
HAL Id: hal-01162047
https://hal.science/hal-01162047

Submitted on 13 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Comparison of RAID-6 Erasure Codes
Dimitri Pertin, Alexandre van Kempen, Benoît Parrein, Nicolas Normand

To cite this version:
Dimitri Pertin, Alexandre van Kempen, Benoît Parrein, Nicolas Normand. Comparison of RAID-6
Erasure Codes. The third Sino-French Workshop on Information and Communication Technologies,
SIFWICT 2015, Jun 2015, Nantes, France. �hal-01162047�

https://hal.science/hal-01162047
https://hal.archives-ouvertes.fr

Comparison of RAID-6 Erasure Codes

Dimitri Pertin
Université de Nantes
IRCCyN UMR 6597

Rozo Systems

Alexandre Van Kempen
Université de Nantes
IRCCyN UMR 6597

Benoı̂t Parrein
Université de Nantes
IRCCyN UMR 6597

Nicolas Normand
Université de Nantes
IRCCyN UMR 6597

Abstract

Coding techniques for RAID-6 storage systems, provid-
ing a double fault-tolerance, are varied. They all come
with their respective benefits and limitations. In this
paper, we compare the characteristics of five prominent
erasure codes. We show that the general-purpose Reed-
Solomon codes, either based on Vandermonde or Cauchy
matrices, are outperformed by Array codes (i.e. EVEN-
ODD, RDP) which are specifically designed for RAID-6
storage systems. However codes based on a geometri-
cal approach, such as the Mojette erasure code, show
even better performances at the cost of a slight extra stor-
age overhead. We outline the differences between these
codes in terms of encoding, updating and decoding com-
plexity. We believe that such an analysis can be valuable
to system designers to figure out which code would best
suit their requirements.

1 Introduction

In distributed storage systems, erasure codes are known
to offer an efficient alternative to replication since they
provide the same fault-tolerance while reducing signifi-
cantly the storage overhead. Redundant Array of Inde-
pendent Disks (RAID) is a technology that distributes
data among a disk array to improve performances and/or
reliability [7]. Performances are improved by striping
across multiple disks while redundancy brings reliability.
The well-know RAID-4 and RAID-5 schemes have been
long deployed as a way to tolerate a single disk failure,
without the cost of the plain replication used in the mir-
roring RAID-1 scheme. RAID-6 schemes have been pro-
posed to tolerate a second failed disk. Methods for im-
plementing RAID-6 are varied, including classic erasure
coding techniques like Reed-Solomon coding and more
specialized codes such as EVENODD [1] and RDP [4].
However, there is no ”one-size-fits-all” approach, and all
the implementations come with their benefits and limita-

tions. As such it is important for RAID-6 storage design-
ers to have at their disposal various coding techniques
from which to choose.

In this paper, we review the traditional RAID-6 codes
and provide a thorough comparison of their coding per-
formance, namely the encoding, decoding and updating
costs. Moreover, we add to this comparison a new code
called the Mojette erasure code, which is based on a
geometrical approach, contrary to the classic algebraic
code [5]. We show that this new code leads to significant
performance improvements at a price of a slight storage
overhead. We believe that this new alternative can be of
particular interest to storage systems designers seeking
for high-performance erasure codes.

The rest of the paper is organized as follows. We first
remind the basics of the RAID-6 erasure coding and in-
troduce common notations we use throughout the paper.
We then briefly describe each code, and provide their en-
coding, decoding and updating costs. Finally, we sum up
and compare all these codes before concluding.

2 RAID-6 Terminology and Erasure Cod-
ing

Storage systems implementing a RAID-6 erasure code
aggregate the storage space of multiple disks while pro-
tecting users’ data against any double disk failures. More
precisely, they are usually represented as an array of n
disks of the same storage capacity which is composed of
two parts: the first k disks contain the data, while the
remaining (n− k) disks store encoded information, also
called parity. Each disk is divided into w strips of β

sequential bits. Figure 1 depicts a simplified disk array
where w = 2 strips. In practice, w is usually larger than
that. An encoded element has the size of a strip, and
its computation is based on operations over a strip from
each disk. The strips involved in this computation form
a stripe. An (n,k) erasure code aims at providing (n−k)

D0 D1 ... Dk-1D2 P Q

...

...

...
...

...

Figure 1: Representation of a storage array using RAID-
6 erasure coding. An array of k data disks is used to
encode 2 parity disks: P and Q. Disks are fragmented
into w strips. Any set of n strips involved in the encoding
process forms a stripe. Inspired by [10].

encoded strips from k data strips (where n > k). Par-
ticularly, Maximal Distance Separable (MDS) codes
provide optimal reliability for a given storage overhead.
They can retrieve the data strips from any subset of k
strips, thus it is possible to handle any (n− k) failures.

In this formalism, RAID-6 codes are specific-purpose
erasure codes that compute two parity disks (usually
named P and Q) from k data disks. In coding theory
words, they are defined as a (n = k+ 2,k) erasure code,
which can prevent against any two disk failures. They
can be adapted from general-purpose codes such as Reed
Solomon codes, or they can be designed for this specific
aim, like EVENODD codes.

In the RAID-6 schemes presented in this paper, the
contents of the parity drive P are calculated as the parity
(XORing) of data, just as in RAID-5. The way the other
parity disk Q is computed differs according to each spe-
cific code, as explained below. We compare the different
codes according to the following metrics:

• Encoding cost is the number of operations to com-
pute encoded data stored in P and Q, from the data
contained in the k data disks.

• Update cost is the number of operations required to
update parity disks when a single data strip is modi-
fied. We consider diff -based updates, where instead
of re-encoding the data, we only compute the dif-
ference with the original data and apply this diff to
the parity drives, as done in [14]. We will see that
for some codes, the strip location has a significant
impact on performances.

• Decoding cost is the number of operations to re-
trieve lost information either due to transient or per-
manent failures. In this paper, we consider that a
failure leads to the whole data disk unavailability.
We will see that some codes perform better when
decoding using Q rather than P for a single failure.

3 RAID-6 Codes Comparison

While the most popular erasure codes are the general-
purpose Reed-Solomon (RS) codes, Array codes provide
better performances, but are limited to few parity disks.
We describe the two main Reed-Solomon implementa-
tions (Vandermonde-RS and Cauchy-RS), and two dif-
ferent Array codes (EVENODD, RDP). Moreover, we
show that the Mojette erasure code can offer an appeal-
ing alternative in terms of performance. Note that due to
space reason, we only sketch the description of each code
and refer the interested reader to their respective papers.

3.1 Standard MDS Codes
In storage systems, Reed-Solomon codes can usually be
implemented in two ways. While they have formerly
been relying on Vandermonde matrices, Cauchy matrices
have been proposed as an efficient alternative to increase
their performances.

Vandermonde Reed Solomon Reed-Solomon codes
are based on linear algebra and the encoding process is
determined by a generator matrix. Vandermonde (n×k)
matrices are convenient since any sub-matrix obtained by
the removal of (n− k) rows is invertible. When data era-
sures occur, impacted lines are removed and the inversed
matrix leads to decoding. It operates on binary words of
β bits, where k+m ≤ 2β . In this code, the parameter β

should fit a computer word (e.g. β = 8 or 16 or 32 bits).
Let consider two sets i and j of k and w integers, thus di, j
corresponds to the data strip located at the column i and
row j. Then, the parity strips Pj and Q j are computed as
follows:

Pj =
k−1⊕
i=0

di, j, (1)

Q j =
k−1⊕
i=0

di, jα
i. (2)

Standard implementations suffer from the Galois field
arithmetic multiplications, used in Equation (2) to com-
pute Q. To face such slow computations, alternatives
have been proposed to replace those multiplications by
cyclic shifts [2] or by avoiding them using look-up ta-
bles [12].

Encoding the P drive boils down to XOR k values as
depicted by Equation (1) thus incurring (k− 1) XORs.
Equation (2) shows that (k−1) XORs and k multiplica-
tions are required to encode the Q drive. To encode both
parity drives, one has thus iterate this process on the w
strips performing a total of 2× (k−1)w XORs and k×w
multiplications. The update of a single data strip impacts

2

D0 D1 D4D2 QP

...

...

D3
...

..................

Figure 2: EVENODD codes for a (k = 5,w = 4) array.
The figure focuses on the computation of the parity disk
Q using the information contained in the data disks Di.
The adjustor S is computed from the white diagonal. Its
value is added to each strip value of Q, which are com-
puted from diagonal parities. Inspired by [10].

two parity strips. One XOR is done to compute the data
update difference, two more are required to update the
related P and Q strips, and an extra multiplication is nec-
essary for the Q strip. Thus, a data update costs 3 XORs
and one multiplication. To decode data in case of a single
failure, the decoding process should use P, thus, incur-
ring (k−1)×w XORs since the multiplications required
when Q is involved make the computation more expen-
sive. The decoding process in case of a double failure is
equivalent to encode the two parity drives hence requir-
ing 2(k−1)w XORs and k×w multiplications.

Cauchy Reed Solomon This version of Reed-
Solomon codes are based on Cauchy matrices rather than
Vandermonde that eases the matrix inversion [11]. Fur-
thermore, it expands the generator matrix by a factor of
β in each direction to compute the product by fast XOR
operations. Its performance is then related to the number
of ones in the matrix, and no closed form of this num-
ber is known to date. Efforts were made to decrease this
number by choosing sparser matrices [11].

3.2 Array Codes
Array codes were formerly designed as an alternative
to Reed-Solomon codes to avoid operations over Galois
fields. While Array codes are limited to few parity disks,
they perform only XOR operations. P and Q are respec-
tively generated by horizontal and diagonal stripes. For
array codes, the computation of P is the same as Equa-
tion (1), what differs is how to compute Q for optimal
performances.

EVENODD EVENODD codes were designed in 1995
by Blaum et. al [1]. They restrict w such that (w+ 1)
must be prime and k ≤ w+ 1. When Q is involved, ei-
ther for encoding or decoding, an intermediate value S
(called the adjustor) is necessary to guarantee the MDS

property. For encoding, it requires an extra amount of
(k− 2) operations to be computed. Figure 2 depicts the
process to compute Q. The strip values of Q are pre-
computed by XORing the elements from the different di-
agonals represented by different colors. Then, the value
of S is computed as the XOR of the elements on the white
diagonal before being added to each strip of Q.

The encoding process requires (k− 1)w operations to
generate P and (k− 1)w+ k− 2 for Q. Thus, Q is gen-
erated using more operations than P. Strip update per-
formances depend on the location of the concerned strip.
Most of the time, data strip updates affect the optimal
amount of 2 parity elements. It is necessary to com-
pute the difference between the previous and the new
data value, before updating a single strip respectively in
P and Q. Thus, the update cost is 3. However, when the
updated data strip affects the value of S, every strip val-
ues of Q are modified. Thus w XORs are done, one XOR
is required to compute the difference, and one more is
necessary to update the related strip in P. Therefore, this
worst case costs (w+ 2) XORs. During decoding, sev-
eral scenarios might occur. When a failure impacts a data
disk, it is better to decode from P than from Q since the
last one required the computation of S which brings com-
putation overhead. A single disk failure is thus counter-
balanced using (k− 1)w operations. When two failures
affect data disks, it is first required to retrieve S. Since
the computation of S depends on the erasure scheme, we
call c(S) the number of operations required to compute
S. Let consider two integers i and j, respectively the first
and second failed disk index, then:

• if i = 0 and j ≥ k, then we use the encoding way to
compute S in c(S) = k−2 operations;

• if i< k and j = k, then we compute S from any other
diagonal parity stripe in c(S) = k−1 operations;

• if i < k and j < k, S is computed from parity disks
in c(S) = 2(k−2) operations.

Once S is calculated, it is possible to process a diag-
onal parity decoding iteration from Q. From this re-
constructed strip, we can rebuild the data by an itera-
tion from its horizontal parity strip in P. Then we al-
ternate these iterations until the array is rebuilt. The to-
tal decoding cost is 2(k− 1)w+ c(S). Then, two data
disk failures correspond to the worst case and would cost
2(k−1)w+2(k−2) XORs.

RDP Row Diagonal Parity (RDP) codes are the result
of Corbett et. al’s work in 2004 [4]. It requires k ≤ w.
They are similar to EVENODD but do not require the
adjustor S. However, P is necessary computed before Q
since its values are used in the computation of Q. RDP

3

10

3

9

4 5 1

1 0 2

3 2 4

1
7

8
3

3

w

(1,1)

Q

(0,1)

P

4
4

4
6

4

(-1,1)

P'

k

Figure 3: Mojette transform of a k×w = 3×3 image for
directions (p,q) in the set {(−1,1),(0,1),(1,1)}. The
basis is represented by ~u and ~v. P, Q and P′ represent a
set of parity disks.

provides better encoding, updating, and decoding perfor-
mance than Reed-Solomon and EVENODD codes.

For both P and Q, encoding is done in (k−1)w oper-
ations. Similarly to EVENODD, updates depend on the
target data strip. When it is located on the first row, or on
the special diagonal, only 2 encoded strips are impacted
respectively on P and Q, thus requiring 3 operations. For
all the other cases however, 3 strips are modified due
to the inter-dependence between both parity disks: one
in P and two in Q. This situation, that corresponds to
the worst case, involves 4 XORs. Decoding is done in
(k− 1)w operations whatever parity disk used for a sin-
gle erasure since the adjustor diagonal is not stored in Q
strips. Thus, 2(k−1)w operations are required to decode
from two data failures.

3.3 The Mojette erasure code

Geometric codes are an appealing alternatives to
arithmetic-defined erasure code since their approach is
not based on matrices or linear algebra. They are dis-
crete versions of the Radon transform, a mathematic tool
formerly used for tomography. Projections are com-
puted from an array following different discrete direc-
tions. When enough projections are fetched, it is possi-
ble to uniquely inverse the operation, thus retrieving the
original data [5].

Mojette A projection direction is defined by a couple
of co-prime integers (p,q). The number B of elements in
projections depends on the array size and the projection

0 2 4 6 8 10
140

160

180

200

Index of the failed disk

N
um

be
ro

fX
O

R
s

Figure 4: Mojette decoding cost, depending on the posi-
tion of the failed disk in the array, for k = 11 and w = 20.
The dashed line stands for the number of XORs reached
by RDP codes (i.e. (k−1)w).

direction (p,q), given by:

B(k,w, p,q) = |p|(k−1)+ |q|(w−1)+1. (3)

Using a simplifying design that constraints qi = 1, the
Mojette transform behaves as an erasure code where k
corresponds to the numbers of columns in the grid, and
n equals the number of computed projections. Since pro-
jection sizes slightly vary depending on the related di-
rection given, the Mojette erasure code is considered as
a (1 + ε)-MDS erasure code due to this small projec-
tion overhead [6]. Figure 3 depicts the Mojette trans-
form of a (k = 3)× (w = 3) array along directions in
{(0,1),(1,1),(−1,1)}. In this paper, we use a system-
atic version of the Mojette transform. Drive P is repre-
sented by the projection (0,1) while the drive Q is repre-
sented as projection (1,1). It is noticeable that the pro-
jection (−1,1), depicted in gray, could be use in the same
way as the projection (1,1) for Q.

The number of operations per projection depends on
the array size and the projection directions. It is given
by:

c(k,w, p,q) = k×w−B(k,w, p,q), (4)

where B(k,w, p,q) comes from Equation (3). Since
the disk P corresponds to the projection along (0,1),
B(k,w,0,1) = w. Thus P requires (k − 1)w oper-
ations. As we consider Q as the projection (1,1),
B(k,w,1,1) = k+w− 1, and the number of XORs for
its computation is (k− 1)w− k + 1. It shows that the
more strips, the less operations. Since we desire to ap-
proach the MDS property, it is relevant to choose a sec-
ond projection that minimizes the number of strips. Thus
we choose projections (1,1) (or equivalently (−1,1)) as
Q [13]. It is then noticeable that it is faster to compute

4

Code Encode P Encode Q Update Decode from P Decode from Q

RS (k−1)w (k−1)w+(kw)⊗ 3+1⊗ (k−1)w (k−1)w+(kw)⊗
EVENODD (k−1)w (k−1)w+ k−2 w+2 (k−1)w (k−1)w+2(k−2)
RDP (k−1)w (k−1)w 4 (k−1)w (k−1)w
Mojette (k−1)w (k−1)w− k+1 3 (k−1)w cdecode(l,k,w) (i.e. Eq. (5))

Table 1: Comparison table of the XOR number required for different erasure codes for each metric described in
Section 2. For Reed-Solomon codes, extra multiplications in Galois fields are required and are symbolized by ⊗.
When different results are possible, the worst case is displayed (e.g. EVENODD decoding from Q depends on the
computation of S).

Q than P. Additionally, note that it would be possible to
choose (−1,1) as P (such as represented in Figure 3) in
order to reduce the number of operations, but it would
cost extra storage consumption. Next, we consider P as
(0,1). Updates are optimal as the modification of a strip
impacts only the related strips in each projections. Since
we consider only RAID-6 codes, it impacts only two par-
ity strips. In case of a single failure, it is more advanta-
geous to decode using the Q drive instead of the P drive.
Indeed, while decoding with the P drive would require
(k−1)×w XORs, with the Q drive it incurs:

cdecode(l,k,w) =

(k−1)w− l(l +1)
2

− (k− l−1)(k− l)
2

, (5)

where l ∈ [0,k− 1] represents the missing column (i.e.
disk). Interestingly, the required number of XORs to de-
code a failed disk depends on which disk has failed i.e.
its index l, in the array. For example, we plot in Figure 4
the decoding cost for k = 11 and w = 20. This cost is
maximal when the failed disk is in the middle of the ar-
ray (l = 5 here), and then decreases (quadratically) as its
position approaches the borders of the array. The mini-
mal values are reached when the failure occurs either on
the first (l = k−1), or the last disk (l = 0).

4 Discussion

Table 1 gives an overview of the theoretic performance of
the codes analysed in the previous study. We express the
number of XOR operations required given the metrics
established in Section 2. We distinguish these metrics
depending on the related parity drive since performances
can differ for P and Q during encoding and decoding. It
is relevant to note that P is generated in (k− 1)w XOR
operations for each code. Similarly, decoding a failed
disk from P is done in (k− 1)w. Clearly, the cost for
such operations using Q is a determining factor in this
study since it varies for each code.

Reed Solomon specificities Theoretic performances
of Reed-Solomon codes are hard to define since the mul-
tiplications in Galois fields can be implemented in differ-
ent ways. Table look-ups do not require coding-related
computations but tables have to be generated and grow
significantly as the field size increases, thus impacting
memory. While XOR-based Reed-Solomon implemen-
tations avoid this issue, to the best of our knowledge,
there is no way to express the number of operations for
a given set of code parameters. In Table 1, we distin-
guish multiplications from XOR operations using the ⊗
symbols.

Performance analysis To analyse performances re-
lated to the Q drive encoding, let consider (k− 1)w as
a reference, reached by RDP codes. Both Reed-Solomon
and EVENODD codes add extra computations: while RS
code require extra multiplications, EVENODD codes re-
quire (k− 2) additional operations because of S. How-
ever, the Mojette code requires less operations to com-
pute Q. Note that it is the only code that computes Q
faster than P.

For decoding a failure using Q, the same statement can
be done. RDP codes require (k− 1)w XORs to retrieve
the failed disk. Decoding costs for RS and EVENODD
codes are still higher, respectively due to the multiplica-
tion overhead, and the computation of S. For the Mojette
erasure code, the number of required operations depends
on the lost disk (see Equation (5)). Figure 4 depicts that
the Mojette decoding is always lower than the (k− 1)w
XORs reached by RDP codes.

For updating, while every code is able to reach the op-
timal value of 3 XORs, most of them have situations that
involve more computations. Table 1 displays these worst
case computations. The Mojette erasure code is the only
one that achieves this optimal.

Thus, the Mojette code outperforms the other erasure
codes for RAID-6 storage systems. However, it requires
a slight extra storage consumption for drive Q (as de-
picted in Equation (3)).

5

Further work While this paper focused on the num-
ber of operations required for RAID-6 codes to oper-
ate encoding, updating and decoding, it has been shown
that memory management significantly impacts perfor-
mances [10]. Particularly, memory temporal and spatial
locality are major considerations. Furthermore, the set
of codes selected in this paper is limited to the most fa-
mous ones. However, some alternatives give promising
results. For instance, minimal density codes such as the
ones designed by Blaum and Roth [3], as well as Lib-
eration [8] and Liber8tion [9] codes are proved to hold
the minimum number of ones per row in their generat-
ing bit-matrices. Finally, while array codes are in gen-
eral specific to RAID-6 systems, Reed-Solomon and Mo-
jette codes are flexible in coding parameters and could be
compared for higher parity disks.

5 Conclusion

In this study, we proposed a comparison of the number of
operations required by different erasure codes, for mul-
tiple metrics. In the context of RAID-6, it shows that
Array codes and the Mojette code are interesting alterna-
tives to the classic Reed-Solomon. However, the former
one lack of flexibility in the general case. Moreover, we
claim that erasure codes based on a geometrical approach
can outperforms classic arithmetic codes at a cost of a
slight extra storage consumption. Thus, we offer to sys-
tem designers a particularly suitable tool to implement
high-performance erasure-coded storage systems.

6 Acknowledgements

We are grateful to Professor Jérôme Lacan for pointing
out the reference of EVENODD codes [1]. This material
is based upon work supported by the Agence Nationale
de la Recherche (ANR) through the project FEC4Cloud
(ANR-12-EMMA-0031-01).

References
[1] BLAUM, M., BRADY, J., BRUCK, J., AND MENON, J. EVEN-

ODD: an efficient scheme for tolerating double disk failures in
RAID architectures. IEEE Transactions on Computers 44, 2 (Feb.
1995), 192–202.

[2] BLAUM, M., AND ROTH, R. New array codes for multiple
phased burst correction. IEEE Transactions on Information The-
ory 39, 1 (Jan. 1993), 66–77.

[3] BLAUM, M., AND ROTH, R. On lowest density MDS codes.
IEEE Transactions on Information Theory 45, 1 (Jan 1999), 46–
59.

[4] CORBETT, P., ENGLISH, B., GOEL, A., GRCANAC, T.,
KLEIMAN, S., LEONG, J., AND SANKAR, S. Row-diagonal par-
ity for double disk failure correction. In Proceedings of the 3rd
USENIX Conference on File and Storage Technologies (Berkeley,
CA, USA, 2004), FAST ’04, USENIX Association, pp. 1–14.

[5] GUÉDON, J. P., AND NORMAND, N. The Mojette transform:
The first ten years. In Discrete Geometry for Computer Imagery,
E. Andres, G. Damiand, and P. Lienhardt, Eds., vol. 3429 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2005, pp. 79–91.

[6] PARREIN, B., NORMAND, N., AND GUÉDON, J. P. Multiple
description coding using exact discrete Radon transform. In Pro-
ceedings of the Data Compression Conference (Washington, DC,
USA, 2001), DCC ’01, IEEE Computer Society, p. 508.

[7] PATTERSON, D. A., GIBSON, G., AND KATZ, R. H. A case for
redundant arrays of inexpensive disks (RAID). In Proceedings of
the 1988 ACM SIGMOD International Conference on Manage-
ment of Data (New York, NY, USA, 1988), SIGMOD ’88, ACM,
pp. 109–116.

[8] PLANK, J. S. The RAID-6 Liberation codes. In Proceedings
of the 6th USENIX Conference on File and Storage Technolo-
gies (Berkeley, CA, USA, 2008), FAST’08, USENIX Associa-
tion, pp. 7:1–7:14.

[9] PLANK, J. S. The RAID-6 Liber8tion code. International Jour-
nal of High Performance Computing Applications (2009).

[10] PLANK, J. S., LUO, J., SCHUMAN, C. D., XU, L., AND
WILCOX-O’HEARN, Z. A performance evaluation and exam-
ination of open-source erasure coding libraries for storage. In
Procedings of the 7th Conference on File and Storage Technolo-
gies (Berkeley, CA, USA, 2009), FAST ’09, USENIX Associa-
tion, pp. 253–265.

[11] PLANK, J. S., AND XU, L. Optimizing Cauchy Reed-solomon
codes for fault-tolerant network storage applications. In NCA-
06: 5th IEEE International Symposium on Network Computing
Applications (Cambridge, MA, July 2006).

[12] RIZZO, L. Effective erasure codes for reliable computer com-
munication protocols. SIGCOMM Comput. Commun. Rev. 27, 2
(Apr. 1997), 24–36.

[13] VERBERT, P., RICORDEL, V., AND GUÉDON, J. P. Analy-
sis of Mojette transform projections for an efficient coding. In
Workshop on Image Analysis for Multimedia Interactive Services
(WIAMIS) (Lisboa, Portugal, Apr 2004).

[14] ZHANG, F., HUANG, J., AND XIE, C. Two efficient partial-
updating schemes for erasure-coded storage clusters. 2014 9th
IEEE International Conference on Networking, Architecture, and
Storage (2012), 21–30.

6

