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COMMUTATIVE RINGS WHOSE COTORSION MODULES ARE

PURE-INJECTIVE

FRANÇOIS COUCHOT

Abstract. Let R be a ring (not necessarily commutative). A left R-module
is said to be cotorsion if Ext1

R
(G,M) = 0 for any flat R-module G. It is well

known that each pure-injective left R-module is cotorsion, but the converse
does not hold: for instance, if R is left perfect but not left pure-semisimple
then, each left R-module is cotorsion but there exist non-pure-injective left
modules. The aim of this paper is to describe the class C of commutative
rings R for which each cotorsion R-module is pure-injective. It is easy to see
that C contains the class of von Neumann regular rings and the one of pure-
semisimple rings. We prove that C is strictly contained in the class of locally
pure-semisimple rings. We state that a commutative ring R belongs to C if
and only if R verifies one of the following conditions:
(1) R is coherent and each pure-essential extension of R-modules is essential;
(2) R is coherent and each RD-essential extension of R-modules is essential;
(3) any R-module M is pure-injective if and only if Ext1

R
(R/A,M) = 0 for

each pure ideal A of R (Baer’s criterion).

1. Introduction and preliminaries

The aim of this study is to give a complete description of commutative rings for
which each cotorsion module is pure-injective. In this first section we recall some
definitions and some former results. Then, in section 2, we enunciate and show some
partial results which are available even if the ring is not commutative. Section 3 is
devoted to the commutative case. We get our main result (Theorem 3.9) by using
localizations and local rings. In the last section we show that a commutative ring R
is locally perfect if and only if any R-module M for which Ext1R(C,M) = 0 for each
cyclic flat module C is cotorsion, and we investigate the following question: give
a characterization of rings R for which each flat-essential exension of R-modules
is essential. Throughout this paper other related questions are studied, where we
use the following notions: Warfield cotorsion module, RD-injective module, RD-
essential extension and so on...

Even in the commutative case some questions are open. For instance, the condi-
tion ”each cotorsion module is pure-injective” implies the condition ” each Warfield
cotorsion module is RD-injective”, but the converse is not proven. On the other
hand, we do not know if there exist non-coherent commutative rings for which each
pure-essential extension of modules is essential. Also, it should be interesting to
study strongly perfect rings which are introduced in the last section.

We shall assume that all rings are associative with identity and all modules are
unitary. Given a ring R, any left module M is said to be P-flat (resp. P-injective)
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if TorR1 (R/rR,M) = 0 (resp. Ext1R(R/Rr,M) = 0) for each r ∈ R. We say that R
is left P-coherent if each principal left ideal of R is finitely presented.

A left module M is FP-injective if Ext1R(F,M) = 0 for each finitely presented
left module F .

Any left module M is called cotorsion (resp. Warfield cotorsion) if, for each
flat (resp. P-flat) left module F , Ext1R(F,M) = 0.

A short exact sequence of left modules is pure (resp. RD-pure) if it remains
exact when tensoring it by any right module (resp. module of the form R/rR,
r ∈ R). A left module is pure-injective (resp. RD-injective) if it is injective
relatively to each pure (resp. RD-pure) exact sequence of left modules.

R is said to be left pure-semisimple (resp. RD-semisimple) if each left R-
module is pure-injective (resp. RD-injective). When R is commutative then R is
pure-semisimple if and only if it is RD-semisimple if and only if it is an Artinian
ring whose all ideals are principal ([6, Theorem 4.3]).

An R-module B is a pure-essential extension (resp. RD-essential exten-

sion) of a submodule A if A is a pure (resp. RD) submodule of B and, if for each
submodule K of B, either K ∩ A 6= 0 or (A + K)/K is not a pure (resp. RD)
submodule of B/K. We say that B is a pure-injective hull (resp. RD-injective

hull) of A if B is pure-injective (resp. RD-injective) and a pure-essential (resp.
RD-essential) extension of A.

Each R-module M has a pure-injective hull and an RD-injective hull ([8, Propo-
sition 6]).

A left module B is a flat extension (resp. P-flat extension) of a submodule
A if B/A is flat (resp. P-flat). Moreover, if there are no submodules S of B with
S ∩ A = 0 and B/S flat (resp. P-flat) extension of A, then B is a flat essential

extension (resp. P-flat essential extension) of A. If B is cotorsion (resp.
Warfield cotorsion) and a flat (resp. P-flat) essential extension of a submodule A
then we say that B is a cotorsion (resp. Warfield cotorsion) envelope of A
(by [10, Theorem 3.4.5] these definitions are equivalent to the usual ones).

Each left module M has a cotorsion (resp. Warfield cotorsion) envelope ([4,
Theorem 6] and [10, Theorem 3.4.6]).

For each left module M we denote by E(M) its cotorsion envelope, EW (M) its
Warfield cotorsion envelope, PE(M) its pure-injective hull and RDE(M) its RD-
injective hull.

Each pure(RD)-injective module is (Warfield) cotorsion, but [10, Example p.75]
shows that the converse does not hold.

Theorem 1.1. [10, Theorem 3.5.1] For any ring R the following are equivalent:

(1) for any exact sequence of left modules 0 → G′ → G → G′′ → 0 with G′ and
G′′ pure-injective, G is also pure-injective;

(2) for any left module M , PE(M)/M is flat;
(3) every cotorsion left module is pure-injective.

Moreover if R is right coherent, then the above are equivalent to the following:

(4) for any exact sequence of left modules 0 → G′ → G → G′′ → 0 with G′ and
G pure-injective, G′′ is also pure-injective.

By a similar way the following can be proven.

Theorem 1.2. For any ring R the following are equivalent:
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(1) for any exact sequence of left modules 0 → G′ → G → G′′ → 0 with G′ and
G′′ RD-injective, G is also RD-injective;

(2) for any left module M , RDE(M)/M is P-flat;
(3) every Warfield cotorsion left module is RD-injective.

Moreover if R is right P-coherent, then the above are equivalent to the following:

(4) for any exact sequence of left modules 0 → G′ → G → G′′ → 0 with G′ and
G RD-injective, G′′ is also RD-injective.

The following proposition is well known. For convenience, a proof is given. We
set 0P to be the kernel of the natural map R → RP where P ∈ Spec R.

Proposition 1.3. Let R be a commutative ring. We assume that each prime ideal
is maximal. Then:

(1) for any closed subset C of Spec R, C = V (A) where A = ∩P∈C0P is a pure
ideal;

(2) for each maximal ideal P , RP = R/0P ;
(3) each pure ideal of R is generated by idempotents.

Proof. (1). Let C = V (B) where B = ∩L∈CL. We put A = ∩P∈C0P . Let b ∈ B
and P ∈ C. The image of b, by the natural map R → RP , belongs to the nilradical
of RP . It follows that there exist 0 6= nP ∈ N and sP ∈ R \P such that sP b

nP = 0.
Hence, ∀L ∈ D(sP ) ∩ C, bnP ∈ 0L. A finite family (D(sPj

))1≤j≤m covers C. Let
n = max{nP1

, . . . , nPm
}. Then bn ∈ 0L, ∀L ∈ C, whence bn ∈ A. We deduce that

C = V (A). Now, we have AP = 0 if P ∈ V (A) and AP = RP if P ∈ D(A). Hence
A is a pure ideal.

(2) is a consequence of (1) by taking C = {P}.
(3). We know that Spec R is homeomorphic to Spec R/N where N is the

nilradical of R. Since R/N is von Neumann regular its principal ideals are generated
by idempotents. So, Spec R has a base of clopen subsets (closed and open). Whence
if A is a pure ideal then, for any a ∈ A there exists an idempotent ea such that
D(ea) = D(a) ⊆ D(A). Clearly D(A) = D(Σa∈ARea). Since Σa∈ARea is a pure
ideal, by (1) we conclude that A = Σa∈ARea. �

2. when cotorsion modules are pure-injective: general case

A left module M over a ring R is called regular (respectively RD-regular) if
all its submodules are pure (respectively RD-pure).

Proposition 2.1. Let R be a ring, J its Jacobson radical. Let M be an RD-regular
left R-module. Then JM = 0 and, if in addition R is semilocal, M is semisimple.

Proof. If 0 6= x ∈ M then Rax is an RD-submodule of Rx for each a ∈ R. So, for
each a ∈ J , there exists b ∈ R such that ax = abax. It follows that (1− ab)ax = 0,
and from a ∈ J we successively deduce that (1 − ab) is a unit and ax = 0. �

Proposition 2.2. Let R be a ring. Assume there exists a family E of orthogonal
central idempotents of R satisfying the following conditions:

(a) R/R(1− e) is a left pure-semisimple ring , for each e ∈ E;
(b) R/A is a von Neumann regular ring where A = ⊕e∈ERe.

Then:

(1) each cotorsion left R-module is pure-injective;
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(2) each pure-essential extension of left R-modules is essential;
(3) any left R-module M is pure-injective if and only if Ext1R(C,M) = 0 for

each cyclic flat left R-module C;
(4) for any left R-module M , PE(M)/M is flat, FP-injective and regular.

Proof. (3) and (1). Let M be a left R-module satisfying Ext1R(R/B,M) = 0 for
each pure left ideal B of R. Since A is a pure ideal, the following sequence is exact:

0 → HomR(R/A,M) → HomR(R,M) → HomR(A,M) → 0.

Let C be a left ideal of R/A. Since R/A is von Neumann regular, C is a pure
ideal and its inverse image B by the natural map R → R/A is a pure left ideal
of R. From Ext1R/A(R/B,HomR(R/A,M)) ∼= Ext1R(R/B,M) = 0 we deduce that

HomR(R/A,M) is injective over R/A and R. So, the above sequence splits. On the
other hand HomR(A,M) ∼=

∏
e∈E

eM . Since R/R(1 − e) is left pure-semisimple,
it successively follows that eM is pure-injective for each e ∈ E, HomR(A,M) is
pure-injective and M too.

(2). Let M be a left R-module, N = HomR(R/A,M), E = E(N) and L =
HomR(A,M). As above L is pure-injective. So, E ⊕ L is pure injective. The
inclusion map N → E extends to a homomorphism f : M → E. Let g : M →
L be the canonical map and L′ its image. Then, it is easy to check that the
homomorphism φ : M → E ⊕ L defined by φ(m) = (f(m), g(m)) for each m ∈ M
is injective. Since R/A is von Neumann regular, E/N is flat. It is easy to see that
AL = AL′. So, L/L′ is also an R/A-module. It follows that coker(φ) is an R/A-
module which is flat over R. Hence φ is a pure monomorphism. Let (x, y) ∈ E⊕L.
First assume that y 6= 0. There exists e ∈ E such that ey 6= 0. So, there exists
z ∈ M such that ey = g(z). It follows that ey = g(ez) and φ(ez) = e(x, y) = (0, ey).
If y = 0 then there exists s ∈ R such that 0 6= sx ∈ N , whence φ(sx) = s(x, 0).
Hence φ is an essential monomorphism.

(4). Since coker(φ) is a module over R/A which is a von Neumann regular ring
and flat as right R-module, we have coker(φ) is flat, FP-injective and regular as
R-module. �

Proposition 2.3. Let R be a ring. Assume there exists a family E of orthogonal
central idempotents of R satisfying the following conditions:

(a) R/R(1− e) is a left RD-semisimple ring , for each e ∈ E;
(b) R/A is a von Neumann regular ring where A = ⊕e∈ERe.

Then:

(1) each Warfield cotorsion left R-module is RD-injective;
(2) each RD-essential extension of left R-modules is essential;
(3) any left R-module M is RD-injective if and only if Ext1R(C,M) = 0 for

each cyclic flat left R-module C.
(4) for any left R-module M , RDE(M)/M is flat, FP-injective and regular.

As in [7] a left R-module M is said to be semi-compact if every finitely solvable
set of congruences x ≡ xα (mod M [Iα]) (where α ∈ Λ, xα ∈ M and Iα is a left
ideal of R for each α ∈ Λ) has a simultaneous solution in M .

Proposition 2.4. Let R be a ring. Assume that each pure-essential extension of
left R-modules is essential. Then each semi-compact left module is pure-injective.
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Proof. Let M be a semi-compact left R-module. By way of contradiction assume
there exists x ∈ PE(M) \M . Let A = {a ∈ R | ax ∈ M}. Then A 6= 0 since the
extension M → PE(M) is essential. We consider the following system of equations:
aX = ax, a ∈ A. Since M is a pure submodule, for each finite subset B of A, there
exists xB ∈ M such that axB = ax for each a ∈ B. By [3, Proposition 1.2] the
semi-compactness of M implies that there exists y ∈ M such that ax = ay for each
a ∈ A. It follows that R(x − y) ∩M = 0 which contradicts that M is essential in
PE(M). �

Proposition 2.5. Let R be a ring. Assume that each pure-essential extension of
left modules is essential. Then, for each FP-injective left R-module M , PE(M)/M
is regular.

Proof. Since M is FP-injective, we have PE(M) is an injective hull of M . Let C
be a submodule of PE(M)/M and A its inverse image by the natural epimorphism
PE(M) → PE(M)/M . The inclusion map M → A → PE(A) is an essential
extension. Hence PE(A) ∼= PE(M). Then PE(A) is injective and A is FP-injective,
whence A is a pure submodule of PE(M) and C a pure submodule of PE(M)/M .

�

In the same way and by using Proposition 2.1 we get the following.

Proposition 2.6. Let R be a ring. Assume that each RD-essential extension of left
R-modules is essential. Then, for each P-injective left R-module M , RDE(M)/M
is RD-regular.

Proposition 2.7. Let R be a ring. Assume that each RD-essential extension of left
modules is essential. Then, for any two-sided ideal A, each RD-essential extension
of left R/A-modules is essential.

Proof. Let α : M → N be an RD-essential extension of left R/A-modules and let β :
M → E be an RD-injective hull of M over R. Then there exists a homomorphism
γ : N → E such that β = γα. From the fact that α is RD-essential and β is an RD-
monomorphism we deduce that γ is injective. We conclude that α is essential. �

3. when cotorsion modules are pure-injective: commutative case

Proposition 3.1. Let R be a commutative ring. Assume that each pure(RD)-
essential extension of R-modules is essential. Then for each multiplicative subset
S of R, each pure(RD)-essential extension of S−1R-modules is essential.

Proof. Let A → B be a pure-essential extension of S−1R-modules, and let C be
an R-submodule of B such that A ∩ C = 0 and A is a pure submodule of B/C. It
is easy to check that A ∩ S−1C = 0 and A is a pure submodule of B/S−1C. So,
S−1C = 0 and C = 0. Then A → B is a pure-essential extension of R-modules.
Now it is easy to conclude. �

Recall that a ring R is left perfect if each flat left R-module is projective.

Proposition 3.2. Let R be a commutative ring. Assume that each semi-compact
R-module is pure-injective. Then each prime ideal is maximal.

Proof. Let L be a prime ideal of R, R′ = R/L and M a flat R′-module. Since
R′ is a domain, each flat R′-module is semi-compact over R′ and over R too. It
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follows that each flat R′-module is pure-injective. There is a pure-exact sequence
0 → K → F → M → 0 where F is a free R′-module. So, K is flat and pure-
injective over R′. We deduce that the above sequence splits and consequently M is
projective. Hence R′ is a perfect domain, whence R′ is a field and L is maximal. �

Theorem 3.3. Let R be a commutative ring satisfying each pure-essential extension
of R-modules is essential. Then RP is pure-semisimple for any maximal ideal P .

Proof. By Proposition 3.1 we may assume that R is local of maximal ideal P . Let
I = ER(R/P ), M = I(N), E = ER(M) and S = E/M . By Propositions 2.5 and
2.1 S is semisimple. Let 0 6= a ∈ P , A = (0 : a) and Ra = R/A. By Propositions
2.4 and 3.2 P is the sole prime ideal. So, A 6= 0. For any R-module G we put
G′ = {g ∈ G | Ag = 0} = G[A]. Then I ′ = ERa

(R/P ) = aI, M ′ = I ′(N) = aM ,
E′ = aE and E′ is injective over Ra. Since aS = 0, we have M ′ = E′. By [2,
Theorem 25.3] Ra is Noetherian, and Artinian since P is the sole prime ideal. Let
(Ran)n∈N be a descending chain of proper ideals of R. We may assume that a0 ∈ P .
If we choose a = a0, then Ra is an Ra-module. So, it is Artinian and consequently R
satisfies the descending condition on principal ideals. We conclude that R is perfect
by [9, 43.9]. It follows that P 2 6= P . By way of contradiction suppose that P/P 2

is a vector space of dimension ≥ 2 over R/P . Then there is a Noetherian factor
R′ of R modulo a suitable ideal whose maximal ideal is generated by 2 elements.
So, R′ is not pure-semisimple. But, we successively get that each R′-module is
semicompact (because R′ is Noetherian), and pure-injective by Proposition 2.4.
From this contradiction we deduce that P is principal and R pure-semisimple. �

Theorem 3.4. Let R be a commutative ring satisfying each RD-essential extension
of R-modules is essential. Then RP is pure-semisimple for any maximal ideal P .

Proof. By Proposition 3.1 we may assume that R is local of maximal ideal P . Let
S = R/P and E an R-module containing S as proper RD-submodule. Let x ∈ E\S.
If ax ∈ S then there exists s ∈ S such that ax = as. Since a ∈ P , we have ax = 0
and Rx ∩ S = 0. Hence S is RD-injective.

First assume that R is Noetherian. By [5, Corollary 4.7] R is a chain ring.
So, each RD-exact sequence is pure. Consequently R satisfies the assumption of
Theorem 3.3, whence R is pure-semisimple.

Now, assume that R is not Noetherian. Let L be a prime ideal and R′ = R/L.
Suppose that L 6= P . Each RD-essential extension of R′-modules is essential by
Proposition 2.7. Then, from the first part of the proof R′ is not Noetherian. Let
N be a FP-injective R′-module which is not injective, E = ER′(N) and T = E/N .
Let a ∈ P \ L. Then E = aE, whence T = aT . But, by Propositions 2.6 and 2.1
T is semisimple, whence aT = 0. From this contradiction we deduce that L = P .
Now, we do as in the proof of Theorem 3.3 to show that R is perfect. So, P/P 2 is
of infinite dimension over R/P . Whence there exists Noetherian factor rings of R
which are not pure-semisimple. This contradicts the beginning of the proof. Hence
R is pure-semisimple. �

To show the following proposition we adapt the proof of [10, Example p.75].

Proposition 3.5. Let R be a commutative ring for which each cotorsion R-module
is pure-injective. Then each prime ideal of R is maximal.
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Proof. By way of contradiction suppose there exists a non-maximal prime ideal L.
Since each R/L-module is pure-injective over R/L if and only if it is pure-injective
over R, each cotorsion R/L-module is pure-injective by Theorem 1.1. So, we may
assume that R is an integral domain. Let P be a maximal ideal of R containing
a 6= 0. We put I = E(R/P ), In = I[an] for each integer n ≥ 1, M = ⊕n≥1In and
N =

∏
n≥1 In. Then N is pure-injective and N = N1 ⊕ N2 where N1 = PE(M).

By Theorem 1.1 N1/M is torsionfree since it is flat.
Let S = ∪n≥1N [an]. Clearly M ⊂ S. Let x = (xn)n≥1 ∈ S and k an integer ≥ 1.

There exists an integer p ≥ 1 such that apx = 0. Let n ≥ p+ k. Then xn = akyn
where yn ∈ I. But 0 = an−kxn = anyn whence yn ∈ In. So the elements of S/M
are divisible by ak for each k ≥ 1. Consider the projection π2 : N → N2 and its
restriction to S. Since M is in the kernel of π2, there is an induced homomorphism
π̄2 : N/M → N2. Note that N (and N2 too) has no nonzero elements divisible by
ak for all k ≥ 1. This implies that π̄2 maps S/M to zero in N2. Thus S ⊆ N1,
so S/M ⊆ PE(M)/M . But S/M 6= 0 is not torsionfree. So, we get the desired
contradiction. �

Proposition 3.6. Let R be a ring, E a left R-module and U a pure submodule of
E. Then the following conditions are equivalent:

(1) E/U is FP-injective if E is FP-injective;
(2) E/U is FP-injective if E is an injective hull of U .

Proof. It is obvious that (1) ⇒ (2).
(2) ⇒ (1). First we assume that E is injective. Then E contains a submodule

E′ which is an injective hull of U . Since E/E′ is injective and E′/U FP-injective,
E/U is FP-injective too. Now we assume that E is FP-injective. Let H be the
injective hull of E. Then E/U is a pure submodule of H/U . We conclude that
E/U is FP-injective. �

Theorem 3.7. Let R be a commutative ring. Assume that each cotorsion R-module
is pure-injective. Then:

(1) for each maximal ideal P , RP is pure-semisimple;
(2) R is coherent.

Proof. (1). For any maximal ideal P , each cotorsion RP -module is pure-injective
over RP . So, we may assume that R is local and P is its maximal ideal. Now we
do as in the beginning of the proof of Theorem 3.3 with the same notations. Thus
E′ = aE is the pure-injective hull of M ′ = aM . It follows that aS is flat over R.
Since P is the sole prime ideal of R by Proposition 3.5, a is nilpotent. Let n > 0
be the smallest integer satisfying a2nS = 0. Since anS is flat, we have S[an] is a
pure submodule of S. For each s ∈ S, ans ∈ S[an] and there exists x ∈ S[an] such
that ans = anx = 0. So, anS = 0. It is easy to see that necessarily n = 1 and
aS = 0. From PS = 0, S flat and R local ring, we deduce that S = 0 if P 6= 0. It
follows that R is Artinian. Hence each R-module is cotorsion. We conclude that
each R-module is pure-injective and R is pure-semisimple.

(2). We shall prove that E/U is FP-injective for any FP-injective module E
and any pure submodule U of E. By Proposition 3.6 we may assume that E is
the injective hull of U . So, E ∼= E(U). By Theorem 1.1 E/U is flat. Then,
for each maximal ideal P , (E/U)P is flat, hence free and injective since RP is
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pure-semisimple. We conclude that E/U is FP-injective and R is coherent by [9,
35.9]. �

Proposition 3.8. Let R be a commutative ring whose prime ideals are maximal.
Let X be the set of all maximal ideals P such that PRP = 0. We denote by A, the
kernel of the naturel map R →

∏
P∈X RP . If R is P-coherent then, A is a pure

submodule of R and X = V (A).

Proof. Since R/A is a subring of a product of fields, R/A is reduced. From the
fact that each prime ideal is maximal we deduce that R/A is von Neumann regular.
Thus R/A is a pure submodule of

∏
P∈X RP which is P-flat because R is P-coherent.

It follows that A is a pure ideal. Since AP = 0 for each P ∈ X , we have X ⊆ V (A).
Let P ∈ V (A). Then AP = 0 because A is pure. It is obvious that J ⊆ A
where J is the Jacobson radical of R. Since J is also the nilradical of R, we have
PRP = JRP = 0. Hence P ∈ X . �

Theorem 3.9. Let R be a commutative ring. The following conditions are equi-
valent:

(1) each cotorsion R-module is pure-injective;
(2) R is P-coherent and each pure-essential extension of R-modules is essential;
(3) R is P-coherent and each RD-essential extension of R-modules is essential;
(4) any R-module M is pure-injective if and only if Ext1R(C,M) = 0 for each

cyclic flat R-module C;
(5) there exists a family E of orthogonal irreducible idempotents of R satisfying

the following conditions:
(a) R/R(1− e) is a pure-semisimple ring but not a field, for each e ∈ E;
(b) R/A is a von Neumann regular ring where A = ⊕e∈ERe.

Moreover, when these conditions hold, the following are satisfied:

(6) PE(M)/M is flat, FP-injective and regular for each R-module M .
(7) each Warfield cotorsion module is RD-injective.

Proof. It is obvious that (4) ⇒ (1). If R satisfies condition (2) or (3) then, by
Theorems 3.3 or 3.4, R is arithmetical. It follows that (2) ⇔ (3).

(1) ⇒ (5). By Theorem 3.7, R is coherent and RP is pure-semisimple for each
maximal ideal P . Let A be the pure ideal of R defined in Proposition 3.8. By
Proposition 1.3 A is generated by its idempotents. Let e = e2 ∈ A. Then R′ =
R/R(1 − e) satisfies (1). Let I = ⊕P∈D(e)E(R/P ), M = I(N), E = ER′(M) and
S = E/M . For each nilpotent element a of R′, we do as in the proof of Theorem
3.7 to show that aS = 0. Since R′ is von Neumann regular modulo its nilradical, S
is regular. Thus, for each P ∈ D(e), SP is flat and it is semisimple by Proposition
2.1. Since PRP 6= 0, it follows that MP = EP for each P ∈ D(e), and M = E.
By [2, Theorem 25.3] R′ is Artinian. So, R′ is a finite product of local rings. We
deduce that e is a sum of orthogonal irreductible idempotents. So,

E = {eP | P ∈ D(A) and D(eP ) = {P}}.

(2) ⇒ (5). Since R is locally pure-semisimple by Theorem 3.3 and coherent we
do as above to define the pure ideal A. Then, by using Proposition 2.5, we show
that each FP-injective R′-module is injective. So, R′ is Noetherian, and Artinian
because each prime ideal is maximal. We end as above.

By Proposition 2.2, (5) ⇒ (4), (2) and (6) and by Proposition 2.3, (5) ⇒ (7). �
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4. Baer’s criterion

The following two propositions are similar to Propositions 2.2 and 2.3 and can
be proven in the same way. They allow us to give non trivial examples of rings for
which any flat-essential (P-flat-essential) extension of left modules is essential.

Proposition 4.1. Let R be a ring. Assume there exists a family E of orthogonal
central idempotents of R satisfying the following conditions:

(a) R/R(1− e) is left perfect for each e ∈ E;
(b) R/A is a von Neumann regular ring where A = ⊕e∈ERe.

Then:

(1) each flat-essential extension of left R-modules is essential;
(2) any left R-module M is cotorsion if and only if Ext1R(C,M) = 0 for each

cyclic flat left R-module C;
(3) E(M)/M is flat, FP-injective and regular for each left R-module M .

We say that a ring R is left strongly perfect if each P-flat left R-module is
projective. Clearly every left strongly perfect ring is perfect, but [1, Proposition 4.8]
shows that there exist Artinian commutative rings which are not strongly perfect.
And [3, Example 3.2] is a strongly perfect ring by [1, Theorem 4.11] and it is
non-Artinian if Λ is not finite.

Proposition 4.2. Let R be a ring. Assume there exists a family E of orthogonal
central idempotents of R satisfying the following conditions:

(a) R/R(1− e) is left strongly perfect for each e ∈ E;
(b) R/A is a von Neumann regular ring where A = ⊕e∈ERe.

Then:

(1) each P-flat-essential extension of left R-modules is essential;
(2) any left R-module M is Warfield cotorsion if and only if Ext1R(C,M) = 0

for each cyclic flat left R-module C;
(3) EW (M)/M is flat, FP-injective and regular for each left R-module M .

Now we end by giving a description of commutative rings satisfying the Baer’s
criterion for (Warfield) cotorsion modules.

Theorem 4.3. Let R be commutative ring. Then the following conditions are
equivalent:

(1) RP is perfect for each maximal ideal P ;
(2) any R-module M is cotorsion if and only if Ext1R(C,M) = 0 for each cyclic

flat R-module C.

Proof. (2) ⇒ (1). Let P be a maximal ideal and M an RP -module. If C is a
nonzero cyclic flatR-module, then CP is free overRP . It follows that Ext

1
R(C,M) ∼=

Ext1RP
(CP ,M) = 0. So, M is cotorsion over R and RP . Since each RP -module is

cotorsion, RP is perfect.
(1) ⇒ (2). Let M be an R-module satisfying Ext1R(C,M) = 0 for any flat cyclic

R-module C. Let F be a free R-module, K a pure submodule of F and α : K → M
a homomorphism. We must prove that α extends to F . We consider the family
F = {(N, β)} where N is a pure submodule of F containing K and β an extension
of α to N . We consider the following order on F : (N, β) ≤ (L, γ) if and only if
N ⊆ L and γ|N = β. It is easy to see that we can apply Zorn Lemma to F . So, let
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(N, β) be a maximal element of F . By way of contradiction suppose that N 6= F .
Let G = F/N . There exists a maximal ideal P such that GP 6= 0. Since RP is
perfect, GP is free over RP . Thus there exists x ∈ F \ N such that its image y
in GP verifies (0 :RP

y) = 0. It follows that (N : x) = 0P (see Proposition 1.3).
Let δ : 0p → M be the homomorphism defined by δ(a) = β(ax) for any a ∈ 0P .
Then δ extends to R. Now, let φ : N +Rx → M be the homomorphism defined by
φ(n+ rx) = β(n) + δ(r) for any n ∈ N and r ∈ R. It is easy to check that φ is well
defined. Let H = N + Rx/N . Then H ∼= RP . So, HP is a direct summand of GP

and if P ′ is another maximal ideal then HP ′ = 0. We successively deduce that H
is a pure submodule of G, F/N +Rx is flat and N +Rx is a pure submodule of F .
This contradicts the maximality of (N, β). Hence N = F and M is cotorsion. �

It is easy to check that each P-flat cyclic left module is flat.

Corollary 4.4. Let R be commutative ring. Then the following conditions are
equivalent:

(1) RP is strongly perfect for each maximal ideal P ;
(2) any R-module M is Warfield cotorsion if and only if Ext1R(C,M) = 0 for

each cyclic flat R-module C.

Proof. Let G be a P-flat R-module. For each maximal ideal P GP is P-flat. Since
RP is strongly perfect, GP is free. Hence G is flat. So, each cotorsion R-module is
Warfield cotorsion. �
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