydispersity of the throat 
sizes. More complex structures that contain, for 
example, additional throats of very small sizes could 
be used to extend this analysis. In agreement with this 
explanation, a microstructure analysis from SEM 
images is conducted in the next section, confirming 
that the overestimation of Λ calculation was due to the 
fact that the model ignores the presence of many very 
small wholes inside membranes. Together with a 
relatively close match between the measured and 

computed macroscopic parameters ( 'Λ ,α∞ , 0 'k ), 

this analysis about the origin of Λ  small 
discrepancies and the microstructural results below 
indicate that the local geometry models presented in 
Fig. 1 capture the essential physics of the transport 
phenomena inside the foams. 

3.2 Linear elastic properties 
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The basic ingredients of flexible urethane foams of 
the type considered in this study are ester resin (or 
polyol), diisocyanate, water, catalysts and 
surfactants.

 
[20] Foam H1 was manufactured from 

the standpoint of these typical ingredients with a 
view of lowering significantly the Young’s modulus of 
the resulting porous material when compared to 
standard plastic foams, and foam H2 is a commercial 
product.  The samples represent cylindrical 
subsections of large panels of diameter equal to 44.5 
mm. Their heights are equal to 25 mm for H1; and 10 
mm, 15 mm, and 20 mm for H2.  

Accurate literature values for the microscopic 

Young’s modulus Eµ
 and Poisson ratio 

µν  are not 

available because these values are depending on 
processing strategy.  The values obtained in the 
literature for Eµ are scattered within a range of more 
than one order of magnitude, they are typically lying 
between 2 and 30 MPa. [21]

 
By contrast, the 

microscopic Poisson ratio seems relatively stable, 
with νµ ≃  0.25. As mentioned by Gong et al. [5], 
some foam chemists believe that the polymer flow 
resulting from the foaming process may cause 
preferential alignment of the long molecules of the 
material along the ligaments. Since these 
characteristics may not be easily achievable in bulk 
material, they recommend that the mechanical 
properties of the polymer be measured directly from 
foam ligaments. Therefore, the main conclusion 
which can be drawn is that specific measurements 
should be made on the material.  Microscopic 
Young’s modulus was estimated from Mercury 
Intrusion Porosimetry (MIP) for foam sample H1, 
yielding Eµ ≃  7.07 ± 1.18 MPa. This method failed 
at estimating the microscopic Young’s modulus of 
foam sample H2, presumably because foam sample 
H2 may also contain an occluded porosity, which 
prevents mercury to saturate all of the fluid phase, 
and renders experimental data difficult to interpret. 
Without these complete measurements at the 
present time, the base material of foam sample H2, 
which must have a higher Young’s modulus than the 
base material of foam sample H1, is characterized by 
Eµ ≃  25 MPa, this value being justified in the 
following. 

From the above analysis it can be concluded that 
because of the strong dependence of the foam 
properties on the base material, it is better to replace 
all results of the computations performed along the 
lines of the previous section by non-dimensional 

values; for instance 
nd

I IE E E
µ

= . These non-

dimensional data were first computed with 
membranes. A parameter which has a strong effect 
on the results is the membrane thickness. An 
estimate of the membrane thickness t ≃  1.7 ± 0.4  

Foam 
1000Eexp 

(Pa) 

1000Eexp /Eµ(min) 

(-) 

1000Eexp/Eµ(max) 

(-) 

1000Ecomp/Eµ 

(with membranes) 

1000Ecomp/Eµ 

(without membranes) 

H1 14.02 7.01 0.46 8.43 4.79 

H2 11.93 5.96 0.40 4.73 0.71 

 
 

Table 2. Comparison between measured Eexp and 
computed Ecomp elastic Young’s moduli for a 
membrane thickness value t equal to 1.7 µm. 

µm was obtained by scanning electron micrographs. 
Two simulations were carried out: with and without 
membranes. The characterization results of elastic 
parameters carried out at macro-scale from quasi-
static compressional experiments [22-23]

 
are given 

in Table 2 (left). For comparison with the static 
computed results, the relative Young’s moduli of 
both foams are given for ultimate values of Eµ (2-
30MPa), Table 2. These values can be compared on 
the same table with relative macroscopic Young’s 
moduli coming from the computations. Not that 
frequency-dependent characterization results were 
deliberately not presented in this paper, because of 
the static nature of the proposed computational 
approach.  

Obviously, the range of the experimental relative 
moduli Eexp/Eµ follows the one of the polyurethane 
base material modulus Eµ. However, some 
conclusions can still be drawn. It can be seen for H1 
that the estimation of the relative modulus with 
membranes is not far from the experimental one, 
providing that the Young’s modulus of the base 
material is in the vicinity of the smallest values 
available in the literature (this is rather consistent 
with previously mentioned estimates of the 
microscopic Young’s modulus obtained by MIP).  For 
H2 foam sample, the value of the relative Young’s 
modulus obtained with membranes is clearly inside 
the admissible range of relative moduli, within the 
higher values so that the Young’s modulus of the 
base material must also be relatively low.  From the 
above examples it can be concluded that 
membranes must be modeled when the goal is to 
determine the homogenized linear elastic properties 
for foams containing a high closure rate of 
membranes. 

4. Conclusion 

Let us have an overall view of the results that were 
derived from this multi-scale approach with the 
poroelastic foam samples used in this paper (Fig. 1). 
For the sake of clarity, let us recall the procedure. 

The porosity φ , permeability 0k  and ligament length 

L are assumed to be known from measurements. In 
the multi-scale approach, the extension of the solid 
film constituting the membranes was implemented at 
growing rates. The cell size is known from SEM 
experiments and the closure rate of membranes is 
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adjusted for obtaining the experimental permeability.  
Macroscopic parameters are then computed from 
numerical homogenization and compared to the 
values that were measured at macro-scale in Sec. 3 
and gathered in Table 1. These later values serve in 
a sense as bridges between microstructure and 
acoustical macro-behavior with microphysical and 
micromechanical foundations. The numerical 
simulations are generally in good agreement with the 
standing wave tube measured values. As also 
shown above the proposed micromechanical method 
can provide reasonable estimates of linear elastic 
properties for poroelastic foams including the 
significant effects of membranes’ closure rate and 
thickness. The method is an idealized periodic cell 
one, based on the use of a simplified cellular 
morphology with identified local characteristic 
lengths. Further systematic investigation on the 
sensitivity of the results with regard to choice of 
particular features of the cellular morphology should 
be carried out. It is noted that accurate values for the 
Young’s modulus and Poisson ratio of the base 
material are difficult to obtain because of the 
variability of the base material itself encountered in 
the foaming process and the need to implement 
advanced characterization techniques at this scale. 
In other words extending this multi-scale method to 
real life sound insulation optimization problems is not 
straightforward but the present methodology should 
readily be extended. 
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