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A two-phase two-layer model for fluidized granular flows with

dilatancy effects

François Bouchut∗, Enrique D. Fernández-Nieto†,
Anne Mangeney‡§, Gladys Narbona-Reina†

Abstract

We propose a two-phase two-thin-layer model for fluidized debris flows that takes into account
dilatancy effects, based on the closure relation proposed by Roux and Radjai (1998). This
relation implies that the occurrence of dilation or contraction of the granular material depends
on whether the solid volume fraction is respectively higher or lower than a critical value. When
dilation occurs, the fluid is sucked into the granular material, the pore pressure decreases and
the friction force on the granular phase increases. On the contrary, in the case of contraction, the
fluid is expelled from the mixture, the pore pressure increases and the friction force diminishes.
To account for this transfer of fluid into and out of the mixture, a two-layer model is proposed
with a fluid layer on top of the two-phase mixture layer. Mass and momentum conservation are
satisfied for the two phases, and mass and momentum are transferred between the two layers. A
thin-layer approximation is used to derive average equations. Special attention is paid to the drag
friction terms that are responsible for the transfer of momentum between the two phases and for
the appearance of an excess pore pressure with respect to the hydrostatic pressure. We obtain
a depth-averaged model with a dissipative energy balance in accordance with the corresponding
3D initial system.

Keywords: Fluidized granular flows, two-phase, dilatancy, two-layer, depth-averaged model, crit-
ical volume fraction, excess pore pressure

1 Introduction

Gravity driven flows such as debris flows, sub-aerial and submarine landslides play a key role in erosion
processes on the Earth’s surface. They represent one of the major natural hazards threatening life and
property in mountainous, volcanic, seismic and coastal areas, as shown recently by the debris flows
that occurred in Uganda and Brazil in 2010, causing 400 and 350 deaths respectively and displacing
several hundred thousand inhabitants.
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One of the ultimate goals of landslide studies is to produce tools for the prediction of velocity and
runout extent of rapid landslides. Developing a theoretical description and physical understanding
of the associated processes in a natural environment remains an unsolved and extremely challenging
problem in Earth science, mechanics and mathematics. Recent progress in the mathematical, physi-
cal and numerical modelling of gravity driven flows has led to the development and use of numerical
models for investigating geomorphological processes and assessing risks related to such natural haz-
ards. However, severe limitations prevent us from fully understanding the physical processes acting
in natural flows and from predicting landslide dynamics and deposition. One of the important issues
is that existing models do not accurately account for the co-existence and interaction of fluid (water
and gas) and solid granular phases within the flowing mass, which play a key role in natural gravity
related instabilities. Water is almost always present in natural landslides and the frequently resulting
debris flows (mixture of water and grains) are often highly destructive.

The interaction between the fluid and granular phases within a saturated mixture essentially de-
pends on the fluid pressure, also called pore pressure, that determines the effective friction force acting
on the granular medium [17, 12, 13]. A change in the fluid pressure may result from a dilation of
the granular phase, that induces a sucking of the fluid within the mixture and a diminution of the
fluid pressure, thereby increasing the effective friction on the granular phase. On the other hand, a
contraction of the granular phase induces an expulsion of the fluid from the mixture and an increase
of the fluid pressure, thereby decreasing the effective friction. This process is sometimes called “pore
pressure feedback” [13]. Contraction of a grain-fluid mixture may lead to liquefaction of the mixture,
see e.g. [3]. Dilation and contraction occur in particular in response to the shearing of the granular
medium. Indeed, a densely packed granular assembly (high solid volume fraction) must dilate to be
sheared, in order for the grains to have room enough to move one with respect to the other. On the
other hand, a loosely packed assembly contracts in response to shearing [3]. These processes play a
dramatic role in the dynamics of fluidized granular flows, from their initial destabilization to their
final deposition [2, 15, 8, 21, 31].

Taking into account dilatancy effects in numerical models of granular flows is a crucial issue.
However, solving the complete 3D equations of granular mass motion, with sufficient resolution to
describe the real topography, requires prohibitive computational costs. For this reason, it is necessary
to write simplified models. A class of efficient techniques, developed and successfully employed to
reproduce a large range of experimental and geological observations, makes use of a depth-averaged
continuum description, based on the thin-layer approximation (i.e. the thickness of the flowing mass
is assumed to be small compared to its downslope extension) [Savage and Hutter, 1989]. This leads
to the assumption that the velocity normal to the topography is small compared to the downslope
velocity. Taking into account two-phase grain-fluid mixtures and dilatancy in the thin-layer approxi-
mation raises significant mathematical difficulties because of the need for a consistent description of
these effects within this approximation. In particular, contraction-dilation induces a relative motion
of the fluid and solid phases in the direction normal to the topography, that is formally small in the
thin-layer asymptotic expansion. The drag friction force between the fluid and solid phases is however
strong enough to make it important to take this relative motion into account in the asymptotic model
as detailed in this paper.

The solid-fluid mixture models described in the literature are generally based on Jackson’s model
[17] that describes the main interactions between the two phases, such as buoyancy and drag frictional
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forces. The system of four equations of mass and momentum conservation for the two phases has five
unknowns: the solid volume fraction, the solid and fluid pressures and the solid and fluid velocities.
As a result, a scalar closure equation is necessary to complete the model. Several depth-averaged
thin-layer models have been deduced from Jackson’s model (e.g. [29], [27], [26], [16]). Pitman and Le
in [29] followed by Pelanti et al. in [27] replaced the closure relation by an extra boundary condition
for the pressure at the free surface. This leads to an overdetermined problem at the free surface, and to
an underdetermined problem inside the domain. However, given the hydrostatic pressure assumption,
a depth-averaged model can be obtained since the disappearence of the normal variable gives a kind
of equivalence between a boundary condition and a closure relation inside the domain. The lack of a
relevant closure equation leads to a non-dissipative energy balance in the Pitman and Le model, as
well as in its variants. Moreover, these models do not take into account dilatancy effects. See [4] for
more details on the different methods used to tackle this problem and on the validity of the proposed
closure relations.

A crucial point in order to obtain a realistic model is that the energy balance associated with the
model must be physically relevant. A main objective here is to propose a closure equation that gives
such an energy balance. Along this line, in our previous work [4] we proposed a depth-averaged two-
phase debris flow model that gives a dissipative energy balance. In that model, the closure equation
is simply the incompressibility of the solid phase, so that dilatancy is not accounted for. Moreover, in
order to avoid overdetermined boundary conditions, only the sum of the solid and fluid normal stresses
is set to zero at the free surface, instead of both separately. We propose here to close Jackson’s model
by including dilatancy effects, based on the model proposed by Roux and Radjai [32] for dry granular
flows. In this model, the dilation rate is directly related to the volume fraction and is taken to be
equal to γ̇ tanψ, where γ̇ is the shear rate and ψ is the “dilation angle” that depends on the volume
fraction. This description of dilatancy has been used in [26] to develop a thin-layer depth-averaged
two-phase model for immersed granular flows. However, in that model, the authors followed the ideas
of Pitman and Le and imposed too many boundary conditions at the free surface. They therefore had
to drop mass conservation. Furthermore, they made strong assumptions to approximate the velocities
in the direction normal to the slope from the tangential velocities. In their final model, the dilatancy
effect appears through an excess pore pressure term, in addition to the hydrostatic pressure.

Other kinds of debris-flow models are based on the idea of a single-phase mixture model. The
first such model, also deduced from Jackson’s equations, was presented by Iverson in [11]. Other
versions have since been proposed in [14, 8, 16, 9], still based on a single-phase mixture model. As a
result, the relative motion between the solid and fluid phases does not appear explicitly. The mass
and momentum equations for the mixture are coupled to an advection-diffusion equation to describe
the changes in pore pressure. To close the system, they assume that the mixture obeys a Darcy law
and they use a closure relation that takes into account the dilatancy effects. More precisely, George
and Iverson [16] considered a modification of the Roux and Radjai dilatancy law in order to introduce
the variations of the effective stress, already proposed in [14]. In this case the dilation rate is given
by γ̇ tanψ − α∂t(σ − pf ), where α is the compressibility of the mixture, σ the total stress and pf the
fluid pressure. The definition of α is discussed in [2].

The aim of this paper is to establish a depth-averaged two-phase thin-layer model including di-
latancy effects from Jackson’s model with the Roux and Radjai closure. As opposed to previously
cited works, and in order to be consistent with the physical processes described above, we consider an
extra upper fluid layer, that allows the fluid to be expelled or sucked in from the mixture at its upper
boundary. This also allows us to resolve the overdetermination at the boundary, because now there
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are two moving surfaces. This is a key point in our approach. An asymptotic analysis is performed
to derive the depth-averaged system. We show that the effect of dilatancy on the fluid pressure ap-
pears through an extra contribution to the hydrostatic pressure, the so-called excess pore pressure.
It is strongly related to the normal relative motion between the granular and fluid phases. We prove
additionally that the proposed model satisfies a dissipative energy balance equation, as well as the
initial 3D starting system. This is obtained via a compressible interpretation of our model.

The paper is organized as follows. Section 2 describes the 3D starting mixture system together
with closure equation and boundary conditions. The thin-layer model is derived in Section 3, where
the scaling assumptions are specified. In Section 4, we discuss the properties of our thin-layer model
and the differences with other models in the literature. Section 5 presents our conclusions. In the
Appendix, we provide the technical calculations justifying the boundary conditions at the interface.

2 Two-phase mixture model

2.1 Jackson’s model

The starting point of our derivation is the same as in [4], i.e. the 3D model proposed by Jackson [17]
for flows of solid granular materials filled (saturated) with fluid. The two mass conservation equations
for the solid and fluid phases are, respectively,

∂t(ρsϕ) + ∇ · (ρsϕv) = 0, (2.1a)

∂t(ρf(1 − ϕ)) + ∇ · (ρf(1 − ϕ)u) = 0, (2.1b)

and equations of momentum conservation for each phase are

ρsϕ(∂tv + (v · ∇)v) = −∇ · Ts + f0 + ρsϕ g, (2.2a)

ρf (1 − ϕ)(∂tu+ (u · ∇)u) = −∇ · Tfm
− f0 + ρf (1 − ϕ)g. (2.2b)

The velocities are v for the solid phase and u for the fluid phase, while Ts and Tfm
denote the

(symmetric) stress tensors for the solid and the fluid, respectively. Moreover, the constant densities
are denoted by ρs and ρf . Acceleration due to gravity is denoted by g, and f0 represents the average
value of the resultant force exerted by the fluid on a solid particle. The solid volume fraction is ϕ.
The combination of (2.1a) and (2.1b) yields the mass conservation for the mixture

∂t(ρm) + ∇ · (ρmVm) = 0, (2.3)

where

ρm = ρsϕ+ ρf (1 − ϕ) , Vm =
ρsϕv + ρf (1 − ϕ) u

ρsϕ+ ρf (1 − ϕ)
, (2.4)

are the density and velocity of the mixture, respectively. Dividing (2.1a) by ρs, (2.1b) by ρf and
adding the results gives

∇ · (ϕv + (1 − ϕ)u) = 0, (2.5)

that can be written also ∇ · v = ∇ · ((1 − ϕ)(v − u)). Note that this relation does not imply that
∇ · Vm is equal to zero.
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According to Jackson [1] and as in [4], the force f0 is decomposed into the sum of the buoyancy
force fB and all remaining contributions f ,

f0 = fB + f = −ϕ∇pfm
+ f, (2.6)

where pfm
is the fluid pressure in the mixture (pore pressure). The term f combines the drag force,

the lift force and the virtual mass force (see [17] for details). Here, we assume that f can be expressed
simply by the drag force, thus

f = β̃(u− v), (2.7)

β̃ being the drag coefficient given by

β̃ =
(ρs − ρf )ϕg

vT (1 − ϕ)m−1
, (2.8)

where vT is the terminal velocity of an isolated representative solid particle falling in the fluid under
gravity, see [30, 29] for details.

By substituting (2.6) into (2.2a) and (2.2b), we obtain

ρsϕ(∂tv + (v · ∇)v) = −∇ · Ts − ϕ∇pfm
+ f + ρsϕg, (2.9a)

ρf (1 − ϕ)(∂tu+ (u · ∇)u) = −∇ · Tfm
+ ϕ∇pfm

− f + ρf (1 − ϕ)g. (2.9b)

Note that adding (2.9a) and (2.9b) and taking into account (2.1a), (2.1b) yields the conservation of
total momentum

∂t

(
ρsϕv + ρf(1 − ϕ)u

)
+ ∇ ·

(
ρsϕv ⊗ v + ρf(1 − ϕ)u⊗ u+ Ts + Tfm

)

=
(
ρsϕ+ ρf (1 − ϕ)

)
g.

(2.10)

We shall assume rheologies of the form

Ts = ps Id +T̃s, Tfm
= pfm

Id +T̃fm
, (2.11)

where ps and pfm
are the total pressures for the solid and fluid within the mixture, respectively, and

T̃s, T̃fm
need to be defined, according to rheological assumptions. The system of four equations (2.1a),

(2.1b), (2.9a), (2.9b) has five unknowns ϕ, ps, pfm
, u and v. Thus, as exposed in [4], it is not closed,

and this is due to the averaging process used for its deduction (see [17] for details). Therefore, a
closure relation is needed, under the form of an additional scalar equation that should be imposed,
based on the physical processes involved. A possible closure is to impose the incompressibility of the
solid phase, ∇·v = 0, considered in the previous work [4]. But in real granular materials the dilatancy
effects, due to geometrical congestion, may induce changes on the solid dilation rate ∇ · v, even if the
mass of the granular material remains constant. This effect has to be included in the model instead
of incompressibility.

2.2 Closure and energy balance

The energy balance associated to Jackson’s system can be written, as in [4],

∂t

(
ρsϕ

|v|2
2

+ ρf (1 − ϕ)
|u|2
2

− (g ·X)
(
ρsϕ+ ρf (1 − ϕ)

))

+∇ ·
(
ρsϕ

|v|2
2
v + ρf (1 − ϕ)

|u|2
2
u− (g ·X)

(
ρsϕv + ρf (1 − ϕ)u

)

+pfm

(
ϕv + (1 − ϕ)u

)
+ T̃fm

u+ Tsv

)

= Ts : ∇v + T̃fm
: ∇u+ f · (v − u),

(2.12)

5



where X denotes the space position. The friction effects give naturally a dissipative term f ·(v−u) ≤ 0,

and it is also natural to assume that T̃fm
: ∇u ≤ 0. The sign of Ts : ∇v remains however undetermined.

Since by (2.11)

Ts : ∇v = ps∇ · v + T̃s : ∇v, (2.13)

and it is also natural to have T̃s : ∇v ≤ 0, it remains the term ps∇ · v. As mentioned above, the
closure relation that states the incompressibility of the solid phase ∇ · v = 0 gives a consistent energy
balance and the model of [4], but does not take into account dilatancy. Thus we consider the following
closure equation to Jackson’s model, involving the solid dilation rate ∇ · v,

∇ · v = Φ, (2.14)

with Φ a function to be determined, that may depend on the unknowns of the system, as discussed
in the next subsection. This kind of “weakly compressible” closure is considered in low Mach number
flows, see for example [28]. This equation (2.14) together with (2.1a), (2.1b), (2.9a), (2.9b), (and

(2.11) with suitable definitions of T̃s, T̃fm
), gives a closed system. Then in the right-hand side of

(2.12) with the decomposition (2.13), only the first term psΦ is not always nonpositive. This term is
further analyzed in Subsection 2.4.

2.3 Dilatancy in dense granular flows

In the work of Roux & Radjai [32], a model for introducing dilatancy effects into the behaviour of
dry granular media is proposed. This effect is directly related to the changes experimented by the
solid volume fraction. In particular, the rate of volume change is given by γ̇ tanψ, where γ̇ = |Dv| is
the norm of the strain rate Dv = (∇v + ∇vt)/2, and ψ is the so called “dilation angle”. This means
more explicitly that

∂tϕ+ v · ∇ϕ = −ϕ γ̇ tanψ. (2.15)

From the mass equation (2.1a) we have ∂tϕ+ v · ∇ϕ = −ϕ∇ · v, thus we can reformulate (2.15) as a
relation between the solid dilation rate ∇ · v and the dilation angle ψ, as

∇ · v = γ̇ tanψ. (2.16)

The dilation angle ψ is in turn related to the solid volume fraction ϕ, and a linear approximation
can be written ψ = a(ϕ − ϕc), with a > 0, and ϕc the critical-state compacity, that corresponds to
the volume fraction obtained when a steady-state regime is reached. This critical-state compacity
is in general an increasing function of the pressure ps, see [3]. This approach allows to recover the
different behaviours of loose and dense granular media, according to the sign of ϕ−ϕc. Namely, for a
dense packing ϕ > ϕc, one has a positive dilation angle, ψ > 0, that induces dilation of the granular
medium, ∇ · v > 0, while for a loose packing ϕ < ϕc, one has a negative dilation angle, ψ < 0, that
induces contraction of the granular medium, ∇ · v < 0. This is valid as soon as γ̇ > 0, i.e. when a
deformation occurs.

Pailha & Pouliquen deal in [26] with the immersed granular flows system. In that case, the
critical solid volume value ϕc is modified in order to take into account the viscosity of the fluid in the
mixture. Furthermore, they consider the precedent model where a linearization of tanψ is proposed.
In the case when the viscosity of the fluid is neglected, we can write this approximation as follows,

tanψ = K(ϕ− ϕc), (2.17)
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K > 0 being a calibration constant (dilation constant). We adopt this dilation model to write

∇ · v = Kγ̇(ϕ− ϕc). (2.18)

Thus the closure considered in this work for (2.14) is

Φ = Kγ̇(ϕ− ϕc). (2.19)

As exposed by Iverson in [13], [33], there is a coupling between the dilatancy and the pore
pressure, called “pore pressure feedback”. This effect plays an important role in the way a landslide
starts, and then dramatically affects the flow dynamics. The formula (2.18) well reproduces the
contraction-dilation effects (see [3], [26]), which are

• If ϕ > ϕc then the granular medium dilates (∇·v > 0) as soon as there is a deformation (γ̇ > 0).
Consequently,

– the fluid must be sucked into the mixture,

– the pore pressure decreases.

• If ϕ < ϕc then the granular medium contracts (∇ · v < 0) as soon as there is a deformation
(γ̇ > 0). Consequently,

– the fluid must be expelled from the mixture,

– the pore pressure increases.

The type of closure (2.18) entails a modification of the coefficient of the Coulomb friction law that
becomes tan(δ + ψ) instead of tan δ. By linearization, we can write an effective friction coefficient as

tan δeff = tan δ + tanψ. (2.20)

In the thin-layer expansion performed below, we neglect the deviatoric solid stress T̃s inside the
mixture, and only consider the bottom solid friction with the friction coefficient tan δeff .

2.4 Interpretation as a compressible model

We would like here to propose an interpretation of the Roux & Radjai dilatancy relation under the
form (2.18) as a compressible model, that enables to write down a fully dissipative energy equation.

We consider the critical volume fraction ϕc to be an increasing function of the solid pressure,
ϕc = ϕc(ps), bounded by some maximal value ϕmax ∼ 0.6. This function ϕ = ϕc(ps) can be defined by
its inverse p = pc(ϕ) (pc(ϕ) being called the critical pressure), as for example pc(ϕ) = Kϕγ/(ϕmax−ϕ)ι,
for some coefficient K, and some exponents γ, ι. Particular dependencies of pc(ϕ) in ϕ appear for
example in [18], [19]. With further linear approximation K(ϕ−ϕc(ps)) ≃ Kp(pc(ϕ)−ps), the relation
(2.18) could be written then as

∇ · v = Kpγ̇(pc(ϕ) − ps). (2.21)

Classically in thermodynamics, the mechanical internal energy U is related to the pressure p and
volume V by the relation dU = −pdV . Here the specific volume (i.e. volume per mass unit) is
1/(ρsϕ), thus to the critical pressure pc(ϕ) one can associate by this relation a specific internal energy
(i.e. internal energy per mass unit) ec(ϕ). Since d(1/ϕ) = −dϕ/ϕ2, we obtain the differential relation

dec

dϕ
=

pc

ρsϕ2
. (2.22)
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Then writing the mass equation (2.1a) as ∂tϕ+ v · ∇ϕ+ϕ∇ · v = 0, and multiplying it by dec/dϕ, we
get

∂tec + v · ∇ec +
pc

ρsϕ
∇ · v = 0. (2.23)

Multiplying this by ϕ and using again (2.1a) yields

∂t(ϕec) + ∇ · (ϕecv) +
pc

ρs

∇ · v = 0. (2.24)

Adding this times ρs to the energy equation (2.12) gives

∂t

(
ρsϕ

|v|2
2

+ ρf(1 − ϕ)
|u|2
2

− (g ·X)
(
ρsϕ+ ρf(1 − ϕ)

)
+ ρsϕec

)

+∇ ·
(
ρsϕ

|v|2
2
v + ρf(1 − ϕ)

|u|2
2
u− (g ·X)

(
ρsϕv + ρf (1 − ϕ)u

)

+pfm

(
ϕv + (1 − ϕ)u

)
+ T̃fm

u+ Tsv + ρsϕecv

)

= (ps − pc)∇ · v + T̃s : ∇v + T̃fm
: ∇u+ f · (v − u).

(2.25)

Now, according to (2.18) or (2.21), one has (ps − pc)∇ · v ≤ 0, and the energy balance equation
(2.25) has a nonpositive right-hand side. This means that, as required by the laws of physics, the
total mechanical energy of the system is dissipated. In the case of (2.21), one can indeed write this
dilatancy law as

ps = pc(ϕ) − ∇ · v
Kpγ̇

, (2.26)

which appears clearly as a compressible rheological law with bulk viscoplastic term, that can be
compared with (4) in [18].

2.5 Domain and boundary conditions

We assume that the mixture (0 < ϕ < 1) lies between a fixed bottom and an interface, and that
between the interface and an upper free surface, there is only fluid (ϕ ≡ 0), see Figure 1. The
thickness of the mixture layer is denoted by hm, the thickness of the fluid-only layer by hf , and the
fixed bottom is defined by a function b.

The fluid velocity in the top layer is denoted by uf , and in the mixture layer by u, while v denotes
the velocity of the solid phase. For other terms, we will use as general notation the subscript ()s for
the solid phase, ()fm

for the fluid in the mixture and just ()f for the fluid-only layer.
Then the solid equations (2.1a), (2.9a) are set in the mixture domain, while the fluid equations

(2.1b), (2.9b) must hold within both domains. This yields for the fluid-only domain

∇ · uf = 0, (2.27a)

ρf(∂tuf + (uf · ∇)uf) = −∇ · Tf + ρfg, (2.27b)

with the energy equation

∂t

(
ρf

|uf |2
2

− ρf(g ·X)
)

+ ∇ ·
(
ρf

|uf |2
2

uf − ρf(g ·X)uf + Tfuf

)
= T̃f : ∇uf . (2.28)

We can also consider that (2.1a), (2.9a) hold in the upper domain with the convention that there
ϕ = 0 and Ts = 0. The closure equation (2.14) holds in the mixture domain.

The boundary conditions are taken as follows.

8



b

hf

hm

Figure 1: Domain and geometrical parameters. The solid-fluid mixture lies between a fixed bottom
and an upper pure fluid layer. The width hm of the mixture layer and the width hf of the pure fluid
layer evolve with time.

• At the bottom we consider the non penetration conditions

u · n = 0, v · n = 0 at the bottom, (2.29)

where n is the upward space unit normal (i.e. the normal to the topography). This is completed
with friction conditions. At first, a solid Coulomb friction law is applied,

(Tsn)τ = − tan δeff sgn(v)(Tsn) · n at the bottom, (2.30)

where δeff is the effective intergranular Coulomb friction angle from (2.20), sgn(v) = v/|v|, and
the subscript τ denotes the tangential projection, vτ = v − (v · n)n for any vector v. Moreover,
a Navier friction condition for the fluid phase is applied,

(Tfm
n)τ = −kbu at the bottom, (2.31)

for some coefficient kb ≥ 0.

• At the free surface we assume no tension for the fluid

TfNX = 0 at the free surface, (2.32)

together with the kinematic condition

Nt + uf ·NX = 0 at the free surface, (2.33)

where N = (Nt, NX) is a time-space normal to the free surface.

• At the interface, we consider the kinematic condition for the solid phase

Ñt + v · ÑX = 0 at the interface, (2.34)

where we denote by Ñ = (Ñt, ÑX) a time-space upward normal to the interface. Additional
jump relations have to be prescribed. These relations state that the fluxes on both sides of the
interface are related through transfer conditions. These are determined by global conservation
properties, under the form of Rankine-Hugoniot conditions. We must first ensure that the total
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fluid mass is conserved. The Rankine-Hugoniot condition associated to (2.1b), where ϕ vanishes
in the fluid-only region, leads to

Ñt + uf · ÑX = (1 − ϕ∗)(Ñt + u · ÑX) ≡ Vf at the interface, (2.35)

where ϕ∗ is the value of the solid volume fraction at the interface (the limit is taken from the
mixture side). Note that ϕ is discontinuous at the interface. The term Vf defines the fluid
mass that is transferred from the mixture to the fluid-only layer (Vf < 0 means that the fluid
is transferred from the fluid-only region to the mixture region). The equation (2.35) says that
the amount of fluid that is entering in the fluid-only region is the same as the amount of fluid
that leaves the mixture.

The conservation of the total momentum gives (see Appendix),

ρfVf (u− uf) + (Ts + Tfm
)ÑX = TfÑX at the interface. (2.36)

The energy balance through the interface (see Appendix) yields the stress transfer condition

TsÑX =

(
ρf

2

(
(u− uf) ·

ÑX

|ÑX |

)2

+

(
(Tfm

ÑX) · ÑX

|ÑX |2
− pfm

)
ϕ∗

1 − ϕ∗

)
ÑX at the interface.

(2.37)

These conditions are completed by a Navier fluid friction condition

(Tfm
+ Tf

2
ÑX

)
τ

= −ki(uf − u)τ at the interface, (2.38)

where ki ≥ 0 is a friction coefficient. Note that we also have the relation (A.3), deduced from
(2.35).

3 Derivation of the thin-layer depth-averaged model

In this section we derive a depth-integrated thin-layer model from the Jackson model with the closure
stated in Section 2.

The geometrical setting is as follows. We have two layers, the one below being filled with the
mixture of grains and fluid and the one above only with fluid (see Figure 1). The equations of mass
and momentum in the mixture region are given by (2.1a), (2.1b), (2.9a) and (2.9b), closed by the
relation (2.14) with Φ defined by (2.19). The equations for the fluid-only layer are defined by (2.27a),
(2.27b). The stress tensors for the solid and fluid phases in the mixture are given by (2.11). The
boundary conditions are written in the previous subsection, as (2.29)-(2.38).

3.1 Local coordinates

We now write the equations in local coordinates. We use a decomposition of the velocities and the
derivatives in their longitudinal and normal components. We denote by x = (x, y) a vector variable
in a fixed plane inclined at angle θ, x being in the direction of the slope, and by z the variable normal
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to this plane (see Figure 1). The equation of the bottom is thus given by z = b(x), the interface
by z = b(x) + hm(t,x) and the free surface by z = b(x) + hm(t,x) + hf(t,x). The gravity vector is
then g = (−g sin θ, 0,−g cos θ)t (the slope angle θ is indeed negative on Figure 1). The velocities are
written as uf = (ux

f , u
z
f), u

x

f = (ux
f , u

y
f); u = (ux, uz), ux = (ux, uy); v = (vx, vz), vx = (vx, vy) and the

gradient is ∇ = (∇
x
, ∂z) with ∇

x
= (∂x, ∂y). The equations can then be written as follows.

• In the mixture layer b < z < b+ hm:

∂tϕ+ ∇
x
· (ϕvx) + ∂z(ϕv

z) = 0, (3.1a)

∂t(1 − ϕ) + ∇
x
·
(
(1 − ϕ)ux

)
+ ∂z

(
(1 − ϕ)uz

)
= 0, (3.1b)

ρsϕ(∂tv
x + vx · ∇

x
vx + vz∂zv

x) = −∇
x
· T xx

s − ∂zT
xz
s − ϕ∇

x
pfm

+f
x
− ϕρsg sin θ(1, 0)t,

(3.2a)

ρsϕ(∂tv
z + vx · ∇

x
vz + vz∂zv

z) = −∇
x
· T xz

s − ∂zT
zz
s − ϕ∂zpfm

+ fz − ϕρsg cos θ,

(3.2b)

ρf (1 − ϕ)(∂tu
x + ux · ∇

x
ux + uz∂zu

x) = −∇
x
· Tf

xx

m
− ∂zTf

xz
m

+ ϕ∇
x
pfm

−f
x
− (1 − ϕ)ρfg sin θ(1, 0)t,

(3.3a)

ρf (1 − ϕ)(∂tu
z + ux · ∇

x
uz + uz∂zu

z) = −∇
x
· Tf

xz
m

− ∂zTf
zz
m

+ ϕ∂zpfm

−fz − (1 − ϕ)ρfg cos θ,
(3.3b)

∇
x
· vx + ∂zv

z = Φ. (3.4)

• In the fluid-only layer b+ hm < z < b+ hm + hf :

∇
x
· ux

f + ∂zu
z
f = 0, (3.5)

ρf (∂tu
x

f + ux

f · ∇
x
ux

f + uz
f∂zu

x

f ) = −∇
x
· T xx

f − ∂zT
xz
f − ρfg sin θ(1, 0)t, (3.6a)

ρf (∂tu
z
f + ux

f · ∇
x
uz

f + uz
f∂zu

z
f) = −∇

x
· T xz

f − ∂zT
zz
f − ρfg cos θ. (3.6b)

The boundary conditions can be written as follows.

• At the bottom z = b, with n = (−∇
x
b, 1)/

√
1 + |∇

x
b|2:

– Non-penetration condition for each phase

vx · ∇
x
b = vz at z = b, (3.7)

ux · ∇
x
b = uz at z = b. (3.8)

– Coulomb friction law

T xz
s − T xx

s ∇
x
b+ ∇

x
b (Tsn) · n√

1 + |∇
x
b|2

= − tan δeff
vx

√
|vx|2 + (vz)2

(Tsn) · n at z = b, (3.9)

with

(Tsn) · n =
(T xx

s ∇
x
b) · ∇

x
b− 2T xz

s · ∇
x
b+ T zz

s

1 + |∇
x
b|2 . (3.10)
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– Navier friction condition for the fluid phase

Tf
xz
m

− Tf
xx

m
∇

x
b+ ∇

x
b (Tfm

n) · n√
1 + |∇

x
b|2

= −kbu
x at z = b. (3.11)

• At the free surface z = b+ hm + hf , with NX = (−∇
x
(b+ hm + hf), 1), Nt = −∂t(b+ hm + hf):

– Stress free condition

−T xx

f ∇
x
(b+ hm + hf ) + T xz

f = 0 at z = b+ hm + hf , (3.12)

−T xz
f · ∇

x
(b+ hm + hf ) + T zz

f = 0 at z = b+ hm + hf . (3.13)

– Kinematic condition

∂t(hm + hf ) + ux

f · ∇
x
(b+ hm + hf) = uz

f at z = b+ hm + hf . (3.14)

• At the interface z = b+ hm, with ÑX = (−∇
x
(b+ hm), 1), Ñt = −∂t(b+ hm):

– Kinematic condition

∂thm + vx · ∇
x
(b+ hm) = vz at z = b+ hm. (3.15)

– Conservation of fluid mass

∂thm + ux

f · ∇
x
(b+ hm) − uz

f = (1 − ϕ∗)
(
∂thm + ux · ∇

x
(b+ hm) − uz

)
≡ −Vf (3.16)

at z = b+ hm.

– Conservation of total momentum

ρfVf(u
x − ux

f ) − (T xx

s + Tf
xx

m
− T xx

f )∇
x
(b+ hm) + T xz

s + Tf
xz
m

− T xz
f = 0, (3.17)

ρfVf (u
z − uz

f) − (T xz
s + Tf

xz
m

− T xz
f ) · ∇

x
(b+ hm) + T zz

s + Tf
zz
m
− T zz

f = 0, (3.18)

at z = b+ hm.

– Stress transfer

−T xx

s ∇
x
(b+ hm) + T xz

s = −p∗s∇x
(b+ hm) at z = b+ hm, (3.19a)

−T xz
s · ∇

x
(b+ hm) + T zz

s = p∗s at z = b+ hm, (3.19b)

with

p∗s =
ρf

2

1

1 + |∇
x
(b+ hm)|2

(
uz − uz

f − (ux − ux

f ) · ∇
x
(b+ hm)

)2

+
ϕ∗

1 − ϕ∗

((Tf
xx

m
∇

x
(b+ hm)) · ∇

x
(b+ hm) − 2Tf

xz
m

· ∇
x
(b+ hm) + Tf

zz
m

1 + |∇
x
(b+ hm)|2 − pfm

)
.

(3.20)

– Navier fluid friction

Tf
xz
m

+ T xz
f − (Tf

xx

m
+ T xx

f )∇
x
(b+ hm)

+∇
x
(b+ hm)

(
((Tf

xx

m
+ T xx

f )∇
x
(b+ hm)) · ∇

x
(b+ hm)

−2(Tf
xz
m

+ T xz
f ) · ∇

x
(b+ hm) + Tf

zz
m

+ T zz
f

)
/
(
1 + |∇

x
(b+ hm)|2

)

= −2ki

(
ux

f − ux + ∇
x
(b+ hm)

uz
f − uz − (ux

f − ux) · ∇
x
(b+ hm)

1 + |∇
x
(b+ hm)|2

)
at z = b+ hm.

(3.21)
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3.2 Averaged mass equations

In order to get the averaged solid mass equation, we integrate (3.1a) with respect to z in the mixture
layer b < z < b+ hm. Using (3.7) and (3.15) we obtain

∂t

∫ b+hm

b

ϕdz + ∇
x
·
∫ b+hm

b

ϕvxdz = 0. (3.22)

Similarly, the fluid averaged mass equation in the mixture is obtained by integrating (3.1b) for b <
z < b+ hm. According to (3.8) and (3.16) it gives

∂t

∫ b+hm

b

(1 − ϕ)dz + ∇
x
·
∫ b+hm

b

(1 − ϕ)uxdz = −Vf . (3.23)

Finally, the fluid averaged mass equation in the fluid-only layer is obtained by integrating (3.5) for
b+ hm < z < b+ hm + hf together with the conditions (3.14) and (3.16). It yields

∂thf + ∇
x
·
∫ b+hm+hf

b+hm

ux

fdz = Vf . (3.24)

The sum of (3.23) and (3.24) gives indeed the total fluid mass conservation.

3.3 Asymptotic hypothesis

We introduce the characteristic width and length of the domain, H and L respectively, and the aspect
ratio ǫ = H/L, supposed to be small in agreement with the thin-layer framework. Then, we assume
the following asymptotic scales in terms of ǫ,

hm ∼ ǫ, hf ∼ ǫ, ∇
x
b = O(ǫ), Ts = O(ǫ), Tfm

= O(ǫ), Tf = O(ǫ),
vx = O(1), ux = O(1), ux

f = O(1), ϕ = O(1), Φ = O(1),
kb = O(ǫ), ki = O(ǫ).

(3.25)

These orders of magnitude have indeed to be expressed in the natural units of each quantity. Taking
L as typical length unit, τ =

√
L/g as typical time unit, all these natural units can be expressed in

terms of L, τ , and ρs (or ρf , that is assumed of the same order of magnitude as ρs). We assume that
the unknowns vary at the scales L in the downslope direction, ǫL in the normal direction, and τ in
time, which means formally that ∇

x
= O(1), ∂z = O(ǫ−1), ∂t = O(1).

These scaling assumptions deserve some comments. First, the scaling in the downslope direction
means that we are describing the observable phenomenon at the typical scale L where the collective
phenomenon take place, this scale being much larger than the size of the grains. Second, the scaling
in the normal direction means that there could be normal variations at the scale of the layer. Third,
the time assumption means that we are describing transient flows typical in avalanche dynamics,
that occur for example when an initial mass at rest is entrained by gravity. The time scale at which
gravity comes into play is exactly τ . In particular, this scaling does not describe well-established
almost steady flows for which gravity balances viscoplastic effects.

Then, (3.24) implies that Vf = O(ǫ). As in [5, 6] we shall assume that the tangential velocities
and the solid volume fraction do not depend on z up to errors in O(ǫ2),

vx = vx(t,x) + O(ǫ2), (3.26)

ux = ux(t,x) + O(ǫ2), (3.27)

ux

f = ux

f (t,x) + O(ǫ2), (3.28)

ϕ = ϕ̄(t,x) + O(ǫ2). (3.29)
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Then, from (3.4) and the boundary condition (3.7) we get that vz = O(ǫ). Similarly, from (3.1b) and
(3.8), we get (1 − ϕ)uz = O(ǫ), thus uz = O(ǫ). Finally, from (3.5) and (3.16) we obtain uz

f = O(ǫ).
We assume also for the closure function (2.19) an expansion as

Φ = Φ̄(t,x) + O(ǫ2), (3.30)

with
Φ̄ = K ¯̇γ(ϕ̄− ϕ̄c). (3.31)

We adopt this approximation in order to make the derivation possible, even if it looks not appropriate
because of the dependency on the pressure of ϕc, and of the nonlinear coupling of γ̇. Without (3.30),
one should analyze the dependency in z of ϕ and Φ, as done in [22] in the dry case. The values for ¯̇γ
and ϕ̄c are discussed in Subsection 4.6. Then using the closure equation (3.4), the equation (3.1a) for
ϕ gives

∂tϕ̄+ vx · ∇
x
ϕ̄ = −ϕ̄Φ̄ + O(ǫ2). (3.32)

About the stress tensors Tk (k = s, fm, f), they are decomposed as

Tk = pk Id +T̃k, (3.33)

and suitable rheological assumptions should be made to define T̃k. A general approach has been
proposed in [7] to deal with velocity profiles in the thin-layer asymptotics and in the case of Newtonian
or non-Newtonian rheologies. Here, as in [6], since we aim to represent only depth-average effects,
we prefer to simplify the rheologies and replace the effect of the stress tensors inside the domain
by boundary layers due to the friction conditions, namely (3.9), (3.11), (3.21), and also due to the
momentum conservation (3.17), while we neglect viscous effects. Thus we shall assume that the

stresses T̃k are O(ǫ2) far from the boundaries z = b, b + hm and can just be nonzero close to these
boundaries. Indeed, because of the particular form of (3.9), (3.11), (3.21), (3.17), we assume that

T̃ xz
s , T̃ xz

fm
, T̃ xz

f can be O(ǫ) close to the boundaries z = b, b+ hm,
but are O(ǫ2) far from these boundaries,

(3.34)

while the other components satisfy

T̃ xx

k = T̃ zz
k = O(ǫ2) everywhere. (3.35)

Regarding the drag term defined in (2.7), we have according to (2.8)

β̃ = β̄(t,x)
(
1 + O(ǫ2)

)
, (3.36)

with

β̄ =
(ρs − ρf )ϕ̄g

vT (1 − ϕ̄)m−1
. (3.37)

We shall consider two possible sets of assumptions.

(I) The drag term is quite strong, that is
β̄ ∼ ǫ−1. (3.38)

Then since the drag force β̃(u−v) has to balance gravity terms, it necessarily remains bounded.
This implies that after an eventual initial layer (i.e. a short time interval during which the initial
value of ux − vx is damped), one has

ux − vx = O(ǫ). (3.39)
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(II) The drag term is moderate, that is
β̄ = O(1). (3.40)

In this case one has just ux − vx = O(1), according to (3.25).

Note that in both cases one has β̄(ux− vx) = O(1). The relevance of the assumptions (3.38) or (3.40)
can be evaluated as follows. According to (2.9a), the effective drag friction coefficient for the solid
phase is β̃/ρsϕ. The assumption (3.38) or (3.40) has to be evaluated in the corresponding unit, which
means that we must evaluate the dimensionless number β̄τ/ρsϕ̄, with τ =

√
L/g the reference time

unit (see above). We compute using (3.37)

β̄τ

ρsϕ̄
=

(1 − ρf/ρs)gτ

vT (1 − ϕ̄)m−1
=

(1 − ρf/ρs)

(1 − ϕ̄)m−1

L

τvT

. (3.41)

The terminal velocity vT can be expressed according to [25] as

vT =
ρs − ρf

ρf

gd2

18νf

, (3.42)

where νf is the kinematic viscosity of the fluid, and d is the diameter of the solid grains. This leads
to another expression of (3.41) as

β̄τ

ρsϕ̄
=

ρf/ρs

(1 − ϕ̄)m−1

18νfτ

d2
, (3.43)

which is proportional to
√
L/d2. We can consider the values g = 9.81m/s2, ρf = 1000kg/m3 for water,

ρs = 2500kg/m3, νf = 10−6m2/s, m = 1. In the typical laboratory scale experimental context, one has
d = 5 × 10−4m, which gives vT = 0.2m/s, and L ≈ 0.2m, which gives a slightly strong dimensionless
drag coefficient β̄τ/ρsϕ̄ ≈ 4.1. For natural landslides or large scale USGS debris flows [15], one can
take d = 10−2m, which gives vT = 82m/s, and L ≈ 20m, which gives a small dimensionless drag
coefficient β̄τ/ρsϕ̄ ≈ 0.1. We conclude that the assumption (3.38) is more valid for small grains in
an experimental context, while (3.40) is more valid in the natural context. However, (3.38) could be
valid for a very viscous fluid, according to (3.43). This assumption (3.38) is also useful in order to
focus our discussion on the effect of drag.

3.4 Averaged momentum equations

In order to get the averaged momentum equations, we have first to get expressions for the pressures.
For the fluid-only layer we integrate the normal momentum equation (3.6b) with respect to z and use
(3.13), (3.35) to get for b+ hm < z < b+ hm + hf

pf = T zz
f + O(ǫ2) = ρfg cos θ(b+ hm + hf − z) + O(ǫ2). (3.44)

In the mixture, the normal fluid momentum equation (3.3b) gives with (3.35)

∂zpfm
= −ρfg cos θ − β̄

1 − ϕ̄
(uz − vz) + O(ǫ). (3.45)

Integrating with respect to z, we obtain for b < z < b+ hm

pfm
= pfm |b+hm

+ ρfg cos θ(b+ hm − z) +
β̄

1 − ϕ̄

∫ b+hm

z

(uz − vz)(z′)dz′ + O(ǫ2), (3.46)
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where the notation |b+ hm means that the quantity is evaluated at z = b+ hm. From (3.18), we have
pfm |b+hm

= pf |b+hm
− ps|b+hm

+O(ǫ2). Also from (3.19b) we have ps|b+hm
= p∗s +O(ǫ2), with according

to (3.20), p∗s = O(ǫ2). Thus

p∗s = O(ǫ2), ps|b+hm
= O(ǫ2), pfm |b+hm

= pf |b+hm
+ O(ǫ2). (3.47)

Then from (3.44) we obtain the pressure for the fluid in the mixture at the interface,

pfm |b+hm
= ρfg cos θhf + O(ǫ2). (3.48)

Finally with (3.46) we deduce the fluid pressure for the mixture layer,

pfm
= ρfg cos θ(b+ hm + hf − z) + pe

fm
+ O(ǫ2), (3.49)

where

pe
fm

≡ β̄

1 − ϕ̄

∫ b+hm

z

(uz − vz)(z′)dz′ (3.50)

is the excess pore pressure. In the expression (3.49) of the fluid pressure we can see that there is an
extra contribution pe

fm
to the commonly found hydrostatic pressure (3.44). A similar contribution to

the hydrostatic pressure of the fluid phase is found in [26]. This excess pore pressure term is induced
by the normal displacement produced by the dilation-compaction of the granular material immersed
into the fluid. It is negative if the granular material goes up with respect to the fluid (vz > uz), and
positive in the converse case. It vanishes at z = b+ hm. Then, the solid normal momentum equation
(3.2b) gives

∂zps = −ϕ̄∂zpfm
− ϕ̄ρsg cos θ + β̄(uz − vz) + O(ǫ). (3.51)

Integrating with respect to z gives the expression of the solid pressure,

ps = ps|b+hm
− ϕ̄(pfm

− pfm |b+hm
) + ϕ̄ρsg cos θ(b+ hm − z) − β̄

∫ b+hm

z

(uz − vz)(z′)dz′ +O(ǫ2). (3.52)

Using (3.47), (3.48), (3.49) and the notation (3.50), we finally obtain

ps = ϕ̄(ρs − ρf)g cos θ(b+ hm − z) − pe
fm

+ O(ǫ2). (3.53)

Let us now focus on the tangential components of momentum equations. For the fluid-only layer
(3.6a), taking into account (3.44), we have

ρf (∂tux

f + ux

f · ∇
x
ux

f ) = −ρfg cos θ∇
x
(b+ hm + hf ) − ∂zT

xz
f − ρfg sin θ(1, 0)t + O(ǫ2). (3.54)

Next we write the mixture tangential fluid momentum equation (3.3a), using (3.49),

ρf (1 − ϕ̄)
(
∂tux + ux · ∇

x
ux

)
= −(1 − ϕ̄)ρfg cos θ∇

x
(b+ hm + hf ) − (1 − ϕ̄)∇

x
pe

fm

− ∂zTf
xz
m

− β̄(ux − vx) − (1 − ϕ̄)ρfg sin θ(1, 0)t + O(ǫ2).
(3.55)

Similarly, the tangential solid momentum equation (3.2a) gives with (3.53)

ρsϕ̄(∂tvx + vx · ∇
x
vx) = −(ρs − ρf )g cos θ∇

x

(
ϕ̄(b+ hm − z)

)
+ (1 − ϕ̄)∇

x
pe

fm

− ϕ̄ρfg cos θ∇
x
(b+ hm + hf) − ∂zT

xz
s

+ β̄(ux − vx) − ϕ̄ρsg sin θ(1, 0)t + O(ǫ2).

(3.56)
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We are going now to average (3.54) over the fluid layer, and (3.55), (3.56) over the mixture layer, so
that the effects of the rheology are only taken into account by the boundary values of T xz

f , Tf
xz
m

, T xz
s .

According to (3.33), (3.35), the equation (3.13) gives pf = O(ǫ2) at the free surface, and then (3.12)
yields

T xz
f = O(ǫ3) at z = b+ hm + hf . (3.57)

Next, using (3.47), the equation (3.19a) gives T xz
s = O(ǫ3) at the interface, while (3.17) gives T xz

f −
Tf

xz
m

= ρfVf(u
x − ux

f ) + O(ǫ3) at the interface. But (3.21) gives T xz
f + Tf

xz
m

= −2ki(u
x

f − ux) + O(ǫ3)
at the interface. We conclude that

T xz
s = O(ǫ3) at z = b+ hm,

T xz
f = −(ki +

1

2
ρfVf )(u

x

f − ux) + O(ǫ3) at z = b+ hm,

Tf
xz
m

= −(ki −
1

2
ρfVf)(u

x

f − ux) + O(ǫ3) at z = b+ hm.

(3.58)

Finally, the conditions (3.9), (3.11) at the bottom give

T xz
s = − tan δeff

vx

|vx|
(
T zz

s − 2T xz
s · ∇

x
b
)

+ O(ǫ3) at z = b,

Tf
xz
m

= −kbu
x + O(ǫ3) at z = b.

(3.59)

Now, to go further, one would need an information on T zz
s − ps up to O(ǫ3) error terms, i.e. on the

rheology, and an expansion of ps up to O(ǫ3), that we do not have in (3.53). This should lead to
complementary terms in the expression of ps|b, as for example the term proportional to the curvature
of the bottom and quadratic in vx as in [6].

We prefer here to avoid further expansions, and to assume as in [6] that the solid friction is small,

tan δeff = O(ǫ), (3.60)

even if this assumption is not satisfactory. We can then drop the term T xz
s ·∇

x
b in (3.59), and replace

T zz
s by ps without lowering the order of accuracy. Then, when averaging the mixture momentum

equations (3.55), (3.56), one comes up with the average excess pore pressure, that we can express
with (3.50) as

pe
fm

≡ 1

hm

∫ b+hm

b

pe
fm

(z)dz =
β̄

1 − ϕ̄

∫ b+hm

b

z′ − b

hm

(uz − vz)(z′)dz′. (3.61)

Then one computes
∫ b+hm

b

∇
x
pe

fm
dz = ∇

x

∫ b+hm

b

pe
fm
dz − (pe

fm
)|b+hm

∇
x
(b+ hm) + (pe

fm
)|b∇x

b. (3.62)

Since (pe
fm

)|b+hm
= 0, we deduce the expression of the average excess pore pressure force,

∇
x
pe

fm
≡ 1

hm

∫ b+hm

b

∇
x
pe

fm
dz =

1

hm

(
∇

x
(hmpe

fm
) + (pe

fm
)|b∇x

b
)
. (3.63)

We have also to average in (3.56) the term ∇
x

(
ϕ̄(b+ hm − z)

)
, which gives

1

hm

∫ b+hm

b

∇
x

(
ϕ̄(b+ hm − z)

)
dz

=
1

hm

∫ b+hm

b

(
ϕ̄∇

x
(b+ hm) + (b+ hm − z)∇

x
ϕ̄

)
dz

= ϕ̄∇
x
(b+ hm) +

hm

2
∇

x
ϕ̄.

(3.64)
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Therefore, averaging (3.54) over the fluid layer and using (3.57), (3.58), we obtain the momentum
equation for the fluid-only layer

ρf (∂tux

f + ux

f · ∇
x
ux

f ) = −ρfg cos θ∇
x
(b+ hm + hf ) −

1

hf

(1
2
ρfVf + ki

)
(ux

f − ux)

−ρfg sin θ(1, 0)t + O(ǫ2).
(3.65)

For the fluid phase in the mixture, averaging (3.55) and using (3.58), (3.59), we obtain

ρf (1 − ϕ̄)
(
∂tux + ux · ∇

x
ux

)
= −(1 − ϕ̄)ρfg cos θ∇

x
(b+ hm + hf ) − (1 − ϕ̄)∇

x
pe

fm

− 1

hm

((1
2
ρfVf − ki

)
(ux

f − ux) + kbux

)

− β̄(ux − vx) − (1 − ϕ̄)ρfg sin θ(1, 0)t + O(ǫ2).

(3.66)

For the solid phase, averaging (3.56) with again (3.58), (3.59), and (3.64), we get

ρsϕ̄(∂tvx + vx · ∇
x
vx) = −ϕ̄g cos θ

(
ρs∇x

(
b+ hm) + ρf∇x

hf

)
− (ρs − ρf )g cos θ

hm

2
∇

x
ϕ̄

+ (1 − ϕ̄)∇
x
pe

fm
− sgn(vx) tan δeff

ps|b

hm

+ β̄(ux − vx) − ϕ̄ρsg sin θ(1, 0)t + O(ǫ2),

(3.67)

where according to (3.53), the bottom value of the solid pressure is given by

ps|b = ϕ̄(ρs − ρf )g cos θhm − (pe
fm

)|b + O(ǫ2), (3.68)

and by (3.50),

(pe
fm

)|b =
β̄

1 − ϕ̄

∫ b+hm

b

(uz − vz)(z′)dz′, (3.69)

while ∇
x
pe

fm
is given by (3.63).

3.5 Evaluation of the excess pore pressure

The excess pore pressure pe
fm

is involved in (3.66), (3.67) and represents physically important effects.
Thus it is necessary to derive an expansion of pe

fm
up to O(ǫ2) error terms. Recalling the definition

(3.50) of pe
fm

, we have thus to evaluate uz − vz up to O(ǫ2) errors. We use equations (3.4) and (3.7)
to get the solid normal velocity,

vz = vx · ∇
x
b+ (z − b)(Φ̄ −∇

x
· vx) + O(ǫ3). (3.70)

Next, adding the mass equations in the mixture (3.1a), (3.1b), we find

∇
x
· (ϕvx + (1 − ϕ)ux) + ∂z(ϕv

z + (1 − ϕ)uz) = 0, (3.71)

and using (3.7) and (3.8), we get

ϕvz + (1 − ϕ)uz = (ϕ̄vx + (1 − ϕ̄)ux) · ∇
x
b− (z − b)∇

x
· (ϕ̄vx + (1 − ϕ̄)ux) + O(ǫ3). (3.72)

Then, subtracting (3.70) to (3.72) yields

uz − vz = (ux − vx) · ∇
x
b− z − b

1 − ϕ̄

(
Φ̄ + ∇

x
·
(
(1 − ϕ̄)(ux − vx)

))
+ O(ǫ3). (3.73)
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We can then expand the bottom value (pe
fm

)|b from (3.69),

(pe
fm

)|b =
β̄

1 − ϕ̄

(
hm(ux − vx) · ∇

x
b− h2

m

2(1 − ϕ̄)

(
Φ̄ + ∇

x
·
(
(1 − ϕ̄)(ux − vx)

)))
+ O(ǫ3). (3.74)

Similarly, we get from (3.61)

pe
fm

=
β̄

1 − ϕ̄

(
hm

2
(ux − vx) · ∇

x
b− h2

m

3(1 − ϕ̄)

(
Φ̄ + ∇

x
·
(
(1 − ϕ̄)(ux − vx)

)))
+ O(ǫ3). (3.75)

Finally, taking into account (3.39) for case (I), we obtain

(pe
fm

)|b = − β̄

(1 − ϕ̄)2

h2
m

2
Φ̄ + O(ǫ2), pe

fm
= − β̄

(1 − ϕ̄)2

h2
m

3
Φ̄ + O(ǫ2) for case (I), (3.76)

while (3.74) and (3.75) have to be taken for case (II), for which we keep the terms of order ǫ2 and the
errors are indeed O(ǫ4).

We observe on (3.73) and (3.76) that at leading order, as explained in the introduction, the relative
velocity uz − vz and the excess pore pressure pe

fm
have sign opposite to Φ̄.

4 The two-phase two-layer model

In the previous section we have established a complete set of equations for our two-phase two-layer
model. In this section we give the main properties of this system.

4.1 System and first properties

The system of equations derived in Section 3 has three scalar unknowns ϕ̄, hm, hf , and three vector
unknowns vx, ux, ux

f . Dropping the error terms, it can be written as follows. The mass conservation
equations follow from (3.22)-(3.24) by dropping O(ǫ3) terms,

∂t(ϕ̄hm) + ∇
x
· (ϕ̄hmvx) = 0, (4.1)

∂t

(
(1 − ϕ̄)hm

)
+ ∇

x
·
(
(1 − ϕ̄)hmux

)
= −Vf , (4.2)

∂thf + ∇
x
· (hfu

x

f ) = Vf . (4.3)

We can eliminate the fluid mass exchange term Vf by writing the fluid total mass conservation. Adding
the two last equations yields

∂t

(
(1 − ϕ̄)hm + hf

)
+ ∇

x
·
(
(1 − ϕ̄)hmux + hfux

f

)
= 0. (4.4)

Adding (4.1) we deduce also whole system volume conservation as

∂t(hm + hf ) + ∇
x
·
(
(1 − ϕ̄)hmux + ϕ̄hmvx + hfux

f

)
= 0. (4.5)

The evolution equation (3.32) for ϕ̄ is

∂tϕ̄+ vx · ∇
x
ϕ̄ = −ϕ̄Φ̄. (4.6)
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Multiplying it by hm and subtracting the result to (4.1), it yields

∂thm + ∇
x
· (hmvx) = hmΦ̄. (4.7)

Finally, combining it with (4.5) gives

∂thf + ∇
x
·
(
(1 − ϕ̄)hm(ux − vx) + hfux

f

)
= −hmΦ̄. (4.8)

Thus, regarding scalar equations we have to keep a set of three independent equations for the three
independent unknowns ϕ̄, hm, hf . This can be either (4.1), (4.4), (4.6), or (4.1), (4.4), (4.8), or (4.6),
(4.7), (4.8), or (4.1), (4.7), (4.8). This has to be completed by (4.2) or (4.3) to define Vf , that can in
fact be expressed without time derivative, since subtracting (4.8) to (4.3) yields

Vf = −hmΦ̄ −∇
x
·
(
(1 − ϕ̄)hm(ux − vx)

)
. (4.9)

The momentum equations are given by (3.65), (3.66), and (3.67). Thus the model is reduced to
the following set of equations:

∂t(ϕ̄hm) + ∇
x
· (ϕ̄hmvx) = 0, (4.10a)

ρsϕ̄(∂tvx + vx · ∇
x
vx) = −ϕ̄g cos θ

(
ρs∇x

(b+ hm) + ρf∇x
hf

)

−(ρs − ρf )g cos θ
hm

2
∇

x
ϕ̄+ (1 − ϕ̄)∇

x
pe

fm

− sgn(vx) tan δeff

(
ϕ̄(ρs − ρf )g cos θhm − (pe

fm
)|b
)
+

hm

+β̄(ux − vx) − ϕ̄ρsg sin θ(1, 0)t, (4.10b)

∂t

(
(1 − ϕ̄)hm

)
+ ∇

x
·
(
(1 − ϕ̄)hmux

)
= −Vf , (4.11a)

ρf (1 − ϕ̄)
(
∂tux + ux · ∇

x
ux

)
= −(1 − ϕ̄)ρfg cos θ∇

x
(b+ hm + hf)

−(1 − ϕ̄)∇
x
pe

fm

− 1

hm

((1
2
ρfVf − ki

)
(ux

f − ux) + kbux

)

−β̄(ux − vx) − (1 − ϕ̄)ρfg sin θ(1, 0)t, (4.11b)

∂thf + ∇
x
· (hfu

x

f ) = Vf , (4.12a)

ρf (∂tux

f + ux

f · ∇
x
ux

f ) = −ρfg cos θ∇
x
(b+ hm + hf)

− 1

hf

(1
2
ρfVf + ki

)
(ux

f − ux) − ρfg sin θ(1, 0)t, (4.12b)

∂tϕ̄+ vx · ∇
x
ϕ̄ = −ϕ̄Φ̄, (4.13)

where we used (3.68) for the value of ps|b, the average ∇
x
pe

fm
is defined by (3.63), and according to

(3.76) and (3.74), (3.75),

(pe
fm

)|b = − β̄

(1 − ϕ̄)2

h2
m

2
Φ̄, pe

fm
= − β̄

(1 − ϕ̄)2

h2
m

3
Φ̄ for case (I), (4.14)
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(pe
fm

)|b = − β̄

1 − ϕ̄

(
h2

m

2

Φ̄ + ∇
x
·
(
(1 − ϕ̄)(ux − vx)

)

1 − ϕ̄
− hm(ux − vx) · ∇

x
b

)
,

pe
fm

= − β̄

1 − ϕ̄

(
h2

m

3

Φ̄ + ∇
x
·
(
(1 − ϕ̄)(ux − vx)

)

1 − ϕ̄
− hm

2
(ux − vx) · ∇

x
b

)





for case (II). (4.15)

We put a positive part (we denote the positive part of a number x by x+ ≡ max(0, x)) in the bottom
solid friction term in (4.10b) because otherwise we could have a negative value for ps|b. The coefficient

β̄ is defined in (3.37), and the closure function Φ̄ is defined in (3.31).
We observe that writing the linear combination ρsvx×(4.10a)+hm×(4.10b) +ρfux×(4.11a)+hm×(4.11b)

+ρfux

f×(4.12a)+hf×(4.12b) we obtain the total momentum conservation

∂t

(
ρsϕ̄hmvx + ρf(1 − ϕ̄)hmux + ρfhfux

f

)
+ ∇

x
·
(
ρsϕ̄hmvx ⊗ vx

+ ρf (1 − ϕ̄)hmux ⊗ ux + ρfhfux

f ⊗ ux

f

)
+ g cos θ∇

x

(
(ρs − ρf)ϕ̄

h2
m

2
+ ρf

(hm + hf)
2

2

)

= − sgn(vx) tan δeff
(
ϕ̄(ρs − ρf)g cos θhm − (pe

fm
)|b
)
+
− kbux

−
(
ρsϕ̄hm + ρf ((1 − ϕ̄)hm + hf )

)(
g cos θ∇

x
b+ g sin θ(1, 0)t

)
.

(4.16)

The system (4.10)-(4.13) has the following other properties. It is a quasilinear system in case (I),
while in case (II) it has an extra second-order term involving ∇

x
·
(
(1− ϕ̄)(ux − vx)

)
due to the term

∇
x
(hmpe

fm
) in (3.63), and also a nonlinearity in terms of ∇

x
·
(
(1 − ϕ̄)(ux − vx)

)
in the bottom solid

friction term. Next, solid and fluid masses conserved, according to (4.10a) and (4.11a)+(4.12a). The
width of the mixture hm remains nonnegative because of (4.10a). The solid volume fraction ϕ̄ remains
between 0 and 1 because of (4.6) and (3.31), indeed the value ϕ̄c is an attractive value for ϕ̄. However,
there is no reason for the width of the fluid-only layer hf to remain nonnegative, and this is due to
the fact that the fluid could be fully sucked into the granular material. Therefore, our model is valid
as long as hf remains nonnegative. Otherwise, one should write down equations that include the case
of a mixture layer topped by a dry granular layer, what we have not done here. The system has the
rest solution characterized by vx = ux = ux

f = 0, Φ̄ = 0, b + b̃ + hm = cst, hf = cst, ϕ̄ = cst, with

b̃ ≡ x tan θ.

4.2 Comparison with other debris flows models

In this subsection we would like to explain the main differences between our model and other debris
flow models in the literature that include excess pore pressure effects, namely those of [26] and [16].

The Pailha and Pouliquen model

In [26] a two-phase debris flows model is proposed. As in our model, it is based on the dilatancy law
proposed by Roux and Radjai (2.16). However, they consider some extra simplifications regarding the
velocities. Namely, they use

ϕv + (1 − ϕ)u = 0 (4.17)

as a particular solution to the mass conservation (2.5), and the following relations for the solid velocity,

vz = KPP|vx| tanψPP, γ̇ =
3|vx|
h

, (4.18)
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for some constant KPP of the order of unity. This gives vz = 1
3
KPPhγ̇ tanψPP, and this is indeed

related to (3.70) where only the term in Φ̄ is considered, with Φ̄ = 2
3
KPPγ̇ tanψPP. The relation with

our notations is thus 2
3
KPP tanψPP = tanψ. Then, the solid pressure at the bottom is given by

ps
bed = ϕ(ρs − ρf)gh cos θ +

KPP

3

µ

κ
h2γ̇ tanψPP, (4.19)

where the coefficients κ and µ are respectively the hydraulic permeability and the dynamic viscosity
of the granular debris. One has indeed

µ

κ
=

β̄

(1 − ϕ)2
, (4.20)

and we refer to [4] for a discussion on the definition of the drag friction coefficient for two-phase
debris flows. If we consider hm ≡ h (hf = 0) in the value of ps|b in (3.68) with (4.14), i.e. case (I),
we obtain the same equation (4.19). Therefore, there are two main differences between our model
and that of Pailha and Pouliquen. First we do not make the assumption (4.17) that prevents to have
mass conservation. Instead we consider an upper fluid-only layer to fully describe the mass exchanges.
Second we consider in case (II) all the terms involving the difference ux − vx in the evaluation of the
excess pore pressure. Another difference is that they consider constitutive relations for shear stresses.
Instead we have neglected these effects in (3.34), (3.35). Depth-averaged models with shear stresses
are also considered in [10].

The George and Iverson model

The dynamics of debris flows is described in [16] by a single phase model including dilatancy effects.
An evolution equation for the fluid pore pressure is established using a dilatancy law and a Darcy
law. Namely, these two relations are used:

Dilatancy empirical law: ∇ · v = γ̇ tanψ − α∂t(σ − pf), (4.21)

Darcy law: (1 − ϕ)(u− v) = −κ
µ
∇pf

e , (4.22)

with α the mixture compressibility, σ the total stress and pf = ρfg cos θ(h − z) + pf
e the pore fluid

pressure. The coefficients κ and µ are again the hydraulic permeability and the dynamic viscosity of
the granular debris. The Darcy law enables to express Φ = ∇·v = ∇·((1−ϕ)(v−u)) = ∇·(κ

µ
∇pf

e ), as

in [23, 20, 24]. Combining both equations, the following evolution equation for the fluid pore pressure
is deduced,

∂tp
f
e −∇ ·

(
κ

αµ
∇pf

e

)
= − γ̇ tanψ

α
+ ∂t

(
σ − ρfg cos θ(h− z)

)
. (4.23)

Thus, the excess pore pressure pf
e obeys a diffusion like equation with diffusion coefficient given by

κ/µα. Valid ranges for the mixture compressibility α are discussed in [2]. This coefficient strongly
affects the pore pressure diffusion in the sense that large values of α translate into delayed pore
pressure diffusion. The value considered by George and Iverson in [16] is α = 5 × 10−5 Pa−1, which
corresponds to a typical value for air-particle compressibility, while the typical value for water-particle
compressibility that should be used is of the order of 5 × 10−10 Pa−1, see [2, 21]. Note that for this
value, the dilatancy law (4.21) is very close to that of Roux and Radjai.

An evolution equation for the pore fluid pressure at the bottom pf
bed can be deduced from (4.23),

see [16] for details. It can be seen that in the case α = 0 it simplifies to

pf
bed = ρfg cos θh− 1

2

µ

κ
h2γ̇ tanψ. (4.24)
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As for the Pailha and Pouliquen model above, with (3.49) this corresponds again to our formula (4.14)
for (pe

fm
)|b, i.e. case (I), with hm ≡ h, hf = 0. Thus, as in the comparison to the Pailha and Pouliquen

model, there are two main differences between our model and that of George and Iverson. First we
consider an upper fluid-only layer to fully describe the mass exchanges. Second we consider in case
(II) all the terms involving the difference ux − vx in the evaluation of the excess pore pressure. The
additional term involving ∇

x
·
(
(1 − ϕ̄)(ux − vx)

)
in (4.15) induces a diffusion term in our system.

Its strength can be evaluated by writing the equation on (1 − ϕ̄)(ux − vx) that can be deduced from
(4.10b), (4.11b). The result is a diffusion coefficient given by

Dtwo−layer = β̄
h2

m

3

(
1

ρf (1 − ϕ̄)
+

1

ρsϕ̄

)
. (4.25)

It should be compared with the diffusion coefficient of the George and Iverson model from (4.23),
which gives with (4.20)

DGI =
(1 − ϕ̄)2

αβ̄
. (4.26)

In our model the diffusion equation is on (1 − ϕ̄)(ux − vx), while in the George and Iverson model
it is stated on pf

e . But the Darcy law (4.22) enables to perform the change of unknowns from pf
e to

(1 − ϕ̄)(ux − vx), thus the two formulations are very close. Indeed the George and Iverson model
contains an equation on vx and one on pf

e , while our model has two velocity equations, that can be
taken vx, ux − vx. However the two approaches differ by the physical interpretation of the diffusion.
In our model the diffusion comes directly from the relative momentum equation. In the George and
Iverson model, the Darcy law (4.22) means that the time derivative in the equation on the relative
velocity u−v is neglected. It is reintroduced via the mixture compressibility α. This difference results
in different diffusion coefficients (4.25), (4.26). The proportionality to β̄ in (4.25) is quite natural, it
means that the largest is the drag β̄, the strongest is the diffusion coefficient and the damping of the
relative velocity. A strong drag thus leads to a fast convergence to the hydrostatic equilibrium.

Note that the Darcy law (4.22) can be recovered from our model in the limit of large drag, see
Subsection 4.4.

If we look more precisely at conservation equations, we can describe the differences between the
model proposed by George and Iverson in [16] and the one proposed in this work in case (I). Differences
lie in the form of dilatancy terms in the mass and momentum conservation laws.

Let us compare the continuity equations. The model that we propose contains two mass conserva-
tion equations, (4.10a), (4.11a)+(4.12a), and a closure equation (4.13), or equivalently (4.7) or (4.8).
The George-Iverson model is defined by a continuity equation for the mixture and another one for the
solid phase (see [16]), defined as follows,

∂thm + ∇
x
· (hmvx) =

ρm − ρf

ρm

D, (4.27)

∂t(ϕ̄hm) + ∇
x
· (ϕ̄hmvx) = − ρf

ρm

ϕ̄D, (4.28)

with D =

∫ hm

0

(∇ · v)dz. In [16], by considering the Darcy law, D is approximated by a quantity

proportional to pf
e . In our case we have (4.7), which is equation (4.27) with a different right-hand

side hmΦ̄, that can be obtained directly as an approximation of D with (2.14). Thus somehow in
our model we do not have the term −(ρf/ρm)D that is in (4.27). Moreover, in our model, (4.10a)
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is (4.28) but without right-hand side. Thus again we do not have the term (ρf/ρm)D. Therefore, in
our model the solid mass is conserved, while in that of George and Iverson it is not. Following the
derivation of [16], we can identify why the right-hand side of (4.28) does not vanish. The problem
is that George and Iverson replaced the kinematic condition (2.34) considered in this paper by the
assumption that ϕ has a constant normal profile in all the domain. Indeed the kinematic condition
(2.34) is strongly related to the solid mass conservation, since it says that no solid particle can cross
the interface. Writing down a model without this condition means that a source of solid phase exists
above the interface, in relation with the source term in (4.28).

Finally, in order to compare the velocity equations of the George-Iverson model and the ones
proposed here, it is necessary to consider anisotropy of the solid phase. The velocity equation for
the case of a single phase considered in [16] can be obtained by summing up the equations (4.10b)
and (4.11b). Then the excess pore pressure terms cancel. However, if we modify our system by
considering anisotropy of the solid phase and we sum up both equations, it remains roughly a term
(Kanis − 1)(1− ϕ̄)∇

x
pe

fm
, if we denote the anisotropy coefficient by Kanis. This is the only extra term

appearing in the model proposed in [16].
Nevertheless, the momentum balance equations differ in both models because they are obtained

by multiplying the mass conservation equations by the velocity equations, and the mass conservation
equations differ.

4.3 Simplified two-velocity model

In this subsection we propose a simplified model having only two unknown velocities, one for the
granular phase and one for the fluid phase, instead of three unknown velocities for the model of
Subsection 4.1. The two-velocity model is obtained as the limit of the model of Subsection 4.1 when
the friction coefficient ki between the two parts of the fluid phase tends to infinity. It leads to the
relation ux

f = ux, while we remain with the sum hm×(4.11b) + hf×(4.12b) as momentum equation
for the fluid phase (that can be normalized by the fluid volume (1 − ϕ̄)hm + hf ). We thus have now
the unknowns ϕ̄, hm, hf , vx, ux, and we obtain the following model:

∂t(ϕ̄hm) + ∇
x
· (ϕ̄hmvx) = 0, (4.29a)

∂t

(
(1 − ϕ̄)hm + hf

)
+ ∇

x
·
((

(1 − ϕ̄)hm + hf

)
ux

)
= 0, (4.29b)

∂tϕ̄+ vx · ∇
x
ϕ̄ = −ϕ̄Φ̄, (4.29c)

where as in Subsection 4.1 the set or three independent equations can be chosen differently, for example
by replacing (4.29c) by (4.7) or (4.8). We can skip the definition of Vf , since it disappears from the
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momentum equations, that are

ρsϕ̄(∂tvx + vx · ∇
x
vx) = −ϕ̄g cos θ

(
ρs∇x

(
b+ hm) + ρf∇x

hf

)

−(ρs − ρf)g cos θ
hm

2
∇

x
ϕ̄+ (1 − ϕ̄)∇

x
pe

fm

− sgn(vx) tan δeff

(
ϕ̄(ρs − ρf)g cos θhm − (pe

fm
)|b
)
+

hm

+β̄(ux − vx) − ϕ̄ρsg sin θ(1, 0)t,

(4.30a)

ρf

(
∂tux + ux · ∇

x
ux

)
= −ρfg cos θ∇

x
(b+ hm + hf )

− 1 − ϕ̄

(1 − ϕ̄)hm + hf

hm∇x
pe

fm

−kbux + β̄hm(ux − vx)

(1 − ϕ̄)hm + hf

− ρfg sin θ(1, 0)t, (4.30b)

with ∇
x
pe

fm
defined by (3.63), (pe

fm
)|b and pe

fm
defined by (4.14) in case (I), or by (4.15) in case (II),

β̄ defined by (3.37), and Φ̄ defined in (3.31). The system satisfies the total momentum conservation,
obtained by writing the linear combination ρsvx×(4.29a)+hm×(4.30a) +ρfux×(4.29b) +((1− ϕ̄)hm +
hf)×(4.30b),

∂t

(
ρsϕ̄hmvx + ρf

(
(1 − ϕ̄)hm + hf

)
ux

)
+ ∇

x
·
(
ρsϕ̄hmvx ⊗ vx

+ ρf

(
(1 − ϕ̄)hm + hf )ux ⊗ ux

)
+ g cos θ∇

x

(
(ρs − ρf )ϕ̄

h2
m

2
+ ρf

(hm + hf )
2

2

)

= − sgn(vx) tan δeff
(
ϕ̄(ρs − ρf )g cos θhm − (pe

fm
)|b
)
+
− kbux

−
(
ρsϕ̄hm + ρf ((1 − ϕ̄)hm + hf)

)(
g cos θ∇

x
b+ g sin θ(1, 0)t

)
.

(4.31)

As in Subsection 4.1, the system (4.29), (4.30) is a quasilinear system with an extra second-order term
in case (II), with solid and fluid masses conserved, the width of the mixture hm remains nonnegative,
and the solid volume fraction ϕ̄ remains between 0 and 1.

4.4 Oversimplified single-velocity model and Darcy law

An even more simplified model can be obtained by taking the limit of the previous two-velocity model
as vT tends to 0. According to (3.37), β̄ contains a factor 1/vT thus tends to infinity. This is in
contradiction with (3.40) and even with (3.38), but nevertheless the limit model is worthwile to state
since it includes the Darcy law. Ignoring the blow up of the bottom solid friction in (4.30a), the
finiteness in equations (4.30a), (4.30b) yields by taking into account (3.63) that

β̄hm(ux − vx) = −(1 − ϕ̄)
(
∇

x
(hmpe

fm
) + (pe

fm
)|b∇x

b
)
, (4.32)

with the convention that 1/vT has to be factorized out in all terms in this relation, noticing that the
formulas (4.14) or (4.15) all contain the factor β̄. Therefore, we remain with a system with three
scalars unknowns ϕ̄, hm, hf and a single unknown velocity vx (or ux). The equations are (4.29)
and (4.31), with the relation (4.32) that enables to eliminate one velocity. This relation involves
∇

x
(hmpe

fm
) with pe

fm
defined by (4.14) or (4.15), thus (4.32) involves first-order derivatives in case (I),
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and second-order derivatives in case (II). Therefore, plugging this relation in (4.29), (4.31), we see that
the single-velocity system includes second-order derivatives in case (I), and third-order derivatives in
case (II). In the latter case the system thus includes dispersive effects, and it is quite reminiscent of
the Green-Naghdi shallow water model.

We note the identification between (4.32) and the Darcy law (4.22) with (4.20), indeed (4.32)
appears as the average of the x component of (4.22) (recall (3.63)), while the z component of (4.22)
is simply the definition (3.50) of pe

fm
.

4.5 Local energy balance

We would like here to establish and discuss the local energy balance for our two-phase two-layer
model. We consider the three-velocity system (4.10)-(4.13). In order to simplify a bit the expressions,
we write

sin θ(1, 0)t = cos θ∇
x
b̃, with b̃ = x tan θ, (4.33)

so that the topography and gravity terms can be grouped according to the formula cos θ∇
x
b +

sin θ(1, 0)t = cos θ∇
x
(b+ b̃).

We proceed as in [4], by first performing the linear combination 1
2
ρs|vx|2×(4.10a)+hmvx·(4.10b)

+1
2
ρf |ux|2×(4.11a)+hmux·(4.11b) +1

2
ρf |ux

f |2×(4.12a)+hfux

f ·(4.12b). Noticing that the terms in Vf

cancel out, we obtain

∂t

(
ρsϕ̄hm

|vx|2

2
+ ρf (1 − ϕ̄)hm

|ux|2

2
+ ρfhf

|ux

f
|2

2

)

+ ∇
x
·
(
ρsϕ̄hm

|vx|2

2
vx + ρf(1 − ϕ̄)hm

|ux|2

2
ux + ρfhf

|ux

f
|2

2
ux

f

)

= −ρsϕ̄g cos θhmvx · ∇
x
(b+ b̃+ hm) − ρf ϕ̄g cos θhmvx · ∇

x
hf − (ρs − ρf )g cos θ h2

m

2
vx · ∇

x
ϕ̄

− ρfg cos θ
(
(1 − ϕ̄)hmux + hfux

f

)
· ∇

x
(b+ b̃+ hm + hf ) − (1 − ϕ̄)hm(ux − vx) · ∇

x
pe

fm

− β̄hm|ux − vx|2 − ki|ux

f − ux|2 − |vx| tan δeff
(
ϕ̄(ρs − ρf )g cos θhm − (pe

fm
)|b
)
+
− kb|ux|2.

(4.34)

The terms in ∇
x
(b + b̃ + hm) in the right-hand side of (4.34) are written using the mass equations

(4.1), (4.4) as

− g cos θ
(
ρsϕ̄hmvx + ρf

(
(1 − ϕ̄)hmux + hfux

f

))
· ∇

x
(b+ b̃+ hm)

= −∇
x
·
(
g cos θ

(
ρsϕ̄hmvx + ρf

(
(1 − ϕ̄)hmux + hfux

f

))
(b+ b̃+ hm)

)

+ g cos θ(b+ b̃+ hm)∇
x
·
(
ρsϕ̄hmvx + ρf

(
(1 − ϕ̄)hmux + hfu

x

f

))

= −∇
x
·
(
g cos θ

(
ρsϕ̄hmvx + ρf

(
(1 − ϕ̄)hmux + hfux

f

))
(b+ b̃+ hm)

)

−g cos θ(b+ b̃+ hm)∂t

(
ρsϕ̄hm + ρf

(
(1 − ϕ̄)hm + hf

))

= −∇
x
·
(
g cos θ

(
ρsϕ̄hmvx + ρf

(
(1 − ϕ̄)hmux + hfux

f

))
(b+ b̃+ hm)

)

−g cos θ∂t

((
ρsϕ̄hm + ρf

(
(1 − ϕ̄)hm + hf

))
(b+ b̃)

)

− ρfg cos θhm∂t(hm + hf ) − (ρs − ρf)g cos θhm∂t(ϕ̄hm).

(4.35)
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Similarly, the terms in ∇
x
hf in the right-hand side of (4.34) are written

− ρfg cos θ
(
ϕ̄hmvx + (1 − ϕ̄)hmux + hfux

f

)
· ∇

x
hf

= −∇
x
·
(
ρfg cos θ

(
ϕ̄hmvx + (1 − ϕ̄)hmux + hfux

f

)
hf

)

− ρfg cos θhf∂t

(
ϕ̄hm + (1 − ϕ̄)hm + hf

)
.

(4.36)

Then, the last term in the right-hand side of (4.35) is combined with the term in ∇
x
ϕ̄ in the right-hand

side of (4.34), according to the identity

−hm∂t(ϕ̄hm) − h2
m

2
vx · ∇

x
ϕ̄ = −∂t

(
ϕ̄
h2

m

2

)
− h2

m

2

(
∂tϕ̄+ vx · ∇

x
ϕ̄
)
, (4.37)

where the right-hand side can be expressed with (4.6). Next, the excess pore pressure term in (4.34)
can be written using (3.63)

− (1 − ϕ̄)hm(ux − vx) · ∇
x
pe

fm

= −∇
x
·
(
(1 − ϕ̄)hmpe

fm
(ux − vx)

)

+ hmp
e
fm
∇

x
·
(
(1 − ϕ̄)(ux − vx)

)
− (1 − ϕ̄)(pe

fm
)|b(ux − vx) · ∇

x
b.

(4.38)

Finally, multiplying (4.6) by dec

dϕ
(ϕ̄) and using (2.22), we obtain

∂t

(
ec(ϕ̄)

)
+ vx · ∇

x

(
ec(ϕ̄)

)
= −pc(ϕ̄)

ρsϕ̄
Φ̄. (4.39)

Multiplying this by hmϕ̄ and using (4.10a), we deduce

∂t

(
hmϕ̄ec(ϕ̄)

)
+ ∇

x
·
(
hmϕ̄ec(ϕ̄)vx

)
= −hm

pc(ϕ̄)

ρs

Φ̄. (4.40)

Using the formulas (4.35)-(4.38), (4.40) in (4.34), this yields the energy balance equation

∂t

(
ρsϕ̄hm

|vx|2

2
+ ρf (1 − ϕ̄)hm

|ux|2

2
+ ρfhf

|ux

f
|2

2
+ ρshmϕ̄ec(ϕ̄)

+g cos θ
(
ρsϕ̄hm + ρf

(
(1 − ϕ̄)hm + hf

))
(b+ b̃)

+(ρs − ρf)g cos θϕ̄h2
m

2
+ ρfg cos θ

(hm+hf )2

2

)

+ ∇
x
·
(
ρsϕ̄hm

|vx|2

2
vx + ρf (1 − ϕ̄)hm

|ux|2

2
ux + ρfhf

|ux

f
|2

2
ux

f + ρshmϕ̄ec(ϕ̄)vx

+g cos θ
(
ρsϕ̄hmvx + ρf

(
(1 − ϕ̄)hmux + hfux

f

))
(b+ b̃+ hm)

+ρfg cos θ
(
ϕ̄hmvx + (1 − ϕ̄)hmux + hfux

f

)
hf + (1 − ϕ̄)hmpe

fm
(ux − vx)

)

=
1

2
(ρs − ρf )ϕ̄g cos θh2

mΦ̄ − hmpc(ϕ̄)Φ̄ +Re − |vx| tan δeff
(
ϕ̄(ρs − ρf )g cos θhm − (pe

fm
)|b
)
+

− β̄hm|ux − vx|2 − ki|ux

f − ux|2 − kb|ux|2 ≡ R,

(4.41)

27



with
Re = hmpe

fm
∇

x
·
(
(1 − ϕ̄)(ux − vx)

)
− (1 − ϕ̄)(pe

fm
)|b(ux − vx) · ∇

x
b. (4.42)

One can check that this energy equation indeed corresponds to the integral of the mixture energy
equation (2.25) with respect to z from z = b to z = b+ hm to which we add the integral of the energy
equation (2.28) of the fluid-only layer from z = b + hm to z = b + hm + hf . The first term in the
right-hand side of (4.41) corresponds to the integral over the mixture layer of phydro

s Φ, where phydro
s

is the hydrostatic part of the solid pressure from (3.53). Then three terms in the right-hand side of
(4.41) are dissipation terms associated to boundaries, and there is the dissipation of drag friction.

The term Re needs to be explained. We claim that it represents the integral over the mixture layer
of the excess term −pe

fm
Φ plus the z part of the drag −β̃(uz − vz)2, both from the right-hand side

of (2.25). To see this, let us consider separately the cases (I) or (II), corresponding to assumptions
(4.14) or (4.15) respectively.
Case (I). In this case the sum of the terms from the right-hand side of (2.25) cancel out in average,
according to ∫ b+hm

b

(
−pe

fm
Φ − β̃(uz − vz)2

)
dz = O(ǫ3), (4.43)

as can be checked with the expansion of pe
fm

in (3.76) and the expansion (3.73) of uz − vz where

we retain only the Φ̄ term, the other being negligible. We have also Re = O(ǫ3) with the same
approximation arguments.
Case (II). In this case, Re and all terms in (4.43) are O(ǫ3). However we can write an exact identity,
thereby achieving higher order accuracy. Writing (3.73) without error gives

uz − vz = B − (z − b)A, (4.44)

with

A =
Φ̄ + ∇

x
·
(
(1 − ϕ̄)(ux − vx)

)

1 − ϕ̄
, B = (ux − vx) · ∇

x
b. (4.45)

Thus ∫ b+hm

b

(uz − vz)2dz =
h3

m

3
A2 − h2

mAB + hmB
2. (4.46)

Then, using the definition of pe
fm

in (4.15),

−hmpe
fm

Φ̄ − hmpe
fm
∇

x
·
(
(1 − ϕ̄)(ux − vx)

)
= −hmpe

fm
(1 − ϕ̄)A = β̄hmA

(h2
m

3
A− hm

2
B
)
. (4.47)

With the definition of (pe
fm

)|b in (4.15) it yields

− hmpe
fm

Φ̄ − hmpe
fm
∇

x
·
(
(1 − ϕ̄)(ux − vx)

)
+ (1 − ϕ̄)B(pe

fm
)|b

= β̄hmA
(h2

m

3
A− hm

2
B
)
− β̄B

(h2
m

2
A− hmB

)

= β̄
(h3

m

3
A2 − h2

mAB + hmB
2
)

= β̄

∫ b+hm

b

(uz − vz)2dz.

(4.48)

This can be written equivalently

Re =

∫ b+hm

b

(
−pe

fm
Φ̄ − β̄(uz − vz)2

)
dz, (4.49)
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proving the claimed identity. This identity means that instead of having an approximation of Re up
to O(ǫ3) errors, it is now up to O(ǫ5) errors.

We conclude that in any case (I) or (II), the right-hand side R of (4.41) represents the integral
of the energy dissipation of the original 3D model. In order to evaluate more accurately the term
corresponding to (ps − pc)Φ in (2.25), we can write the right-hand side of (4.41) as

R =
(
ps − pc(ϕ̄)

)
hmΦ̄ + hmpe

fm
Φ̄ +Re − |vx| tan δeff

(
ϕ̄(ρs − ρf )g cos θhm − (pe

fm
)|b
)
+

− β̄hm|ux − vx|2 − ki|ux

f − ux|2 − kb|ux|2, (4.50)

with

ps =
1

2
(ρs − ρf )ϕ̄g cos θhm − pe

fm
, (4.51)

and where

hmp
e
fm

Φ̄ +Re = −β̄
∫ b+hm

b

(uz − vz)2dz in case (II), (4.52)

while further error in O(ǫ3) need to be added in (4.52) in case (I) (the error is indeed Re itself).

We mention finally that the same energy balance equation (4.41) and the same analysis hold for
the simplified model of Subsection 4.3, one just has to set ux

f = ux. For the model of Subsection 4.4
it is not so clear.

4.6 Parameter settings and discussion

Here we would like to discuss the values of the parameters of our model and the consequences of
these values on the nature of the system to be solved. We recall that the model has three scalar
unknowns ϕ̄, hm, hf , and three vector unknowns vx, ux, ux

f , and is defined by (4.10)-(4.13), with the

average pore fluid pressure ∇
x
pe

fm
defined by (3.63), and either (4.14) for case (I) or (4.15) for case

(II). Alternatively, for the simplified two-velocity model of Subsection 4.3, the model has only two
vector unknowns vx, ux, and is defined by (4.29) and (4.30). In any case the energy equation (4.41)
holds, with the identity (4.50) on energy dissipation.

The value of β̄ defined in (3.37) was already discussed at the end of Subsection 3.3. According to
(2.20) and (2.17), the effective bottom solid friction coefficient is given by

tan δeff = tan δ +K(ϕ̄− ϕ̄c). (4.53)

We recall also the definition of Φ̄ in (3.31),

Φ̄ = K ¯̇γ(ϕ̄− ϕ̄c). (4.54)

The dimensionless constant K in (4.54) characterizes the strength of the dilatancy effects. As in [26],
it should be of the order of unity. The formula (4.53) describes the effect of enforcing the solid friction
when ϕ̄ > ϕ̄c and diminishing it when ϕ̄ < ϕ̄c. Note that in the solid equation (4.10b) of our model,
the solid friction term is not only proportional to tan δeff , but also to ps|b, which contains the excess

term −(pe
fm

)|b. According to (4.14) or (4.15), this excess term itself contains Φ̄, which according to

(4.54) has the same effect of enforcing the solid friction when ϕ̄ > ϕ̄c. Thus both factors tan δeff and
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ps|b contribute to the same effect. When (pe
fm

)|b becomes larger than the hydrostatic fluid pressure
ϕ̄(ρs −ρf )g cos θhm, the solid pressure ps|b vanishes because of the positive part in the bottom friction
of (4.10b), and the granular material is totally fluidized.

The value of ϕ̄c in (4.54) is a key issue for the energy consistency of our model. It would be
possible to define ϕ̄c in terms of the inertial number as in [26, 8, 16], but then there is no reason to get
a nonpositive energy dissipation R in (4.50). Thus we prefer to propose a definition of Φ̄ that is more
consistent than (4.54). For this, we put the same structure as that of the energy dissipation (2.25)
of the 3D model in the energy dissipation R in (4.50). This means defining ϕ̄c = ϕc(ps), where as in
Subsection 2.4, the function ϕ = ϕc(p) is the inverse of the function p = pc(ϕ). This definition leads
automatically to a nonpositive first term in the formula (4.50) for R. However, (4.54) then means
defining Φ̄ as a function of ps, which by (4.51) and (4.14) or (4.15) itself depends on Φ̄. To avoid
dealing with a nonlinear equation, we can use the closure (2.21) instead of (2.18), which means that
we replace (4.54) by

Φ̄ = Kp
¯̇γ(pc(ϕ̄) − ps). (4.55)

Then with the relations (4.51) and (4.14) or (4.15), we obtain the value of Φ̄,

(
1 +

β̄Kp
¯̇γ

(1 − ϕ̄)2

h2
m

3

)
Φ̄ = Kp

¯̇γ

(
pc(ϕ̄) − 1

2
(ρs − ρf)ϕ̄g cos θhm

− β̄

1 − ϕ̄

(
h2

m

3(1 − ϕ̄)
∇

x
·
(
(1 − ϕ̄)(ux − vx)

)
− hm

2
(ux − vx) · ∇

x
b

))
.

(4.56)
This formula is for case (II), i.e. (4.15). Otherwise for case (I) and (4.14) the second line must be
removed in the right-hand side of (4.56). With this formula for case (II), we get R ≤ 0, i.e. full
dissipativity of the model.

Concerning well-posedness of the model, case (I) shows a quasilinear system with an energy identity
that has a formally small right-hand side, but that contains derivatives because of the term ∇

x
·
(
(1−

ϕ̄)(ux − vx)
)

in Re. Thus we do not obtain a mathematical entropy for the system.

In case (II) the system contains second-order terms because of the term ∇
x
pe

fm
in (4.10b) and

(4.11b), defined by (3.63) where pe
fm

involves ∇
x
·
(
(1 − ϕ̄)(ux − vx)

)
in (4.15). However, the right-

hand side R of the energy equation contains (4.52) that can be expressed with (4.46) as a positive
definite quadratic form in terms of A, B defined in (4.45). We therefore have bounds on A, B and
thus also on pe

fm
. With (4.55) this gives a bound on Φ̄, and thus also on ∇

x
·
(
(1 − ϕ̄)(ux − vx)

)

since A is bounded. This means that we have a mathematical entropy which is compatible with the
system, providing bounds on the second-order terms. Indeed, the term ∇

x
·
(
(1− ϕ̄)(ux − vx)

)
is the

depth-averaged counterpart of ∇ · v in (2.25), (2.26).

Concerning the value of γ̇, if we consider that γ̇ = |Dv|, with Dv = (∇v + (∇v)t)/2, the shear
components ∂zv

x and ∇
x
vz are O(ǫ) according to the asymptotic assumptions, while ∂zv

z is of the
order of ∇

x
·vx because of (3.4). Thus a typical value is ¯̇γ = |D

x
vx|. However, such a definition would

lead to possible difficulties for numerical resolution. A possible approximation is ¯̇γ = |vx|/L, which
is less singular than the approximation of γ̇ in (4.18) that could be taken if vx = O(ǫ). With these
approximations of γ̇, the 3D and depth-averaged models look more like bulk viscous than viscoplastic
models. Nevertheless, the value of γ̇ from (4.18), i.e. γ̇ = 3|vx|/h, can be used if strong shear is
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present for real flows, since the good properties of the model are still valid with this closure.

Concerning the choice between Model (I), i.e. (4.14), or Model (II), i.e. (4.15), we recall that they
have been derived under the assumptions of (3.38)-(3.39) or (3.40) respectively. However, whatever
are the scaling assumptions (i.e. (3.38)-(3.39) or (3.40)), the closure (4.15) (thus Model (II)) is always
more accurate, since in this case we retain all the terms in the expansions of Subsection 3.5. The
advantage of Model (I) is that it is simpler since it involves only first-order derivatives. On the contrary,
Model (II) involves second-order viscoplastic-like terms. The variable ux − vx obeys an equation that
includes a diffusion very similar to the one in the George and Iverson model, but which results from
different physical assumptions (see Subsection 4.2). In particular, the time derivative simply results
here from the mass and momentum equations while it is related to mixture compressibility in Iverson
and Georges.

The sign of the excess pore pressure pe
fm

is always the same as that of the normal relative veloc-
ity uz − vz because of (3.50). According to (4.14) for Model (I), this sign is opposite to Φ̄, which
corresponds exactly to the pore pressure feedback described in Subsection 2.3. However, other terms
involving the tangential relative velocity ux − vx also come into play in (4.15) for Model (II) to de-
termine if the fluid is transferred into or out of the mixture.

The dynamical behaviour of our model is naturally induced by the dilatancy closure of Roux and
Radjai. Namely, in the absence of external inflow, there is convergence to the hydrostatic equilibrium
over a sufficient long time. This can be seen in terms of the volume fraction by its evolution equation
(4.6) that holds for any variant of the model considered. In this equation, the right-hand side Φ̄ is
defined according to one of the closures (4.54) or (4.55)-(4.56). Thus we conclude that either ¯̇γ tends
to zero, or ϕ̄ tends to ϕ̄c ≡ ϕc(ps), which is an attractive value for (4.6). In any case Φ̄ tends to zero.
In the case of Model (II) with closure (4.55)-(4.56), the fully dissipative nature of the system, as seen
on the right-hand side (4.50) of the energy equation, leads to normal dissipation (4.46) tending to zero
and thus A, B defined in (4.45) also tending to zero. In any case, we conclude that (pe

fm
)|b, p

e
fm

in
(4.14) or (4.15) tend to zero. This means that pe

fm
tends to zero, and the pressures becomes hydrostatic.

Finally, note that several limit systems can be obtained from our model for particular values of
the parameters. The first is obtained by taking ϕ̄ ≡ 0, leading simply to the standard shallow water
system for height hm + hf and velocity ux. A second system is obtained for ϕ̄ ≡ 1, leading to Φ̄ ≡ 0
and the usual two-layer shallow water system. Finally, a third system is obtained by taking ρf = 0.
It leads to β̄ = 0, pe

fm
≡ 0, thus (I) and (II) are identical. The term Φ̄ can be taken either from (4.54)

or (4.55). This yields an apparently new thin-layer model for a dry granular material with dilatancy
effects, described with the unknowns ϕ̄, hm and vx.

5 Conclusion

We have proposed a depth-averaged model describing mass and momentum conservation for a two-
phase mixture layer of solid granular material and fluid, topped with an upper single fluid layer. The
existence of fluid transfer between these two layers makes it possible to describe the relative motion
between the fluid and solid phases. As physically expected, this transfer of fluid is directly related to
dilation-contraction of the granular phase, described here using a dilatancy closure proposed by Roux
and Radjai. This closure relates dilation and contraction to the existence of a critical volume fraction.
Our thin-layer approximation shows that the pore pressure is not hydrostatic. An excess pore pressure
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term appears, that is related to the dilatancy closure equation. Two approximations (I) or (II) of the
excess terms have been proposed, the first being simpler and the second more accurate. Assuming
that the critical volume fraction is directly related to the solid pressure, we have interpreted the
Roux and Radjai closure as a compressible rheological law with some sort of viscoplastic dissipation.
Accordingly, the depth-averaged model satisfies an energy balance identity, which has a rigorously
dissipative right-hand side with viscoplastic dissipation in case (II). We have compared our model
with existing models in the literature that include dilatancy effects, and shown that our model is
more complete, especially concerning the mass balance equations. Our model (II) contains a diffusion
equation in the relative velocity which is very similar to that of the George and Iverson model, but with
a different physical interpretation. However we did not include shear stresses in our model, because
of the lack of a thermodynamically consistent and mathematically well-behaved rheology including
dilatancy and inertial number.

In a forthcoming paper we shall address numerical simulations of the proposed model and compare
results with experimental data.
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A Appendix: boundary conditions at the interfaceAppendix: boundary conditions at the interface

In this appendix we show in details the calculations corresponding to the jump relations that we
have considered at the interface between the mixture and the fluid in Subsection 2.5.

• Conservation of the total momentum.
The momentum conservation for the fluid-only layer is given by

∂t(ρfuf) + ∇ · (ρfuf ⊗ uf) = −∇ · Tf + ρfg, (A.1)

and the total momentum conservation of the mixture is (2.10). In order to ensure that the total
momentum is conserved across the interface, we impose the Rankine-Hugoniot condition, which gives

(
ρsϕ

∗v + ρf (1 − ϕ∗)u
)
Ñt +

(
ρsϕ

∗v ⊗ v + ρf (1 − ϕ∗)u⊗ u
)
ÑX + (Ts + Tfm

)ÑX

= (ρfuf)Ñt + (ρfuf ⊗ uf)ÑX + TfÑX .
(A.2)

Taking into account the kinematic condition for the solid phase (2.34), the two terms containing v
disappear in (A.2). We observe that the fluid mass conservation across the interface (2.35) gives two
possible definitions for Vf . The first definition is used for the terms containing uf in the right-hand
side of (A.2), and gives ρfufVf . The second definition is used for the terms containing u in the
left-hand side of (A.2), and gives ρfuVf . Thus, from (A.2) we obtain (2.36).

32



• Energy balance.
We first notice that the fluid conservation (2.35) gives the relation

(uf − u) · ÑX = −ϕ∗(Ñt + u · ÑX) = − ϕ∗

1 − ϕ∗
Vf . (A.3)

This means in particular that Vf has the sign of (u− uf) · ÑX . The energy equation in the fluid-only
layer is (2.28) and the total energy equation in the mixture is given by (2.12) or (2.25). In order for the
energy to be decreasing across the interface, we write the Ranking-Hugoniot inequality (eliminating
the v terms because of (2.34), and the gravity terms because of (2.35))

(
ρf(1 − ϕ∗)

|u|2
2

− ρf

|uf |2
2

)
Ñt

+

(
ρf (1 − ϕ∗)

|u|2
2
u− ρf

|uf |2
2

uf + ϕ∗pfm
(v − u) + Tsv + Tfm

u− Tfuf

)
· ÑX ≥ 0.

Note that the sense of the inequality is related to the assumed upward orientation of ÑX . We rearrange
this inequality under the form

ρf

( |u|2
2

− |uf |2
2

)
Ñt − ρfϕ

∗ |u|2
2
Ñt + ρf

( |u|2
2

− |uf |2
2

)
uf · ÑX + ρf

|u|2
2

(
(1 − ϕ∗)u− uf

)
· ÑX

+ ϕ∗pfm
(v − u) · ÑX + (Tsv) · ÑX +

(
(Tfm

− Tf)uf

)
· Ñx +

(
Tfm

(u− uf)
)
· ÑX ≥ 0.

Because of (A.3), two terms in |u|2 in the first line disappear. From (A.3) and the conservation of the
solid mass (2.34) we get ϕ∗(v−u) · ÑX +(u−uf) · ÑX = 0. For the other terms we use the symmetry
of the stresses to get

ρf

( |u|2
2

− |uf |2
2

)
(Ñt + uf · ÑX) − pfm

(u− uf) · ÑX

+(TsÑX) · v +
(
(Tfm

− Tf)ÑX

)
· uf +

(
Tfm

ÑX

)
· (u− uf) ≥ 0.

(A.4)

We look now for a boundary condition of the form

TsÑX = p∗sÑX , (A.5)

where p∗s is a scalar that will be chosen so that the energy inequality holds. We have using (2.34) and
(2.35) that

(TsÑX) · v = p∗sÑX · v = −p∗sÑt = p∗s(uf · ÑX − Vf). (A.6)

Therefore, taking the scalar product of (2.36) with uf and subtracting the result to (A.4) yields

ρf

( |u|2
2

− |uf |2
2

)
(Ñt + uf · ÑX) − pfm

(u− uf) · ÑX

−p∗sVf − ρfVf(u− uf) · uf +
(
Tfm

ÑX

)
· (u− uf) ≥ 0.

Using the formula for Vf in (2.35), this can be written

(ρf

2
|u− uf |2 − p∗s

)
Vf +

(
(Tfm

− pfm
Id)ÑX

)
· (u− uf) ≥ 0. (A.7)
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Next, we write the tangential part of (2.36) using (A.5), that gives

(
(Tfm

− Tf)ÑX

)
τ

= ρfVf(uf − u)τ . (A.8)

Together with (2.38) it yields

(
Tfm

ÑX

)
τ

=
1

2
ρfVf(uf − u)τ − ki(uf − u)τ ,

(
Tf ÑX

)
τ

= −1

2
ρfVf(uf − u)τ − ki(uf − u)τ ,

(A.9)

or equivalently

Tfm
ÑX = (Tfm

ÑX) · ÑX

ÑX

|ÑX |2
+

1

2
ρfVf (uf − u)τ − ki(uf − u)τ ,

Tf ÑX = (Tf ÑX) · ÑX

ÑX

|ÑX |2
− 1

2
ρfVf (uf − u)τ − ki(uf − u)τ .

(A.10)

Plugging this in (A.7) we get the energy dissipation condition

(
ρf

2

(
(u− uf) ·

ÑX

|ÑX |

)2

− p∗s

)
Vf +

(
(Tfm

ÑX)· ÑX

|ÑX |2
−pfm

)
ÑX ·(u−uf)+ki|(uf−u)τ |2 ≥ 0. (A.11)

Now, the term proportional to ki ≥ 0 is a dissipation. The other terms are proportional to Vf because
of (A.3). Since Vf can be positive or negative, we write that its factor vanishes, that is

ρf

2

(
(u− uf) ·

ÑX

|ÑX |

)2

− p∗s +

(
(Tfm

ÑX) · ÑX

|ÑX |2
− pfm

)
ϕ∗

1 − ϕ∗
= 0. (A.12)

This gives the value of p∗s, and reporting this in (A.5) we finally obtain the interface condition (2.37).
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