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COMMUTATIVE RINGS WHOSE COTORSION MODULES ARE

PURE-INJECTIVE

FRANÇOIS COUCHOT

Abstract. Let R be a ring (not necessarily commutative). A left R-module
is said to be cotorsion if Ext1

R
(G,M) = 0 for any flat R-module G. It is well

known that each pure-injective left R-module is cotorsion, but the converse
does not hold: for instance, if R is left perfect but not left pure-semisimple
then each left R-module is cotorsion but there exist non-pure-injective left
modules. The aim of this paper is to describe the class C of commutative
rings R for which each cotorsion R-module is pure-injective. It is easy to see
that C contains the class of von Neumann regular rings and the one of pure-
semisimple rings. We prove that C is strictly contained in the class of locally
pure-semisimple rings. We state that a commutative ring R belongs to C if
and only if R verifies one of the following conditions:
(1) each Warfield cotorsion R-module is RD-injective;
(2) R is coherent and each pure-essential extension of R-modules is essential;
(3) R is coherent and each RD-essential extension of R-modules is essential;
(4) any R-module M is pure-injective if and only if Ext1

R
(R/A,M) = 0 for

each pure ideal A of R (Baer’s criterion).

1. Introduction and preliminaries

The aim of this study is to give a complete description of commutative rings
for which each cotorsion module is pure-injective. In this first section we recall
some definitions and some former results. Then, in section 2, we enunciate and
show some partial results which are available even if the ring is not commutative.
In particular, if R is a ring for which each cyclic flat left R-module is projective,
then every cotorsion left R-module is pure-injective if and only if R is left pure-
semisimple. Section 3 is devoted to the commutative case. We get our main result
(Theorem 3.9) by using localizations and local rings. In the last section we show
that a commutative ringR is locally perfect if and only if any R-moduleM for which
Ext(C,M) = 0 for each cyclic flat module C is cotorsion, and we investigate the
following question: give a characterization of rings R for which each flat-essential
exension of R-modules is essential. When R is commutative and coherent a com-
plete response is given. Throughout this paper other related questions are studied,
where we use the following notions: Warfield cotorsion module, RD-injective mod-
ule, RD-essential extension and so on...

Even in the commutative case some questions are open. For instance we do not
know if there exist non-coherent commutative rings for which each pure-essential
extension of modules is essential. Also, it should be interesting to study strongly
perfect rings which are introduced in the last section.
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2 FRANÇOIS COUCHOT

We shall assume that all rings are associative with identity and all modules are
unitary. Given a ring R, any left module M is said to be P-flat (resp. P-injective)

if TorR1 (R/rR,M) = 0 (resp. Ext1R(R/Rr,M) = 0) for each r ∈ R. We say that R
is left P-coherent if each principal left ideal of R is finitely presented.

A left module M is FP-injective if Ext1R(F,M) = 0 for each finitely presented
left module F .

Any left module M is called cotorsion (resp. Warfield cotorsion) if, for each
flat (resp. P-flat) left module F , Ext1R(F,M) = 0.

A short exact sequence of left modules is pure (resp. RD-pure) if it remains
exact when tensoring it by any right module (resp. module of the form R/rR,
r ∈ R). A left module is pure-injective (resp. RD-injective) if it is injective
relatively to each pure (resp. RD-pure) exact sequence of left modules.

R is said to be left pure-semisimple (resp. RD-semisimple) if each left R-
module is pure-injective (resp. RD-injective). When R is commutative then R is
pure-semisimple if and only if it is RD-semisimple if and only if it is an Artinian
ring whose all ideals are principal ([6, Theorem 4.3]).

An R-module B is a pure-essential extension (resp. RD-essential exten-

sion) of a submodule A if A is a pure (resp. RD) submodule of B and, if for each
submodule K of B, either K ∩ A 6= 0 or (A + K)/K is not a pure (resp. RD)
submodule of B/K. We say that B is a pure-injective hull (resp. RD-injective

hull) of A if B is pure-injective (resp. RD-injective) and a pure-essential (resp.
RD-essential) extension of A.

Each R-module M has a pure-injective hull and an RD-injective hull ([8, Propo-
sition 6]).

A left module B is a flat extension (resp. P-flat extension) of a submodule
A if B/A is flat (resp. P-flat). Moreover, if there are no submodules S of B with
S ∩ A = 0 and B/S flat (resp. P-flat) extension of A, then B is a flat essential

extension (resp. P-flat essential extension) of A. If B is cotorsion (resp.
Warfield cotorsion) and a flat (resp. P-flat) essential extension of a submodule A
then we say that B is a cotorsion (resp. Warfield cotorsion) envelope of A
(by [10, Theorem 3.4.5] these definitions are equivalent to the usual ones).

Each left module M has a cotorsion (resp. Warfield cotorsion) envelope ([4,
Theorem 6] and [10, Theorem 3.4.6]).

For each left module M we denote by E(M) its cotorsion envelope, EW (M) its
Warfield cotorsion envelope, PE(M) its pure-injective hull and RDE(M) its RD-
injective hull.

Each pure(RD)-injective module is (Warfield) cotorsion, but [10, Example p.75]
shows that the converse does not hold.

Theorem 1.1. [10, Theorem 3.5.1] For any ring R the following are equivalent:

(1) for any exact sequence of left modules 0 → P ′ → P → P ′′ → 0 with P ′ and
P ′′ pure-injective, P is also pure-injective;

(2) for any left module M , PE(M)/M is flat;
(3) every cotorsion left module is pure-injective.

Moreover if R is right coherent, then the above are equivalent to the following:

(4) for any exact sequence of left modules 0 → P ′ → P → P ′′ → 0 with P ′ and
P pure-injective, P ′′ is also pure-injective.

Theorem 1.2. For any ring R the following are equivalent:
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(1) for any exact sequence of left modules 0 → P ′ → P → P ′′ → 0 with P ′ and
P ′′ RD-injective, P is also RD-injective;

(2) for any left module M , RDE(M)/M is P-flat;
(3) every Warfield cotorsion left module is RD-injective.

Moreover if R is right P-coherent, then the above are equivalent to the following:

(4) for any exact sequence of left modules 0 → P ′ → P → P ′′ → 0 with P ′ and
P RD-injective, P ′′ is also RD-injective.

The following proposition is well known. For convenience, a proof is given. We
set 0P the kernel of the natural map R → RP where P ∈ Spec R.

Proposition 1.3. Let R be a commutative ring. We assume that each prime ideal
is maximal. Then:

(1) for any closed subset C of Spec R, C = V (A) where A = ∩P∈C0P is a pure
ideal;

(2) for each maximal ideal P RP = R/0P ;
(3) each pure ideal of R is generated by idempotents.

Proof. (1). Let C = V (B) where B = ∩L∈CL. We put A = ∩P∈C0P . Let b ∈ B
and P ∈ C. The image of b, by the natural map R → RP , belongs to the nilradical
of RP . It follows that there exist 0 6= nP ∈ N and sP ∈ R \P such that sP b

nP = 0.
Hence, ∀L ∈ D(sP ) ∩ C, bnP ∈ 0L. A finite family (D(sPj

))1≤j≤m covers C. Let
n = max{nP1

, . . . , nPm
}. Then bn ∈ 0L, ∀L ∈ C, whence bn ∈ A. We deduce that

C = V (A). Now, we have AP = 0 if P ∈ V (A) and AP = RP if P ∈ D(A). Hence
A is a pure ideal.

(2) is a consequence of (1) by taking C = {P}.
(3). We know that Spec R is homeomorphic to Spec R/N where N is the

nilradical of R. Since R/N is von Neumann regular its principal ideals are generated
by idempotents. So, Spec R has a base of clopen subsets (closed and open). Whence
if A is a pure ideal then, for any a ∈ A there exists an idempotent ea such that
D(ea) = D(a) ⊆ D(A). Clearly D(A) = D(Σa∈ARea). Since Σa∈ARea is a pure
ideal then by (1) we conclude that A = Σa∈ARea. �

2. when cotorsion modules are pure-injective: general case

A left module M over a ring R is called regular if all its submodules are pure.

Proposition 2.1. Let R be a ring, J its Jacobson radical. Let M be a left R-
module satisfying the following property: for each submodule N of M and for each
r ∈ R, rM ∩ N = rN (N is an RD-submodule of M). Then R/ann(M) is von
Neumann regular, M is regular, JM = 0 and, if in addition R is semilocal, M is
semisimple.

Proof. Let R′ = R/A where A is the annihilator of M . Then R′ is isomorphic to
a submodule of MM . It is easy to check that rN = N ∩ rMM for each r ∈ R and
any submodule N of MM . Then R′ satisfies this property too as left R-module.
We deduce that R′ is a von Neumann regular ring, and consequently M is regular.
If 0 6= x ∈ M then Rax is an RD-submodule of Rx for each a ∈ R. So, for each
a ∈ J , there exists b ∈ R such that ax = abax. It follows that (1− ab)ax = 0, and
from a ∈ J we successively deduce that (1− ab) is a unit and ax = 0. �
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Proposition 2.2. Let R be a ring. Assume there exists a family E of orthogonal
central idempotents of R satisfying the following conditions:

(1) R/R(1− e) is a left pure-semisimple ring , for each e ∈ E;
(2) R/A is a von Neumann regular ring where A = ⊕e∈ERe.

Then:

(1) each cotorsion left R-module is pure-injective;
(2) each pure-essential extension of left R-modules is essential;
(3) any left R-module M is pure-injective if and only if Ext1R(C,M) for each

cyclic flat left R-module C;
(4) for any left R-module M , PE(M)/M is flat, FP-injective and regular.

Proof. (3) and (1). Let M be a left R-module satisfying Ext1R(R/B,M) = 0 for
each pure left ideal B of R. Since A is a pure ideal then the following sequence is
exact:

0 → HomR(R/A,M) → HomR(R,M) → HomR(A,M) → 0.

Let C be a left ideal of R/A. Since R/A is von Neumann regular, then C is a pure
ideal and its inverse image B by the natural map R → R/A is a pure left ideal
of R. From Ext1R/A(R/B,HomR(R/A,M)) ∼= Ext1R(R/B,M) = 0 we deduce that

HomR(R/A,M) is injective over R/A and R. So, the above sequence splits. On the
other hand HomR(A,M) ∼=

∏
e∈E

eM . Since R/R(1 − e) is left pure-semisimple,
it successively follows that eM is pure-injective for each e ∈ E, HomR(A,M) is
pure-injective and M too.

(2). Let M be a left R-module, N = HomR(R/A,M), E = E(N) and L =
HomR(A,M). As above L is pure-injective. So, E ⊕ L is pure injective. The
inclusion map N → E extends to a homomorphism f : M → E. Let g : M →
L be the canonical map and L′ its image. Then, it is easy to check that the
homomorphism φ : M → E⊕L defined by φ(m) = (f(m), g(m)) for each m ∈ M is
injective. Since R/A is von Neumann regular then E/N is flat. It is easy to see that
AL = AL′. So, L/L′ is also an R/A-module. It follows that coker(φ) is an R/A-
module which is flat over R. Hence φ is a pure monomorphism. Let (x, y) ∈ E⊕L.
First assume that y 6= 0. There exists e ∈ E such that ey 6= 0. So, there exists
z ∈ M such that ey = g(z). It follows that ey = g(ez) and φ(ez) = e(x, y) = (0, ey).
If y = 0 then there exists s ∈ R such that 0 6= sx ∈ N , whence φ(sx) = s(x, 0).
Hence φ is an essential monomorphism.

(4). Since coker(φ) is a module over R/A which is a von Neumann regular
ring and flat as right R-module then coker(φ) is flat, FP-injective and regular as
R-module. �

Proposition 2.3. Let R be a ring. Assume there exists a family E of orthogonal
central idempotents of R satisfying the following conditions:

(1) R/R(1− e) is a left RD-semisimple ring , for each e ∈ E;
(2) R/A is a von Neumann regular ring where A = ⊕e∈ERe.

Then:

(1) each Warfield cotorsion left R-module is RD-injective;
(2) each RD-essential extension of left R-modules is essential;
(3) any left R-module M is RD-injective if and only if Ext1R(C,M) for each

cyclic flat left R-module C.
(4) for any left R-module M , RDE(M)/M is flat, FP-injective and regular.
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Proposition 2.4. Let R be a ring. Assume that each cotorsion left R-module is
pure-injective. Then, for each left module M , every submodule of E(M)/M is flat.
Moreover, for each submodule C of E(M)/M , there exists a pure submodule B of
E(M) containing M such that B/M ∼= C.

Proof. In this case E(M) is also the pure-injective hull of M . By Theorem 1.1,
E(M)/M is flat. Let C be a submodule of E(M)/M , A its inverse image by the
epimorphism E(M) → E(M)/M . The inclusion map M → A → E(A) extends to a
monomorphism φ : E(M) → E(A). Let B be the inverse image of A by φ. Then A
and B are isomorphic submodules of E(M) and B is a pure submodule of E(M). So,
B/M is a pure submodule of E(M)/M , and consequently it is flat. Since φ(x) = x
for each x ∈ M , φ induces an isomorphism between B/M and C. We conclude that
C is flat. �

With a similar proof we get the following.

Proposition 2.5. Let R be a ring. Assume that each Warfield cotorsion left
R-module is RD-injective. Then, for each left module M , every submodule of
EW (M)/M is P-flat. Moreover, for each submodule C of EW (M)/M , there exists
an RD-submodule B of EW (M) containing M such that B/M ∼= C.

Corollary 2.6. Let R be a ring. Assume that each left cotorsion R-module is
pure-injective and each cyclic flat left module is projective. Then R is left pure-
semisimple.

Proof. LetM be a left R-module. By way of contradiction suppose that E(M)/M 6=
0. Let C be a cyclic submodule of E(M)/M . By Proposition 2.4 C is projective and
there exists a pure submodule B of E(M) containing M and such that B/M ∼= C.
Then B = M⊕C′ where C′ is a submodule of A isomorphic to C. Then M∩C′ = 0
and M ∼= B/C′ is a pure submodule of E(M)/C′. This contradicts that E(M) is
a pure-essential extension of M . Hence each left R-module is pure-injective. We
conclude that R is left pure-semisimple. �

Corollary 2.7. Let R be a ring. Assume that each left Warfield cotorsion R-
module is RD-injective and each cyclic flat left module is projective. Then R is left
RD-semisimple.

As in [7] a left R-module M is said to be semi-compact if every finitely solvable
set of congruences x ≡ xα (mod M [Iα]) (where α ∈ Λ, xα ∈ M and Iα is a left
ideal of R for each α ∈ Λ) has a simultaneous solution in M .

Proposition 2.8. Let R be a ring. Assume that each pure-essential extension of
left R-modules is essential. Then each semi-compact left module is pure-injective.

Proof. Let M be a semi-compact left R-module. By way of contradiction assume
there exists x ∈ PE(M) \M . Let A = {a ∈ R | ax ∈ M}. Then A 6= 0 since the
extension M → PE(M) is essential. We consider the following system of equations:
aX = ax, a ∈ A. Since M is a pure submodule then, for each finite subset B of A,
there exists xB ∈ M such that axB = ax for each a ∈ B. By [3, Proposition 1.2]
the semi-compactness of M implies that there exists y ∈ M such that ax = ay for
each a ∈ A. It follows that R(x− y)∩M = 0 which contradicts that M is essential
in PE(M). �
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Proposition 2.9. Let R be a ring. Assume that each pure-essential extension of
left modules is essential. Then, for each FP-injective left R-module M , PE(M)/M
is regular.

Proof. Let C be a submodule of PE(M)/M , A its inverse image by the epimorphism
PE(M) → PE(M)/M . The inclusion map M → A → PE(A) is an essential
extension. Hence PE(A) ∼= PE(M). Then PE(A) is injective and A is FP-injective,
whence A is a pure submodule of PE(M) and C a pure submodule of PE(M)/M .

�

In the same way and by using Proposition 2.1 we get the following.

Proposition 2.10. Let R be a ring. Assume that each RD-essential extension of
left R-modules is essential. Then, for each P-injective left R-module M , RDE(M)/M
is regular.

3. when cotorsion modules are pure-injective: commutative case

Proposition 3.1. Let R be a commutative ring. Assume that each pure(RD)-
essential extension of R-modules is essential. Then for each multiplicative subset
S of R, each pure(RD)-essential extension of S−1R-modules is essential.

Proof. Let A → B be a pure-essential extension of S−1R-modules, and let C be
an R-submodule of B such that A ∩ C = 0 and A is a pure submodule of B/C. It
is easy to check that A ∩ S−1C = 0 and A is a pure submodule of B/S−1C. So,
S−1C = 0 and C = 0. Then A → B is a pure-essential extension of R-modules.
Now it is easy to conclude. �

Recall that a ring R is left perfect if each flat left R-module is projective.

Proposition 3.2. Let R be a commutative ring. Assume that each semi-compact
R-module is pure-injective. Then each prime ideal is maximal.

Proof. Let L be a prime ideal of R, R′ = R/L and M a flat R′-module. Since
R′ is a domain, each flat R′-module is semi-compact over R′ and over R too. It
follows that each flat R′-module is pure-injective. There is a pure-exact sequence
0 → K → F → M → 0 where F is a free R′-module. So, K is flat and pure-
injective over R′. We deduce that the above sequence splits and consequently M is
projective. Hence R′ is a perfect domain, whence R′ is a field and L is maximal. �

Theorem 3.3. Let R be a commutative ring satisfying each pure-essential extension
of R-modules is essential. Then RP is pure-semisimple for any maximal ideal P .

Proof. By Proposition 3.1 we may assume that R is local of maximal ideal P . Let
I = ER(R/P ), M = I(N), E = ER(M) and S = E/M . By Propositions 2.9 and
2.1 S is semisimple. Let 0 6= a ∈ P , A = (0 : a) and Ra = R/A. By Propositions
2.8 and 3.2 P is the sole prime ideal. So, A 6= 0. For any R-module G we put
G′ = {g ∈ G | Ag = 0}. Then I ′ = ERa

(R/P ) = aI, M ′ = I ′(N) = aM , E′ = aE
and E′ is injective over Ra. Since aS = 0 then M ′ = E′. By [2, Theorem 25.3]
Ra is Noetherian, and Artinian since P is the sole prime ideal. Let (Ran)n∈N be
a descending chain of proper ideals of R. We may assume that a0 ∈ P . If we
choose a = a0, then Ra is an Ra-module. So, it is Artinian and consequently R
satisfies the descending condition on principal ideals. We conclude that R is perfect
by [9, 43.9]. It follows that P 2 6= P . By way of contradiction suppose that P/P 2
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is a vector space of dimension ≥ 2 over R/P . Then there is a Noetherian factor
R′ of R modulo a suitable ideal whose maximal ideal is generated by 2 elements.
So, R′ is not pure-semisimple. But, we successively get that each R′-module is
semicompact (because R′ is Noetherian), and pure-injective by Proposition 2.8.
From this contradiction we deduce that P is principal and R pure-semisimple. �

Theorem 3.4. Let R be a commutative ring satisfying each RD-essential extension
of R-modules is essential. Then RP is pure-semisimple for any maximal ideal P .

Proof. By Proposition 3.1 we may assume that R is local of maximal ideal P .
First assume that R is Noetherian. If R′ = R/P 2, then each RD-essential

extension of R′-modules is essential too. If P/P 2 is of dimension > 1 over R/P
then, by [5, Lemma 2.4] applied to A = P , the RD-injective hull of R/P over R′ is
not an essential extension. Hence P is principal. Since ∩n∈NP

n = 0, then it is easy
to show that {Pn | n ∈ N} is the set of principal ideals of R. Hence R is a chain
ring. So, each RD-exact sequence is pure. Consequently R satisfies the assumption
of Theorem 3.3, whence R is pure-semisimple.

Now, assume that R is not Noetherian. Let L be a prime ideal and R′′ = R/L.
Suppose that L 6= P . Then, from the first part of the proof R′′ is not Noetherian.
Let N be a FP-injective R′′-module which is not injective, E = ER′′(N) and T =
E/N . Let a ∈ P \ L. Then E = aE, whence T = aT . But, by Propositions 2.10
and 2.1 T is semisimple, whence aT = 0. From this contradiction we deduce that
L = P . Now, we do as in the proof of Theorem 3.3 to show that R is perfect. So,
P/P 2 is of infinite dimension over R/P . Whence there exists Noetherian factor
rings of R which are not pure-semisimple. This contradicts the beginning of the
proof. Hence R is pure-semisimple. �

Proposition 3.5. Let R be a ring, E a left R-module and U a pure submodule of
E. Then the following conditions are equivalent:

(1) E/U is FP-injective if E is FP-injective;
(2) E/U is FP-injective if E is an injective hull of U .

Proof. It is obvious that (1) ⇒ (2).
(2) ⇒ (1). First we assume that E is injective. Then E contains a submodule

E′ which is an injective hull of U . Since E/E′ is injective and E′/U FP-injective,
then E/U is FP-injective too. Now we assume that E is FP-injective. Let H be
the injective hull of E. Then E/U is a pure submodule of H/U . We conclude that
E/U is FP-injective. �

Theorem 3.6. Let R be a commutative ring. Assume that each cotorsion R-module
is pure-injective. Then:

(1) for each maximal ideal P , RP is pure-semisimple;
(2) R is coherent.

Proof. (1). For any maximal ideal P , each cotorsion RP -module is pure-injective
over RP . So, we conclude by Corollary 2.6

(2). We shall prove that E/U is FP-injective for any FP-injective module E
and any pure submodule U of E. By Proposition 3.5 we may assume that E is
the injective hull of U . So, E ∼= E(U). By Proposition 2.4 E/U is flat. Then,
for each maximal ideal P , (E/U)P is flat, hence free and injective since RP is
pure-semisimple. We conclude that E/U is FP-injective and R is coherent by [9,
35.9]. �
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In a same way we prove the following theorem.

Theorem 3.7. Let R be a commutative ring. Assume that each Warfield cotorsion
R-module is RD-injective. Then, for each maximal ideal P , RP is pure-semisimple,
and R is coherent.

Proposition 3.8. Let R be a commutative ring whose prime ideals are maximal.
Let X be the set of all maximal ideals P such that PRP = 0. We denote by A, the
kernel of the naturel map R →

∏
P∈X RP . If R is P-coherent then, A is a pure

submodule of R and X = V (A).

Proof. Since R/A is a subring of a product of fields, then R/A is reduced. Since
each prime ideal is maximal we deduce that R/A is von Neumann regular. Thus
R/A is a pure submodule of

∏
P∈X RP which is P-flat because R is P-coherent. It

follows that A is a pure ideal. Since AP = 0 for each P ∈ X then X ⊆ V (A). Let
P ∈ V (A). Then AP = 0 since A is pure. It is obvious that J ⊆ A where J is the
Jacobson radical of R. Since J is also the nilradical of R, then PRP = JRP = 0.
Hence P ∈ X . �

Theorem 3.9. Let R be a commutative ring. The following conditions are equi-
valent:

(1) each cotorsion R-module is pure-injective;
(2) each Warfield cotorsion R-module is RD-injective;
(3) R is P-coherent and each pure-essential extension of R-modules is essential;
(4) R is P-coherent and each RD-essential extension of R-modules is essential;
(5) any R-module M is pure-injective if and only if Ext1R(C,M) for each cyclic

flat R-module C;
(6) any R-module M RD-injective if and only if Ext1R(C,M) for each cyclic

flat R-module C;
(7) there exists a family E of orthogonal irreducible idempotents of R satisfying

the following conditions:
(a) R/R(1− e) is a pure-semisimple ring but not a field, for each e ∈ E;
(b) R/A is a von Neumann regular ring where A = ⊕e∈ERe.

Moreover, when these conditions hold, PE(M)/M is flat, FP-injective and regular
for each R-module M , where PE(M) is the pure-injective hull of M .

Proof. It is obvious that (5) ⇒ (1) and (6) ⇒ (2). If R satisfies condition (1), (2),
(3) or (4) then, by Theorems 3.6, 3.7, 3.3 or 3.4, R is arithmetical. It follows that
(1) ⇔ (2) and (4) ⇔ (3).

(1) ⇒ (7). By Theorem 3.6, R is coherent and RP is pure-semisimple for each
maximal ideal P . Let A be the pure ideal of R defined in Proposition 3.8. By
Proposition 1.3 A is generated by its idempotents. Let e = e2 ∈ A. Then R′ =
R/R(1− e) satisfies (1). Since R′ is locally self injective and coherent by Theorem
3.6 then each R′-module is flat if and only if it is FP-injective. Let M be an R′-
module. By Proposition 2.4 each submodule of E(M)/M is flat, FP-injective and
pure. So, E(M)/M is regular. Then, for each P ∈ V (1 − e), (E(M)/M)P is flat
and semisimple by Proposition 2.4. Since PRP 6= 0, it follows that MP = E(M)P
for each P ∈ V (1 − e), and M = E(M). Then R′ is pure-semisimple. So, R′ is a
finite product of local rings. We deduce that e is a sum of orthogonal irreductible
idempotents. So,

E = {eP | P ∈ D(A) and D(eP ) = {P}}.
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(3) ⇒ (7). Since R is locally pure-semisimple by Theorem 3.3 and coherent we
do as above to define the pure ideal A. Then, by using Proposition 2.9, we show
that each FP-injective R′-module is injective. So, R′ is Noetherian, and Artinian
since each prime ideal is maximal. We end as above.

By Proposition 2.2 (7) ⇒ (5) and (3), and by Proposition 2.3 (7) ⇒ (6). �

4. when flat-essential extensions are essential

Proposition 4.1. Let R be a ring. Assume that each flat-essential extension of left
R-modules is essential. Then, for each left module M , every submodule of E(M)/M
is flat. Moreover, for each submodule C of E(M)/M , there exists a pure submodule
B of E(M) containing M such that B/M ∼= C.

Proof. Let C be a submodule of E(M)/M , A its inverse image by the epimorphism
E(M) → E(M)/M and E(A). The inclusion map M → A → E(A) extends to a
monomorphism φ : E(M) → E(A). Let B be the inverse image of A by φ. Then A
and B are isomorphic submodules of E(M) and B is a pure submodule of E(M). So,
B/M is a pure submodule of E(M)/M , and consequently it is flat. Since φ(x) = x
for each x ∈ M , φ induces an isomorphism between B/M and C. We conclude that
C is flat. �

In the same way we show the following.

Proposition 4.2. Let R be a ring. Assume that each P-flat-essential extension
of left R-modules is essential. Then, for each left module M , every submodule of
EW (M)/M is P-flat. Moreover, for each submodule C of EW (M)/M , there exists
an RD-submodule B of EW (M) containing M such that B/M ∼= C.

Corollary 4.3. Let R be a ring. Assume that each flat-essential extension of left
R-modules is essential and each cyclic flat left module is projective. Then R is left
perfect.

Proof. Let M be a left R-module and E(M) its cotorsion envelope. By way of
contradiction suppose that T = E(M)/M 6= 0. Let C be a cyclic submodule of
T . By Proposition 4.1 C is projective and there exists a pure submodule B of
E(M) containing M and such that B/M ∼= C. So, if C1 = B/M then C1 is a pure
submodule of T and T/C1 is flat. Moreover B = M ⊕C′ where C′ is a submodule
of A isomorphic to C. Thus M ∩C′ = 0 and since E(M)/B ∼= T/C1 then E(M)/C′

is a flat extension of M ∼= B/C′. This contradicts that E(M) is a flat-essential
extension of M . Hence each left R-module is cotorsion. We conclude that R is left
perfect. �

We say that a ring R is left strongly perfect if each P-flat left R-module is
projective. Clearly every left strongly perfect ring is perfect, but [1, Proposition 4.8]
shows that there exist Artinian commutative rings which are not strongly perfect.
And [3, Example 3.2] is strongly perfect by [1, Theorem 4.11] and it is non-Artinian
if Λ is not finite.

Corollary 4.4. Let R be a ring. Assume that each P-flat-essential extension of
left R-modules is essential and each cyclic flat left module is projective. Then R is
left strongly perfect.

Proof. We show that each left R-module is Warfield cotorsion. It follows that each
P-flat left module is projective. �
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Theorem 4.5. Let R be a commutative ring. Assume that each flat-essential ex-
tension of R-modules is essential. Then RP is perfect for each maximal ideal P .

Proof. Let P be a maximal ideal. It is easy to check that any flat-essential of RP -
modules is essential. Since each flat cyclic RP -module is free we apply Corollary
4.3 to conclude. �

In a similar way we show the following theorem by using Corollary 4.4.

Theorem 4.6. Let R be a commutative ring. Assume that each P-flat-essential ex-
tension of left R-modules is essential. Then RP is strongly perfect for each maximal
ideal P .

Theorem 4.7. Let R be a ring. Consider the following conditions:

(1) there exists a family E of orthogonal central idempotents of R satisfying the
following conditions:
(a) R/R(1− e) is left perfect for each e ∈ E;
(b) R/A is a von Neumann regular ring where A = ⊕e∈ERe.

(2) each flat-essential extension of left R-modules is essential;
(3) any left R-module M is cotorsion if and only if Ext1R(C,M) for each cyclic

flat left R-module C.

Then:

(i) (1) implies (2) and (3). Moreover, when this conditions holds, E(M)/M is
flat, FP-injective and regular for each left R-module M .

(ii) if R is commutative and P-coherent then (1) and (2) are equivalent, and in
this case R/(1− e)R is Artinian for each e ∈ E.

Proof. (i). We do as in the proof of Proposition 2.2.
(ii). Let A be the pure ideal of R defined in Proposition 3.8. We know that A is

generated by its idempotents. Let e = e2 ∈ A. Then R′ = R/R(1− e) satisfies (2).
Let M be an R′-module. By Proposition 4.1 each submodule of E(M)/M is flat.
By way of contradiction suppose that T = E(M)/M 6= 0. There exists a maximal
ideal P ∈ D(e) such that TP 6= 0. Then each nonzero cyclic submodule of TP is
free. This implies that each principal ideal of RP is free. But PRP 6= 0 and all
its elements are zerodivisor. Hence T = 0 and each R′-module is cotorsion. We
conclude that R′ is perfect. So, it is a finite product of local rings. Since R is
coherent then R′ is Artinian. Now we end as in the proof of (1) ⇒ (6) of Theorem
3.9. �

Theorem 4.8. Let R be a ring. Consider the following conditions:

(1) there exists a family E of orthogonal central idempotents of R satisfying the
following conditions:
(a) R/R(1− e) is left strongly perfect for each e ∈ E;
(b) R/A is a von Neumann regular ring where A = ⊕e∈ERe.

(2) each P-flat-essential extension of left R-modules is essential;
(3) any left R-module M is Warfield cotorsion if and only if Ext1R(C,M) for

each cyclic flat left R-module C.

Then:

(i) (1) implies (2) and (3). Moreover, when this conditions holds, EW (M)/M
is flat, FP-injective and regular for each left R-module M .
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(ii) if R is commutative and coherent then (1) and (2) are equivalent, and in
this case R/(1− e)R is Artinian for each e ∈ E.

Theorem 4.9. Let R be commutative ring. Then the following conditions are
equivalent:

(1) RP is perfect for each maximal ideal P ;
(2) any R-module M is cotorsion if and only if Ext1R(C,M) for each cyclic flat

R-module C.

Proof. (2) ⇒ (1). Let P be a maximal ideal and M an RP -module. If C is a
nonzero cyclic flatR-module, then CP is free overRP . It follows that Ext

1
R(C,M) ∼=

Ext1RP
(CP ,M) = 0. So, M is cotorsion over R and RP . Since each RP -module is

cotorsion then RP is perfect.
(1) ⇒ (2). Let M be an R-module satisfying Ext1R(C,M) = 0 for any flat cyclic

R-module C. Let F be a free R-module, K a pure submodule of F and α : K → M
a homomorphism. We must prove that α extends to F . We consider the family
F = {(N, β)} where N is a pure submodule of F containing K and β an extension
of α to N . We consider the following order on F : (N, β) ≤ (L, γ) if and only if
N ⊆ L and γ|N = β. It is easy to see that we can apply Zorn Lemma to F . So, let
(N, β) be a maximal element of F . By way of contradiction suppose that N 6= F .
Let G = F/N . There exists a maximal ideal P such that GP 6= 0. Since RP is
perfect then GP is free over RP . Thus there exists x ∈ F \N such that its image
y in GP verifies (0 :RP

y) = 0. It follows that (N : x) = 0P (see Proposition 1.3).
Let δ : 0p → M be the homomorphism defined by δ(a) = β(ax) for any a ∈ 0P .
Then δ extends to R. Now, let φ : N +Rx → M be the homomorphism defined by
φ(n+ rx) = β(n) + δ(r) for any n ∈ N and r ∈ R. It is easy to check that φ is well
defined. Let H = N + Rx/N . Then H ∼= RP . So, HP is a direct summand of GP

and if P ′ is another maximal ideal then HP ′ = 0. We successively deduce that H
is a pure submodule of G, F/N +Rx is flat and N +Rx is a pure submodule of F .
This contradicts the maximality of (N, β). Hence N = F and M is cotorsion. �

Corollary 4.10. Let R be commutative ring. Then the following conditions are
equivalent:

(1) RP is strongly perfect for each maximal ideal P ;
(2) any R-module M is Warfield cotorsion if and only if Ext1R(C,M) for each

cyclic flat R-module C.

Proof. Let G be a P-flat R-module. For each maximal ideal P GP is P-flat. Since
RP is strongly perfect then GP is free. Hence G is flat. So, each cotorsion R-module
is Warfield cotorsion. �
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Université de Caen Basse-Normandie, CNRS UMR 6139 LMNO, F-14032 Caen, France

E-mail address: francois.couchot@unicaen.fr


