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Abstract.

Objective. The main goal of this work is to develop a model for multi-sensor signals

such as MEG or EEG signals, that accounts for the inter-trial variability, suitable

for corresponding binary classification problems. An important constraint is that

the model be simple enough to handle small size and unbalanced datasets, as often

encountered in BCI type experiments.

Approach. The method involves linear mixed effects statistical model, wavelet

transform and spatial filtering, and aims at the characterization of localized

discriminant features in multi-sensor signals. After discrete wavelet transform and

spatial filtering, a projection onto the relevant wavelet and spatial channels subspaces

is used for dimension reduction. The projected signals are then decomposed as the sum

of a signal of interest (i.e. discriminant) and background noise, using a very simple

Gaussian linear mixed model.

Main results. Thanks to the simplicity of the model, the corresponding parameter

estimation problem is simplified. Robust estimates of class-covariance matrices are

obtained from small sample sizes and an effective Bayes plug-in classifier is derived.

The approach is applied to the detection of error potentials in multichannel EEG data,

in a very unbalanced situation (detection of rare events). Classification results prove

the relevance of the proposed approach in such a context.

Significance. The combination of linear mixed model, wavelet transform and spatial

filtering for EEG classification is, to the best of our knowledge, an original approach,

which is proven to be effective. This paper improves on earlier results on similar

problems, and the three main ingredients all play an important role.
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1. Introduction

Electro- and Magneto-encephalography (respectively, EEG and MEG) are of the

rare techniques allowing non-invasive brain investigation with an excellent temporal

resolution and, under some conditions, a fairly good spatial one. One main limitation,

however, is that extracting the brain activity of interest from background activity and

noise usually requires averaging a large number of repetitions of the signal recorded

in the “same” condition (for example, averaging several epochs of signal following

the same repeated stimulus). Such an averaging, however, distorts the signal and

prevents precise investigation of the dynamics of the underlying processes. Indeed,

it has long been known that averaging has non-linear impact on the latencies estimation

[12, 30, 11]. For example, the latency of the onset of an activity measured on the

average largely underestimates the real mean of the individual onsets [52, 41, 32],

making its use problematic for direct comparison with chronometric variables such

as Reaction Time (RT) [11, 41]. The averaging process also prevents from analyzing

learning and/or adaptation effects across trials repetitions [46]. More generally averaging

trials eliminates the signal of interest variability, although the latter contains important

information that can be useful in various contexts, from signal interpretation to

classification.

For these reasons, methods for single-trial EEG analysis and classification have

been developed during the last decades. To reduce the impact of noise and background

activity in single-trial analysis, common strategies have been to extract more elementary

parts concentrating the signal of interest, either in time, in frequency, or in space. Such

approaches include, among others, selection of time domains, frequency filtering, wavelet

decomposition [45, 56], adaptive basis selection [54, 4], matching pursuit [15, 5] or blind

source separation [29]. In those approaches, one aims at simply getting rid of the

variability induced by the background activity and the noise, hoping that the remaining

variability will only be attributable to the signal of interest.

Alternative strategies can be based on explicit signal modelling. For example the

Linear Discriminant Analysis (LDA) which is one of the most popular classifiers for EEG

single-trials detection (and for brain computer interface - BCI - applications, see [33])

can be interpreted in terms of very simple Gaussian mixture model. In this setting LDA

assumes a class-independant covariance matrix. In a recent overview [7], Blankertz and

coworkers proposed a regularized Gaussian mixture model for event related potentials

(ERPs). In the latter, the single-trial is written as the sum of a signal of interest which

is approximated as constant over trials and a random background activity modelled

as a Gaussian noise. The inter-trial variability is not taken into account. The class-

covariance matrices are assumed to be equal, which leads to a very simple detection

algorithm that turns out to be very efficient for binary classification tasks.

However when this equality assumption is not valid, the problem becomes more

complex, especially when the two classes are unbalanced. In that context, standard

classifiers, such as LDA, may fail as the estimated common covariance matrix is largely
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determined by the majority class [24, 61]. Taking into account the difference of the

class-covariance matrices leads to a quadratic classification rule (QDA) and requires the

estimation of a covariance matrix for each class. This leads to a robustness problem in

the estimates, the more so when the size of the minority class is small.

In BCI and more generally in EEG experiments, such an unbalanced situation is

not unfrequent. For example in BCI, the P300 speller protocol naturally generates two

unbalanced classes [18]. Classical P300 spellers, with a 6×6 matrix containing all letters

and characters, yield an unbalanced datasets composed of 1/6 of ERP signals and of 5/6

of noERP. Another example of unbalanced classes can be found in RT tasks in which

the participant has to respond as fast as possible to the appearance of predetermined

stimulation. For example, standard experimental psychology protocols make use of

biased probabilities across experimental conditions (see e.g. [43]). Besides manipulated

factors, biased probability might also be the result of participants behavior, such as

errors which are typically much lower than correct trials.

In this paper, we target more specifically situations where the class-covariance

matrices differ and available datasets are unbalanced and of limited size. We propose

a wavelet domain Gaussian linear mixed model (termed LMM in the following) for the

binary signal classification problem. The model expresses each single-trial as a sum of

a class-dependent signal of interest and a background activity as in [28, 27]. The signal

of interest is modelled as a multivariate Gaussian vector whose covariance matrix, that

describes the inter-trial variability, depends on a user-specified design matrix. Both

mean and design matrix are class-dependent. The background signal is modelled as

a class-independent Gaussian white noise. The resulting model is characterized by a

remarkably small number of parameters.

The application context of the current paper is the detection of evoked potentials

in M/EEG signals. The above described model turns out to be relevant for such signals

when suitable preprocessings are performed, namely wavelet based time decorrelation,

spatial filtering and corresponding dimension reductions. The procedure is more

specifically applied to the problem of error negativity (ErrP) detection and analysis.

Corresponding classification results compare very favorably with standard linear

classifiers for small sample size datasets.

One of the main contributions of this work is a model for subject specific M/EEG

signals, that belongs to the family of linear mixed models. Mixed models offer a

rich and flexible framework for describing and quantifying variability and produce

robust estimates of class-covariance matrices from small datasets. Such models have

been considered in EEG applications in many different contexts. Let us for example

mention [3] where an introduction to mixed model is provided and possible applications

in psychology and neuroimaging are discussed. Mixed models have also recently been

used by other authors in bayesian framework for electrophysiology applications. In [14],

a functional mixed model is introduced for the purpose of regression analysis of ERP’s

data and where the model is combined with discrete wavelet transform and sparsity-

inducing prior distribution. In [19] a subject-independent classifier is proposed using a
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`1-penalized linear mixed model. Within-subject and between-subject variabilities are

modelled through random and fixed terms and the method is applied to BCI achieving

subject-to-subject transfer. The present work, inspired on the work of Huang and

coworkers [28, 27], focuses on a subject specific model taking into account the variability

across repetitions of the same experiment. The model proposed here is constructed

directly in wavelet domain instead of time domain, and also differs from [28, 27] in both

fixed and random parts. In our case the fixed part corresponds to the class-average

whereas they used projection onto the first principal components. The modelling of

inter-trial variability is different too. All together this results in a simplified Gaussian

linear mixed model with less parameters to estimate. Moreover the application of the

model to the binary classification problem is different. In our work we directly exploit

the estimates of class-covariance matrices in a Bayes classifier while Huang et al [28, 27]

use a likelihood test based on the predicted single-trial signals. Let us stress that we

only address and model here the inter-trial variability. Even though the dataset used

for validation involves several subjects, they are all treated independently and we do

not attempt to model the inter-subject variability.

This paper is organized as follows. A short overview for linear and quadratic

discriminant methods for unbalanced data is given in section 2. The model and

the statistical procedure are described in section 3 while section 4 is devoted to the

application to ErrP data. Discussion and conclusions are given in section 5 and section 6

respectively.

2. A short overview of linear and quadratic discriminant analysis for

unbalanced data

We briefly discuss here the main issues encountered when using linear and quadratic

discriminant analysis for unbalanced and small size datasets, and describe some classical

solutions that will be of interest for this work.

2.1. Linear and Quadratic discriminant analysis

Let us take the probabilistic point of view, and derive Linear Discriminant Analysis

(LDA) and Quadratic Discriminant Analysis (QDA) from the decision problem in the

case of a Gaussian mixture, see e.g. [25]. Observations are considered as multivariate

Gaussian draws with respective prior probabilities pc (with
∑

c p
c = 1) and probability

density function (pdf):

f c(x) =
1

(2π)d/2|Σc|1/2
exp

[
−1

2
(x− µc)′(Σc)−1(x− µc)

]
, (1)

where µc ∈ Rd is the class-mean, Σc ∈ Rd×d is the class-covariance matrix (assumed to

be invertible) and |Σc| its determinant.

This leads to the discriminant function, defined for each class c:

δc(x) = −1

2
log |Σc| − 1

2
(x− µc)′(Σc)−1(x− µc) + log pc . (2)



Detecting EEG Evoked Potential using a Wavelet Domain Linear Mixed Model 5

Let xi denote the i-th sample to classify. xi a d-dimensional vector. The decision rule is

given by assigning xi to the class with the maximal δc(xi). In the general case, the class-

covariances Σc are different, and the decision should be based on quadratic functions of

xi (thus the name QDA). When the class-covariances are assumed to be equal (Σc = Σ

for all c) the decision is based on linear functions of xi (LDA).

In practice the parameters of the Gaussian distribution in each class are unknown

and must be estimated, which is problematic in the case of small size and/or high

dimensional datasets. We address this problem below, focusing on binary classification

(c ∈ {0, 1}) and unbalanced datasets. We will denote by N0 and N1 the corresponding

sample sizes of datasets from which the estimation is done, and set N = N0 + N1. Σ̂c

and Σ̂ will denote respectively the sample estimates of class-covariance matrix Σc and

common covariance matrix Σ defined as follows:

Σ̂c =
1

N c − 1

Nc∑
i=1

(xi − x̄c)(xi − x̄c)′ , where x̄c =
1

N c

Nc∑
i=1

xi , (3)

Σ̂ =
N0

N
Σ̂0 +

N1

N
Σ̂1 . (4)

Two cases are to be considered.

Case 1: Equal class-covariance matrices. When Σ0 = Σ1 = Σ, the decision is based

upon the sign of w′xi, where w = Σ−1(µ0−µ1). The quality of the decision relies heavily

on the quality of the estimation of the covariance matrix Σ and its inverse, which may

turn out to be poor for small datasets and/or in high-dimensional situations. In addition,

low quality estimate for Σ may lead to invertibility problems, which makes the classifier

ill-defined. Solutions to such problems are discussed below.

Let us note that for equal class-covariance matrices, unbalancedness of the datasets

does not introduce additional difficulty as Σ is estimated from the complete dataset.

Case 2: Unequal class-covariance matrices. In this case, two covariance matrices must

be estimated, which amplifies the above mentioned difficulty, particularly when the

dataset is small and unbalanced enough so that at least one of the two covariance

matrices is poorly estimated. This is why LDA is generally preferred, even when the

true class-covariances are different. However, when the datasets are unbalanced, the

estimation tends to focus on the prevalent class and to ignore the rare one: the covariance

estimate Σ̂ given in (4) is dominated by the majority class, so that Σ̂ ≈ Σ̂0 (in the case

where N1 � N0).

In such a situation, a common solution consists in re-balancing datasets using

sampling methods [61, 62, 57]. Over-sampling increases the size of the minority class

(without information gain) while under-sampling reduces the size of the majority class

(which may result in prejudicial information loss).
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2.2. The case of diagonally dominant covariance matrices

We stick here to binary classification problem, in the small sample size (d � N) and

unbalanced (N1 � N0) situation. In such case, estimated covariance matrices are

often non-invertible, and some additional assumptions or regularization are needed. We

review a few solutions that will be of interest for us, that ensure invertibility by enforcing

diagonal dominance of the covariance matrices.

(i) Diagonal covariance . If data are assumed to be decorrelated, the covariance matrix

is diagonal and only the d variances are to be estimated (leading to Diagonal

LDA, DLDA for short). Under the multivariate Gaussian law, this assumption

corresponds to independence assumption. However it is known that even for

correlated data (which is the general situation) better classification results are often

obtained when correlations are ignored, thus replacing Σ̂ by its diagonal (leading

to the so-called naive Bayes classifier). This is supported by asymptotic arguments

(d � n) as well as experimental results (see e.g. [6] and references therein). In

particular if the off-diagonal elements of the covariance matrix are expected to be

nearly zero, it is usual to estimate them by zero. Otherwise in some situations, a

decorrelating transformation can be found that enforces the diagonal dominance of

the covariance matrix (see section 3.1).

The diagonal assumption as well as the above considerations can be extended to

the quadratic situation (leading to the diagonal QDA, DQDA for short).

(ii) Diagonal dominance enforcing regularization. Singularity issues can be overcome

by shrinking the sample covariance matrix towards a multiple of the identity

matrix [21]. A particular trace preserving shrinkage approach has been proposed

in [7] in the context of EEG single-trial analysis. The corresponding estimate is a

weighted average of the sample covariance matrix and the identity matrix

Σ̂(γ) = (1− γ)Σ̂ + γ
tr(Σ̂)

d
Id , (5)

where γ ∈ [0, 1] is a shrinkage parameter and tr(Σ̂) is the trace of the sample

covariance matrix, i.e. the sum of its diagonal elements. The standard practice is

to find the optimal γ by cross-validation. Blankertz et al give a simple heuristic

estimate with satisfactory results on EEG data [7]. This method will be called

Regularized LDA (RDA for short).

(iii) Explicit covariance modelling. When prior information on data is avalaible, explicit

models for covariance matrices can sometimes be proposed to reduce the number

of parameters to estimate. We describe below an example where a suitable

transformation combined with a linear mixed model leads to diagonal dominant

class-covariance matrices characterized by (2 + 2× d) parameters only.
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3. Method

We propose a classification method for multisensor signals to discriminate between two

experimental conditions in view of application to EEG and BCI. The signals are recorded

over M sensors in a fixed time-period with T samples. For a given participant, we obtain

N c trials per class, c ∈ {0, 1} being the class label, with each trial taking the form of

M time series of T samples each.

Our procedure is based on three steps. The first step is preprocessing:

transformations are applied to obtain diagonally dominant sample class-covariance

matrices and the temporal and spatial dimensions are reduced. The second step

models variability using a Gaussian linear mixed model to estimate the class-covariance

matrices. The third step is classification.

3.1. Decorrelation and dimension reduction

Raw recorded signals are known to be strongly correlated both across sensors and

time points. Data are thus preprocessed in order to reduce dimensions and enforce

the diagonal dominance of class-covariance matrices.

3.1.1. Time-domain decorrelation using DWT. Signals are recorded as time-series,

with a given sampling frequency. However, samples are expected to be highly correlated,

should they correspond to the background activity or to the signal of interest. Therefore,

it is important to reduce the correlations, which we do through a linear transform, by

replacing the time samples with the coefficients of the signals expansion with respect to

a suitably chosen basis. In this work, we limit ourselves to a wavelet basis, generated

by shifting and rescaling a generic waveform ψ. More precisely, in the framework of the

so-called multiresolution analysis, it is possible to find pairs of functions (φ, ψ) such that

suitably rescaled and shifted copies of these form orthonormal bases of signal spaces of

interest. Without going into mathematical details, for which we refer to e.g. [13, 36, 55]

for detailed accounts, and also to [10] for a pedestrian introduction, this yields multiscale

signal decompositions as follows. Given a reference (integer) scale indexm0, any signal in

the signal space can be uniquely expanded as time-shifted copies of the scaling function

at scale 2m0 and time-shifted copies of the wavelet, rescaled at smaller scales 2m,m ≤ m0

(also called levels). This is expressed mathematically in the form

f(t) =
∑
n

sm0,n2−m0/2φ(2−mt− n) +
∑

m≤m0

∑
n

dm,n2−m0/2ψ(2−mt− n) .

The coefficients that enter such an expansion are called respectively scaling coefficients

(for the coefficients sm0,n) and wavelet coefficients (coefficients dm,n) and are easily

computed as inner products of the signal f with the corresponding basis functions. The

numerical computation of these coefficients is performed using dedicated fast algorithms

(see [55]), which leads to the so-called DWT (for discrete wavelet transform). In what

follows, we will gather scaling and wavelet coefficients of a signal in a unique vector of

multiscale coefficients.
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Wavelets are introduced here because of their ability to decorrelate signals. It

has been found empirically in many application domains (such as image processing)

that the nonzero (or significant) multiscale coefficients of a correlated signal are often

far less correlated than the signal, and that the number of significant coefficients is

therefore much smaller than the signal length. This turns out to be the case for

the EEG signal considered here. Therefore, a (time-domain) dimension reduction can

be performed by moving to the multiscale domain using DWT, and setting to zero

irrelevant multiscale coefficients, namely those coefficients that are numerically negligible

for all channels. The resulting coefficients are therefore weakly correlated (and the

corresponding covariance matrix is strongly diagonal dominant). It is worth noticing

that wavelets only provide approximate decorrelation. Alternatives to wavelets have

been proposed for improving the decorrelation by seeking optimally decorrelating basis

(see [59] for detailed account of the best basis approach and [54, 4] for the adaptation to

EEG signals). These techniques are adaptive and, as a consequence, the decomposition

basis is signal dependent, which is not suitable for the model we are using here.

In addition to dimension reduction, a level-dependent rescaling is performed on

the retained multiscale coefficients to correct for variability differences across scales.

More precisely, at each scale, coefficients are normalized so that they all have the same

variance.

As a result of this time (or time-scale) domain processing, each trial i gives rise to

a multiscale coefficient matrix Xc
i ∈ RM×K (c being the class label), where K is the

number of retained multiscale coefficients and M being the number of sensors.

3.1.2. Spatial filtering. The considered signals are multisensor signals, with low spatial

resolution and large spatial correlations. These can be reduced using spatial filtering.

In single-trial analysis, spatial filters are used to improve signal-to-noise ratio while

reducing both EEG data complexity and spatial dimension. Various spatial filter

constructions have been proposed, depending on EEG application (see [42, 38] for

reviews).

In the present study, we rely on a matrix-based technique inspired by Fisher’s linear

discriminant method [20], as done in [27]. The main purpose is to identify projections

in the sensor space that keep the classes as separated as possible while minimizing the

variance within classes. We introduce the between-class and the within-class covariance

matrices SB and SW , respectively

SB =
1

NT

1∑
c=0

N c
(
X

c −X
) (
X

c −X
)′
, (6)

SW =
1

NT

1∑
c=0

Nc∑
i=1

(
Xc

i −X
c) (

Xc
i −X

c)′
, (7)

where X
c ∈ RM×K and X ∈ RM×K are the trial-average in class c and the total trial-

average matrices. Here, N = N0 +N1 is the total number of trials. Notice that SB and

SW are both M ×M non-negative definite matrices.
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The method seeks to identify the most discriminant linear combinations of sensors

by optimizing the following Fisher criterion, sequentially under orthogonality constraints

between vectors:

max
u∈RM

u′SBu

u′SWu
. (8)

The solution is obtained by computing the eigenvectors decomposition of the matrix

S−1W SB (assuming that SW is invertible). The eigenvectors are sorted by decreasing

discriminating power (eigenvalue), out of which the first J are selected. The number

J is chosen according to a criterion based on the cumulative percentage of eigenvalues.

In most situations, J � M , which yields a significant spatial dimension reduction.

The J uncorrelated linear combinations of the M sensors will be called channels in the

following.

Let U = [u1, . . . , uJ ] denote the matrix whose columns are the selected eigenvectors.

Each single-trial signal Xc
i is projected onto the selected subspace spanned by these J

eigenvectors as follows

Y c
i = U ′Xc

i , (9)

where each row j of the matrix Y c
i ∈ RJ×K consists in the wavelet and scaling function

coefficients of the j-th channel for single-trial i. Each column of U , denoted uj, can be

referred to as spatial filters (see [38, 8, 7, 42]).

3.2. Model setup

In this section a single-trial analysis is proposed, in which the variability is modelled

through a Gaussian linear mixed model [47, 37].

3.2.1. Background and definition. Given multisensor and multi-trial signals f c
i,s(t),

with i the trial index and s the sensor index, that are labelled by a class index c, we

assume that such signals can be modelled as a sum of two independent components:

• A background activity, assumed to be stationary (in the sense of weakly stationary

random processes, namely the two first order moments are translation invariant)

and correlated (see e.g. [31]),

• Event related components (also called signals of interest), thus intrinsically non-

stationary, characterized by a class index which labels the cerebral response to the

events. The signal of interest is further modelled as the sum of a fixed component,

common to all the trials in the class, and a random trial dependent component (the

so-called trial random effect).

In what follows, the signals that will be modelled in such a way are the multi-channel

multiscale (wavelet and scaling) coefficient arrays Y c
i ∈ RJ×K resulting from the

preprocessing. We will denote by yci ∈ RJK the vector obtained by concatenation of

all columns of Y c
i .
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3.2.2. The statistical model. For a given participant, we consider N c trials per class,

c ∈ {0, 1} being the class label. After preprocessing, we represent each trial i as a vector

yci ∈ RJK , where J is the number of channels and K the number of retained wavelet

and scaling coefficients. In a given class c and according to the additivity assumption

(see section 3.2.1 above), yci (i = 1, · · · , N c) is therefore written as

yci = µc + Γcbi + εi , (10)

where

• µc ∈ RJK is the mean vector of class c,

• bi ∼ N (0, τ 2) is a zero-mean Gaussian random variable with variance τ 2, modelling

the trial random effect,

• Γc ∈ RJK is a class-dependent coefficient vector which modulates the impact of the

trial on each sensor and sample,

• εi ∼ N (0, σ2IJK) is the residual part modelling the background activity where IJK
denotes the identity matrix of size JK. We further assume that the residual vector

εi and the trial random effect bi are independent.

After specification of the coefficient vector Γc (see section 3.2.3 below), the model

given in (10) becomes a Linear Mixed Model (LMM), such that

yci |Γc ∼ N (µc, V c) , where V c = τ 2Γc (Γc)′ + σ2IJK , (11)

(here (Γc)′ denotes the matrix transpose of Γc).

In summary, each single-trial is decomposed into a fixed part, corresponding to

the class-mean, a trial random effect bi modulated by the coefficient vector Γc, and a

random term accounting for the background activity.

Let us note that the simplicity of the proposed model in wavelet domain permits

to obtain precise parameter estimates over a small number of trials. Indeed, after

specifying the coefficient vectors Γc, we only have to estimate four parameters: the two

mean vectors µc, c ∈ {0, 1}, and the variances τ 2 and σ2.

Remark 1 (i) Since the class-mean is used as the fixed part, the model described

in (10) reduces to a mixed-effects ANOVA model [51], where EEG-class is the fixed

effect factor and trial is the random effect factor. This allows grounding the model

on very solid foundations, and yields a more straightforward interpretation of the

results.

(ii) In the case of the between-trial variability is negligible, there is no random effect

Γcbi in (10) and the model corresponds to a simple linear one, as described in [7].

(iii) A related approach, that actually inspired the present work, was proposed by

Huang et al in [28, 27]. Our modelling, however, differs in three major points.

First, we consider a linear mixed model on wavelet domain more adapted to the

assumption of the noise decorrelation. Second, the fixed part is set to the class-

mean and does not involve any projection. Third, the covariance matrix depends on
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channel, sample and class while Huang et al propose dependence on trial, sample

and class. We stress that our model is significantly simpler, avoids unnecessary

approximations and requires less parameter estimations.

(iv) Sticking to such a simple model is motivated by use cases where few trials are

available. This is the case under some experimental conditions where the number of

trials of interest is low, either because of the experimental design (e.g. probability

bias), or because rare behaviour of the participants (e.g. errors in RT tasks).

Another example is BCI type data, for which the training set has to be limited

to reasonable size, and to which high complexity models therefore can hardly be

fitted.

3.2.3. Random part coefficient vector. To completely specify the model in (10), the

(class-dependent) coefficient vectors Γc ∈ RJK have to be chosen. Let us note that the

components of these vectors modulate the random effects bi in the same way for all

trials in the same class. Γc is a design parameter to be fixed a priori. The model itself

doesn’t assume any specific form, the choice of Γc is problem dependent, and usually

relies on prior information. In the considered situation, such prior information is not

available, the choice of Γc was guided by preliminary exploration of the data. We refer

to section 4.2.2 for details.

3.3. Classification procedure

Each single-trial yi ∈ RJK to classify is assigned to a class c according to the maximum

a posteriori calculated using the Bayes formula:

max
c∈{0,1}

P(Class = c | yi) . (12)

Based on the model proposed in (10), yi is assumed to be distributed in each class c

according to the multivariate Gaussian distributionN (µc, V c) where µc is the class-mean

and V c is the class covariance matrix such that V c = τ 2Γc (Γc)′ + σ2IJK .

Under these assumptions, the optimal classification is obtained with the following

quadratic discriminant function for each class c :

gc(yi) = (yi − µc)′(V c)−1(yi − µc)− 2 ln(pc) + ln |V c| , (13)

which yields to the following binary classifier :

δ(yi) = g0(yi)− g1(yi) . (14)

The trial yi is assigned to class 0 if δ(yi) < 0, to class 1 otherwise.

Remark 2 Let us note that the resulting classifier is a particular case of the QDA

classifier presented in section 2.1. In the situation considered here, the class-covariance

matrix Σc is decomposed in the following simple form τ 2Γc (Γc)′ + σ2IJK . Therefore,

after specifying the coefficient vector Γc ∈ RJK for each class, only τ 2 and σ2 have to

be estimated, which makes QDA tractable in this situation.
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3.4. A specific methodology for EEG single-trial classification

We shortly summarize the main steps of the LMM-based classification procedure

(hereafter termed LMMC), which consists in two stages: a training step to estimate the

model parameters and the test step to classify the EEG single-trials. For the reasons

exposed above, in many contexts as BCI, the training set shall be as small as possible

to get sufficiently precise estimates to correctly classify test set.

3.4.1. Training Step.

(i) Preprocessing.

First whitening and time-domain reduction are performed through DWT. The

K selected multiscale coefficients are scaled to set the coefficient variability

independent of the decomposition level. Then a spatial dimension reduction

is performed. Spatial filters are estimated using a matrix-based Fisher’s linear

discriminant and only the J most discriminant channels are selected.

(ii) Wavelet-based modelling.

Single-trials in the multiscale domain are modelled as in (10), with the class-mean

as a fixed component and the random component depending on class, channel and

trial. In the latter, the class and channel dependence is given by the coefficient

vectors Γ0 and Γ1 that must be specified a priori, according to (18) in this model.

(iii) LMM parameter estimation.

After fixing Γc a priori, the complete parameter θ = (µ0, µ1, τ 2, σ2) ∈ R2JK+2

of the LMM can be estimated by likelihood-based methods using the assumption

that b and ε are independent and normally distributed. We use Restricted

Maximum Likelihood (REML) method that provides unbiased variance estimates

(see e.g. [51]). The estimates will be denoted by θ̂ = (µ̂0, µ̂1, τ̂ 2, σ̂2).

3.4.2. Test Step.

(i) Preprocessing.

The transformations are the same as in the training step.

(ii) Classification rule.

The classifier δ̂(yi) is obtained from the plug-in estimates of the discriminant

functions given in (13). In the expressions (11) to (14) the parameters µ0, µ1,τ 2,σ2

are replaced by their estimates computed during the training step.

From the variance component estimates τ̂ 2 and σ̂2, we obtain the estimation of the

class-covariance matrix V c described in the model (11) :

V̂ c = τ̂ 2Γc(Γc)′ + σ̂2IJK . (15)
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3.5. Single-trial reconstruction

In addition, an estimate b̂i can be obtained for each single-trial i in class c through the

Henderson mixed model equations (see e.g. [51]) :

b̂i = τ̂ 2(Γc)′(V̂ c)−1(yi − µ̂c) . (16)

This, in turns, yields an estimate for the signal of interest as follow :

ŷci = µ̂c + Γcb̂i . (17)

Notice that unlike Huang et al [28, 27], this estimation is a sub-product of the

model allowing single-trial visualization and does not play any role in the classification

procedure.

4. Application to error potentials detection

4.1. ErrP Data and preprocessing

We now consider the problem of modelling and detecting error potentials using the

approach developed above on the dataset reported in [49]. We start with a brief

description of main aspects of the experiment that are relevant for the present study.

Details on recordings and EEG data preprocessing are not exposed here since they had

been largely detailed in [49] and are beyond the scope of the present paper.
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Figure 1. Grand averages (FCz) of error (red) and correct (blue) trials for

monopolar data.

4.1.1. Experiment and signal acquisition. The dataset includes 10 participants

performing an Eriksen’s flanker task [16]. Each trial consists in the identification of

a central letter (target) embedded in a set of three letters. Participants were asked to

respond to the target letter by pressing a button with either the left hand or right hand.

The signal was recorded with 64 scalp electrodes and after preprocessing (sampling to

1024 Hz and artifacts removal), data were downsampled to 256 Hz.



Detecting EEG Evoked Potential using a Wavelet Domain Linear Mixed Model 14

The selected trials were segmented into epochs of 800 ms from −400 ms to +400 ms,

were zero corresponds to the electromyogram (EMG) onset that triggered the response.

Each dataset in the training step correspond to a three-dimensional array as we consider

N c trials in both classes c = 0 (correct trials) and c = 1 (errors) over 64 electrodes and

204 time-points.

4.1.2. Error/Correct trials classification: an unbalanced dataset. For each participant,

we consider two categories of trials: error and correct. In this current application we do

not take into acount the third class discussed in [49] which corresponds to partial errors.

In figure 1, differences on monopolar data between error and correct are observable on

grand averages (over trials and subjects). For errors, a clear negativity is observable

around 150 ms after the EMG onset (zero of time) whereas on correct trials a large

positive wave occurs just after EMG onset, but no negativity is visible ‡.
The number of trials per class differs greatly for each participant. In table 1,

the total number of trials for error and correct responses is given. The percentage

of error trials approximately ranges from 2% to 12%, the dataset is therefore highly

unbalanced, errors forming the minority class. The main goal here is to achieve single-

trial classification on this unbalanced dataset.

For an illustrative purpose throughout the section, results are presented for

participant A. Results concerning the other participants are given in Supplementary

Data.

Table 1. Total number of trials per participant for error and correct responses.

Participant

A B C D E F G H I J

Error 130 105 43 39 18 28 94 145 100 63

Correct 1376 1575 1467 1735 690 759 1844 1238 1167 907

4.1.3. Preprocessing. The following two-step preprocessing for spatial and temporal

decorrelation and dimension reduction is applied to the ErrP data.

Decorrelation and time-domain reduction. DWT was performed using a Daubechies

filter D6 (see [13, 36, 55] for details) with 5 decomposition levels. Given the sampling

frequency, those 5 levels correspond to the following frequency bands: 64 − 128Hz,

32 − 64Hz, 16 − 32Hz, 8 − 16Hz and 4 − 8Hz respectively, corresponding to wavelet

‡ On correct trials, Current Source Density (CSD) analysis has revealed that a negative activity similar

to the one observed on errors exists, but with a much smaller amplitude [49]. In the present context,

since discrimination was the main goal, we did not resort to CSD analysis for maximizing the difference

between correct and errors. This is why such a small negative wave is not observable on correct trials

in this case
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coefficients, the lowest frequency band (0 − 4Hz) being encoded in scaling coefficients

(see section 3.1.1).

Prior to DWT, signals were first extended using zero-padding. Doing so, we obtain

a set of signals with appropriate length (for the DWT implementation which we use [9], it

is convenient that the signal length be a power of two). Zero-padding is also an extension

method which permits to avoid misinterpretation about the behaviour of signals beyond

boundaries.

Remark 3 The choice of D6 is the result of a tradeoff between localization and

smoothness for the resulting wavelet. Wavelets with larger support generate more

important boundary effects (we recall that in the dataset under consideration, signals are

epoched, so that boundary effects have to be accounted for). Shorter filters yield wavelets

with lower smoothness, so that the adjusted signals can also lack smoothness. For

example, adjusted signals obtained using the Haar wavelet are discontinuous, which we

didn’t find satisfactory, while adjusted signals obtained with D4 are non differentiable.

Further tests were made using Daubechies filters with various lengths. Corresponding

results (which can be found in Supplementary data) are fully consistent with the results

presented here.
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Figure 2. Illustration of the relevance of DWT and multiscale coefficients selection.

Figures (a), (b) and (c) represent error and correct responses averages over FCz.

(a) Error (red) and correct responses (blue) averages obtained from the 24 selected

coefficients projected back to time domain and compared with time-courses averages

(dashed lines). Partial reconstructions based on scaling (b) and wavelet coefficients (c)

are also represented separately.

Second, dimension reduction was achieved by removing the first three

decomposition levels, that contain low amplitude high frequency phenomena in the

signals. The truncation of the EEG wavelet coefficients sequence to 2 decomposition

levels amounts to a projection onto an appropriate subspace [1] that keeps the relevant

information in the remaining wavelet and scaling coefficients.

Finally, keeping in mind that the signals were zero-padded, boundary wavelet

coefficients that originate from the zero-padding are excluded from the statistical

analysis, as they turn out to exhibit a behaviour different from the relevant ones.
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More precisely, coefficients likely to be sensitive to boundary effects were not taken into

account, namely the 2 boundary scaling coefficients, the 2 boundary wavelet coefficients

at coarsest scale, and the 4 boundary wavelet coefficients at finer scale. After this step,

K = 24 coefficients are selected: 12 + 6 wavelet coefficients for decomposition levels 4

and 5 respectively and 6 scaling coefficients.

Figure 2 illustrates the relevance of multiscale coefficients selection. The 24

coefficients remaining after DWT were projected back to the temporal space using an

inverse DWT (IDWT). As seen in figure 2(a), errors and correct responses averages

obtained from the selected coefficients are very similar to the 204 time-points averages.

In addition, one can see that scaling coefficients (b) capture the general waveform while

wavelet coefficients concentrate the details (c).

In the following, the selected multiscale coefficients are referred to as multiscale

features.
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Figure 3. Spatial filtering results for participant A. (a) Using a cut-off of 70% of

discriminative power, J = 8 filters are selected based on the screeplot of eigenvalues.

(b), (c), (d) display the three first selected filters, ordered by decreasing order of

discriminative power.

Spatial filtering. Using the matrix-based Fisher’s linear discriminant proposed in

section 3.1.2, spatial filtering consists in identifying the most discriminant filters to

separate errors and correct responses. The number J of selected filters depends on the

cumulative percentage of discriminative power, fixed to 70% in the present study for all

subjects. This choice is somewhat arbitrary. We have chosen to stick to a very simple

criterion, but other criteria could have been used as well. For example, Kaiser’s rule

has been tested on our dataset, and results were not satisfactory in the sense that the

number of selected channels was larger (and the computational load was increased),

without improvement of the classification rates.

Figure 3(a) represents the screeplot, which plots the ordered eigenvalues, associated

with the 64 electrodes and out of which only 8 filters are needed to concentrate 70%

of the discriminative power. Figure 3 (b), (c), (d) correspond to topographical maps

of the first three spatial filters i.e. the weights of the electrodes in the corresponding

projections. The contributions of multiscale features in each class can be visualized

using their spatial signature defined as their backprojection onto the sensor space: for

each multiscale index, the pseudo-inverse of the spatial filter matrix is applied to the
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vector of the corresponding coefficient values at all channels. For the sake of illustration,

we display in figure 4 the spatial signatures of some multiscale features averaged across

trials.
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Figure 4. Topographical maps of spatial signatures of five multiscale features averaged

across trials.

Here we have chosen to display five features corresponding to scaling coefficients

4 and 6 and to wavelet coefficient 10, 12 and 22. These specific multiscale coefficients

were chosen for their relevance for error, correct or both classes: on average they appear

as emergent, large magnitude coefficients (see figure 6 below). For example, scaling

coefficient 4 has the largest average magnitude in both classes and was found to be

highly discriminant. This behaviour is reflected by the corresponding spatial signatures

(defined above) which are strongly negatively correlated. Scaling coefficient 6 is relevant

only for the correct class and so is its spatial signature. Wavelet coefficients 10 and 22

are only relevant for error whereas the coefficient 12 is not discriminant. In agreement

with a large literature on ErrP, the spatial signatures for the relevant multiscale features

mainly loads on fronto-central sensors.

4.2. Modelling ErrP single-trials

After applying spatial and temporal filters, the extracted features from ErrP data are

decorrelated and dimensions are significantly reduced. We now consider multichannel

trials in the wavelet domain, such that Y c
i ∈ RK×J , with K = 24 and J � M (for the

training set example J = 8, see figure 3). Modelling ErrP single-trials is based on the

columnwise vectorized trial yci .

4.2.1. Testing class-covariance matrices inequality. We display in figure 5 the sample

covariance matrix for each class (error and correct), calculated after preprocessing. For

simplicity the figure is limited to the first two channels. In addition for the relevance

of the visual comparison, the two matrices have been computed on datasets of equal
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size (actually maximal possible size, to ensure maximum precision). Visual inspection

reveals different diagonals and noticeable non-diagonal terms in the sample covariance

matrix of the error class. The significance of the difference between these two matrices

is evaluated quantitatively using Box’s M test [2]. The latter clearly rejects the class-

covariance matrices equality null hypothesis (p-value � 10−6).

Importantly, this conclusion differs from the claim of [7], who did not see any

noticeable difference between sample class-covariance matrices (on a different EEG

dataset). Although such a finding may be dataset dependent, we stress that for the

dataset considered here, the significant difference results from time and space dimension

reductions, which yield an important denoising. In the absence of dimension reductions

(for example raw data), the sample covariance matrices are generally singular and the

Box’s M test cannot be performed.
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Figure 5. Representation of 48×48 sample class-covariance matrices for 24 multiscale

coefficients and 2 channels : error class (a) and correct class (b).

4.2.2. Choice of the random part coefficient vector Γc. As mentioned in section 3.2.3,

the choice of Γc is problem dependent. In our application no prior information was

available that could help specifying the form of Γc, we thus relied on preliminary data

exploration. We plot in figure 6 the mean in absolute value and the standard deviation

computed over all trials for participant A on the first channel in the two classes. This

reveals a monotonic relationship between the amplitude and variability of the signal of

interest, with an additional offset effect. The latter can be interpreted as originating

from random noise ε in (10). Similar results are obtained for the other participants and

channels.

In the present work, we take the simplest relationship, namely a linear one, by

setting the vector Γc to the average over trials in class c :

Γc =
1

N c

Nc∑
i=1

yci . (18)
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Figure 6. Illustration of the monotonic relationship between amplitude and variability

in ErrP-related EEG signals: mean in absolute value (abs(mean)) and to the standard

devation (std) both calculated across all trials of the first channel. (a): error ; (b):

correct.

4.2.3. Variance components estimation. We now explore one of the main assumptions

of our study, namely the single-trial signal of interest can be written as the sum of

two components: a class-dependent fixed term (the class-mean) plus a trial-dependent

random term (the so-called random effect). The hypothesis to be tested is the

significance of the random effect variance τ 2. A negative answer would indicate that a

random effect is not needed. In that case, a classical linear model as proposed in [7]

would be more appropriate.

The implementation of the mixed model has been done using the MATLAB function

mixed.m written by Witkovský [60] (more details can be found in Supplementary Data).

REML estimates for variance components τ 2 and σ2 are displayed in figure 7. Each

boxplot corresponds to a different sample size (10% error trials, 90% correct trials)

and summarizes the distribution of estimates performed on 100 different training sets.

We note that the magnitude of the residual variance estimates σ̂2 is larger than that

of τ̂ 2. Globally the dispersion of the estimates decreases as a function of the sample

size, nevertheless the figure shows that good estimates can be obtained even with small

sample sizes. In figure 7 (a) the quartiles of the τ̂ 2 distribution tend to increase slightly

with the sample size and minimum estimates rise above zero. Using a z-test we test

that the random effect variance is strictly positive in average for each training sample

size (p-value < 10−3).

4.3. Classification results

4.3.1. Performance evaluation. In the case of unbalanced classes, the performance

evaluation methodology has to be chosen carefully as the majority class may shadow

the behaviour of the minority class. This problem has been discussed in several works

(see e.g. [58, 57, 40] and references therein). In this paper, we use various performance

measures for comparing unbalanced EEG dataset classifiers. In particular, we focus on

class-dependent evaluations.
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Figure 7. Covariance components estimation. (a) Random effect variance τ2

estimates. (b) Residual variance σ2 estimates. Each boxplot displays the series of 100

parameter estimates for different training sample sizes (10% error trials, 90% correct

trials). The central mark of boxplot is the median (second quartile), the bottom and

top of the box are the first and third quartiles, the whiskers extend to the most extreme

values not considered outliers, and outliers are plotted individually.

- Confusion matrix. In a binary classification, given a classifier and a test sample,

four outcomes are possible: true positive, false positive, true negative and false

negative. For instance, if the test sample is positive and it is classified as negative,

it is counted as a false negative. For a test dataset, the number of occurences of the

four outcomes are respectively denoted by (TP), (FP), (TN) and (FN), and form

the 2× 2 confusion matrix given in table 2.

Table 2. Confusion matrix for the ErrP classification problem.

predicted

corret error

actual correct TN FP

error FN TP

- Good classification rate. In the particular case of unbalanced data, the good

classification rate must be calculated for each class independently. Indeed, a global

good classification rate may lead to misleading results. For example, in our problem,

where the errors only represent 10% of the data, the naive classification strategy

allocating all testing data to the majority class would automatically achieve a good

classification rate of 90%. However the classifier is obviously irrelevant for detecting

error trials.

- Pierce’s Skill Score. Given the confusion matrix, the good prevision rate H =

TP/(FP + TP ) and the false alarm rate F = FP/(TN + FP ) for the error class
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lead to the so-called Pierce score

PSS = H − F . (19)

By construction, PSS ∈ [−1; +1]. In our context the closer PSS is to +1, the

better the classifier is for the detection of error trials.

4.3.2. ErrP detection. For the considered dataset the number of error trials (N1)

is much smaller than the number of correct trials (N0). For performance evaluation,

unbalanced training sets of increasing size are generated, all based on the a priori 10% of

errors. For each participant and each randomly drawn unbalanced training set (namely,

{N1 = 20, N0 = 200} , {N1 = 30, N0 = 300} , . . .), the test set is composed of all

remaining data, therefore its size differs. For each participant this splitting is performed

100 times and classifiers performance are recorded.

The proposed method (named LMM hereafter) is compared with several classifiers:

classical linear discriminant analysis (LDA), regularized method (regularized LDA -

RDA - as proposed in [7]) and diagonal discriminant analysis (diagonal LDA (DLDA)

and diagonal QDA (DQDA)). In addition, LMM is also compared to LDA, RDA and

DLDA classifiers after sub-sampling the majority class to balance training sets. The

classic QDA classifier cannot be used, because the sample covariance matrix in error

class is very often singular in the considered range of sample sizes. Corresponding

results are displayed in figure 8. Let us stress that the error bars represent the standard

deviation of the good classification rates distribution. Since the training and test sets

are complementary, when the size of training set increases, the number of single-trial

signals used to evaluate the good classification rates decreases, and consequently the

error bar increases. These error bars only measure the dispersion of the estimates and

cannot be used for quantitative pairwise comparison (see below).

Clearly LMM greatly outperforms each method in terms of error detection in

all situations. This result is particularly spectacular for small training set which we

interpret as follows. The simplicity of the underlying model (which involves very few

parameters) and its relevance for the considered dataset yield accurate and robust

parameter estimates even for small sample size. In addition, our method performs

equivalently to other methods to detect correct trials which correspond to the majority

class. Even with small sample size, classifiers detect correct trials with a good

classification rate close to 100%.

We provide in table 3 quantitative classifiers comparison based on Pierce’s Skill

Score (PSS) defined in (19). For each training set, PSS is computed for each classifier.

LMM is compared with each other classifier (OC) using Wilcoxon signed rank test

(a paired non-parametric statistical test, see [23, 26]) based on the average difference

PSSLMM − PSSOC .

For participant A, LMM outperforms all the other considered classifiers very

significantly except DQDA from the sample size (80 − 800). Indeed the DQDA

performances are equivalent to or significantly better than the LMM ones for the largest
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sample sizes. Quantitative results for all participants can be found in Supplementary

Data. The conclusions drawn for participant A are confirmed in most configurations but

should be modulated as follows. In most situations LMM performs consistently better

than the other classifiers. This in particular true for small training sets namely when the

number of errors is in the range (20, 30, 40, 50), where the superiority is supported by

statistical tests (with only two exceptions where results are equivalent). These results

can be explained by the preprocessing which enforces the data decorrelation and are

coherent with the results of Box’s M test (see section 4.2.1).

The proposed method is therefore a valuable alternative to linear discriminant

techniques which involves quadratic decision rule avoiding the difficulty of usual

shortcomings of classical QDA.
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Figure 8. Good classification rates for different training sample sizes (error−correct).
Results correspond to good classification rates averaged over 100 iterations for each

training sample size. Vertical bars represent standard deviations (std). Results are

given for error (plain lines) and correct (dotted lines) test trials. LMM classifier is

compared with three different classifiers on the unbalanced and re-balanced datasets.

(a), (b), (c) display results in the unbalanced case (10% error trials) for classic LDA

(LDA), Regularized LDA (RDA) and Diagonal LDA and QDA (DLDA & DQDA)

respectively. (d), (e), (f) display results of the LDA, RLDA and DLDA classifiers after

re-balancing datasets by subsampling the correct class.

Remark 4 As mentioned above, the correct classification rate depends heavily on the

quality of the estimation of the covariance matrices. In our case, the latter are strongly

simplified, and the issue is the quality of the estimation of the mean vectors µc and

the variances τ 2 and σ2. Thanks to pre-processing and dimension reduction, variances
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Table 3. Participant A: Classifiers comparison based on PSS. LMM performances are

compared with other classifiers using the Wilcoxon signed rank test. For each pair of

classifiers LMM-other classifier, the difference between the two mean PSS is given and

p-value order of magnitude is provided between parentheses.

Classifiers comparison

N1-N0 LMM-LDA LMM-RDA LMM-DLDA LMM-DQDA

20-200 0.14 (10−12) 0.36 (10−18) 0.37 (10−18) 0.41 (10−18)

30-300 0.34 (10−18) 0.34 (10−18) 0.32 (10−18) 0.32 (10−18)

40-400 0.35 (10−18) 0.30 (10−18) 0.25 (10−18) 0.21 (10−18)

50-500 0.28 (10−18) 0.25 (10−18) 0.16 (10−18) 0.09 (10−16)

60-600 0.25 (10−18) 0.23 (10−18) 0.13 (10−18) 0.07 (10−13)

70-700 0.21 (10−18) 0.19 (10−18) 0.10 (10−18) 0.03 (10−4)

80-800 0.18 (10−18) 0.17 (10−18) 0.08 (10−17) 0.009 (0.43)

90-900 0.14 (10−18) 0.13 (10−18) 0.06 (10−13) −0.01 (10−3)

100-1000 0.12 (10−17) 0.11 (10−17) 0.05 (10−10) −0.02 (10−4)

110-1100 0.09 (10−12) 0.09 (10−13) 0.04 (10−7) −0.02 (10−4)

120-1200 0.07 (10−4) 0.08 (10−6) 0.04 (10−2) 0.005 (0.23)

are estimated from KJ(N0 + N1) samples, while mean vectors µc are estimated from

N c samples. Hence the quality of the classification is mainly driven by the quality

of the estimation of the mean vectors. Since we consider unbalanced situations, the

difficult class is the minority class (in our case the error class) for which approximately

30 samples or more are needed to get more than 60% correct classifications. The other

class being ten times bigger, the corresponding classification rate is close to 100%, and

the global classification rate is satisfactory.

Similar results using different Daubechies filters are presented in Supplementary

Data. Whatever the filter, the proposed method consistently outperforms concurrent

approaches in terms of classification, best results being obtained when the Haar filter is

used.

4.4. Back to time courses: adjusted single-trials

As described in subsection 3.5, for each single-trial an estimate of the signal of interest

can be obtained according to (17). After back projection onto sensor space (using a

Moore-Penrose pseudo-inverse) and inverse DWT we obtain time courses called adjusted

single-trials. Examples of adjusted single-trials (electrode FCz) are displayed in figure 9.

These plots are obtained using the D6 Daubechies filter. Adjusted single-trials obtained

using other Daubechies filters are displayed in Supplementary Data.

The left hand plot (a) represents the raw signals averaged over trials (within each

class) together with the averages of adjusted single-trials. As can be seen for each class

the two averages are very close to each other for participant A. For other participants,

this similarity is less striking but still present. This shows that neither dimension

reductions nor modelling have strongly affected the average information. Although
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not surprising and even expected, the recovery of the global shape of the average is

a first necessary step before looking at single-trial reconstruction. It appears that the

modelling indeed captures the signal of interest and filters out the background activity.

As largely reported in the literature (see [17] for an overview), in the error class,

the estimated averages as well as the adjusted single-trials show a clear negative wave

around 150 ms after EMG onset followed by a positive one. Such a negative wave is not

observable in the correct class, as commonly reported with monopolar recordings.

The added value of the model is the explicit description and the numerical

quantification of the inter-trial variability. The latter appears clearly in the right hand

plot of figure 9(b) where adjusted single-trials are displayed. The proposed method

therefore allows one to reveal the amplitude variation of the ErrP: while some errors

induce a very large activity, some others present virtually no response. The same figure

is displayed for each participant in Supplementary Data.

Although speculative at this point, this could reveal differences in sensitivity to the

errors across trials, an hypothesis that now becomes testable thanks to the proposed

method.
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Figure 9. Illustration of single-trial reconstruction. (a) Error and correct trial

averages on FCz for participant A. Dashed curves: averages across raw trials in both

classes; full curves: averages across adjusted trials. (b) Adjusted single-trials for Err

(red) and PC (blue) classes on FCz.

5. Discussion

We first highlight the key points and main contributions of our method and then discuss

other possible applications of this work.

5.1. The impact of time-domain decorrelation

Within the proposed procedure, we would like to emphasize that the introduction

of DWT constitutes a key step for the analysis and the classification of single-trials.
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Considering multiscale coefficients instead of time-point values first gives a simplified

representation of data, but it also has important consequences for both modelling and

classification. Indeed, decorrelation and dimension reduction lead to small size, diagonal

dominant covariance matrices, easier to estimate. Consequently, in the wavelet domain

single-trials can be modelled by simple linear mixed model with a small number of

unknown parameters, allowing robust estimates from small unbalanced training set and

good classification results.

5.2. Fine structure of the model

Mixed model provides a general and flexible approach to analyze single-trial EEG

signals. It allows one to include both fixed and random effects within the same analysis.

In the case of EEG datasets it appears natural to consider trial effects as random

effects since they can be seen as originating from a random selection from a much larger

set. Furthermore, it is of direct relevance to separate inter and intra-trial variability.

However for each problem and dataset of interest, the main difficulty lies in the choice

of the dimension of the random effect vector, its class-dependence and the covariance

structure.

For ErrP detection problem, the training sample size being small, we choose

the simplest possible linear mixed model: class as fixed effect (class-average), one

dimensional random effect vector (class-independent) modulated by a class-dependent

coefficient vector Γc plus a white noise. The choice of Γc depends on the dataset and

can be done using prior information or exploratory data analysis. In our application the

observed relationship between amplitude and variability led us to set Γc equal to the

average over trials in each class.

5.3. Relevant classification results

In section 4.3, we provided a systematic comparison of related classification techniques,

all based upon linear models, involving the same fixed part (class-average) and various

approaches to model variability in the unbalanced situation. All methods were applied

after the same preprocessing step, that enforces diagonal dominance for covariance

matrices. Consequently, methods that can exploit such diagonal dominance properties

are particularly relevant. As expected, results show that they significantly outperform

classic LDA or QDA in terms of classification. Moreover our classification results

highlight two important points. The first one is that our procedure is particularly

efficient when the size of the training sample is small, emphazising the relevance of

the proposed variability modelling through the linear mixed model. Secondly, beyond

a certain sample size, namely when the number of observations permits to estimate

precisely the diagonal of the covariance matrix in the minority class, diagonal QDA

outperforms all considered methods. That point is coherent with the results of the

Box’s M test of equality of class-covariance matrices. For all participants, when the

number of trials is sufficient to calculate the test statistic, Box’s M test rejects the
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hypothesis of equality (p-value ≤ 10−3). Unlike the balanced case where LDA generally

outperforms QDA even when class-covariance matrices are different, diagonal QDA gives

better results than diagonal LDA. In the unbalanced case, we stress that it is preferable

to take into account the difference in variability of both classes. However it is well known

that the classifier performance depends on the accuracy of the estimate of parameters

involved in the procedure, and to obtain accurate parameter estimates the number of

samples must be much larger than the number of parameters. Therefore when the

sample size is small, modelling the intra-class variability is well suitable. In our model,

in addition to the class average estimates, only two parameters are needed to estimate

the two class-covariance matrices.

5.4. Possible applications

Being able to exploit the single-trial M/EEG component would open a new window on

the dynamics of brain processes, and the range of applications is wide. Although some

might be obvious, let us focus on some areas where the proposed approach might be

especially useful.

5.4.1. BCI. In the present application, we considered a discriminant framework. In

this context, BCI naturally becomes a straightforward extension for the proposed

LMMC procedure. Indeed, classification results, presented in section 4.3.2, illustrate

the performance of single-trial variability modelling on classifying error vs correct

trials. Importantly, the total variance explicit modelling, combined with spatial and

temporal dimension reductions, allows robust parameters estimates, even when based

on a limited training dataset. Sticking to a small training dataset is essential to

keep the BCI calibration session as short as possible, a condition that can be reached

thanks to the simplicity of the proposed model. The procedure, as described above,

is not restricted to error potential estimate, however, and can easily be extended

to other BCI protocols. Indeed, a strength of LMMC method is the modularity

and interchangeability of the preprocessing steps. Concerning the spatial dimension

reduction, well established spatial filtering methods have been developed for specific

BCI tasks: for example Common Spatial Pattern (CSP) are especially suited spatial

filters for motor imagery [50] whereas xDAWN has been developed for P300 data [48].

Those methods can easily be implemented in the LMMC procedure while leaving the

modelling step almost unchanged. The same holds for temporal dimension reduction.

In the current application, to get rid of temporal correlation and for temporal dimension

reduction, we used wavelet transform which is well suited to extract transient phenomena

such as ERP’s (ErrP, P300, etc.). However, the choice of the basis can depend on the

data to analyze, and for more oscillatory signals such as the ones recorded in motor

imagery (like µ and β rhythms, see [39]), other transforms such as time-frequency

transforms (MDCT, STFT, see [35]) or adaptive transforms [54, 4] might be more

suitable. Again, changing the transform leaves the variance modelling steps almost
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unchanged, as long as the transform is invertible.

5.4.2. Single-trial extraction in cognitive neurosciences. In many experimental

situations, being able to extract the single-trial amplitude of brain activity would open a

new window on the dynamics of brain processes. One example is the temporal evolution

of brain activity during learning: across repetitions of the learning situation, some

brain regions might become more active, while some other might disengage from the

task. Relying on averaging, at best, dramatically reduces the analysable temporal

dynamic of the learning process. For example, while no clear learning effect could

be evidenced on the raw Auditory Evoked Potentials (AEP) in rats, extracting the

single-trial component (through denoisig in this case) allowed to regress learning curves

on the trial–by–trial responses, and show that the amplitude of some components of

the AEP reduces with learning while other remain unchanged [46]. Averaging also

prevents analyzing correlations between brain activities and behaviour across trials.

For example, RT or psychophysical judgements are known to be highly variable even

for the very same stimulation. The variability in RT have long be known to provide

essential information to put into test different model of information processing [34].

Unfortunately, the equivalent variability is normally not accessible for EEG/MEG brain

responses, preventing the use of similar constraints on models based on brain activity

(see e.g. [22], for trial-to-trial variability to constraint RT models). The LMM approach

furnishes a way to recover this variability (at least in amplitude) and may help to

correlate brain activities to behaviour. Further applications will probe what type of

constraint such variability can bring for model testing.

Another key interest of the proposed approach is the ability to better analyze

unbalanced data, which is a quite common situation. Indeed, from a statistical point of

view, LMM allows increasing the robustness of the estimates from small datasets and

hence reducing the risk of type II error (false negative), which is a common problem in

small and noisy dataset. It may also help to decrease the number of necessary trials to

reach a given statistical power, which can be of tremendous interest on some populations

(children, patients, etc.).

One may wonder, however, how general this methodology can be and whether it

would apply with similar success on other brain activities which might not be as stable

as the ErrP. Although we do not have any empirical response, formal analysis of the

model allows speculating a bit. In the current modelling, the class average plays a

central role. One can therefore anticipate that the quality of the modelling will largely

be driven by the quality of the average. As a consequence, as long as the average emerges

from the background noise, that is, as long as there is an ERP, it should be possible

to apply the model. For example, it should be possible to apply the method on robust

components, such as the standard visual evoked potentials (N1, P2, N2 etc.). This will

be investigated on future research.



Detecting EEG Evoked Potential using a Wavelet Domain Linear Mixed Model 28

6. Conclusions and future works

In the present work we propose a single-trial classification procedure (LMMC) based

on an explicit model of the signal variability in the wavelet domain. Each single-trial

signal is assumed to be the sum of two components: a background activity and a signal

of interest. The latter can again be decomposed into the sum of a fixed part (the

class-mean) and a random part that models the deviation of each single-trial from the

class-mean. This hypothesis is formalized mathematically as a Gaussian linear mixed

model (LMM). This model generalizes the Gaussian linear model given in [7] which

was adapted to situations where between-trial variability is negligible. An important

step is the discrete wavelet transform in the preprocessing. On the one hand, this

transformation allows one to reduce the time dimension and on the other hand, to

consider a very simple model where class-covariance matrices are characterized by only

few parameters (to be estimated). The advantage of such a model is to yield robust

estimates of parameters from a small dataset.

This model is applied to a classification problem, namely separating correct from

erroneous responses in a RT task. As expected, the proposed classification procedure is

particularly efficient to detect EEG Error Potentials in the unbalanced case when the

sample size of the minority class is small. Moreover these results validate the chosen

modelling.

In addition, the proposed procedure allows the extraction of relevant and

discriminant information from EEG signals. As a matter of fact model parameters

estimates provide quantitative measures of the between-trial variability in each class in

addition to the average behaviour. In the specific context of error potential detection, the

proposed model allows one to recover single-trial signal of interest and more interestingly

reveals the trial-by-trial amplitude variation of ErrP’s.

Several directions might be interesting to investigate further and we list a few of

these below.

First, the choice that was made for random part coefficient vector Γc explicitly assumes

a linear relationship between the signal of interest’s amplitude and variability. However,

although the existence of a monotonic dependence between mean and variance seems

a reasonable assumption, the relationship needs not be linear and is likely to be more

complex (for example, class dependent). Further investigating and characterizing the

link between mean and variance should improve the choice of the random component

and hence the modelling performance.

Another improvement would be to better take into account the cubic structure of

M/EEG data (i.e space × time × trials). Decoupling spatial and temporal features

extraction [53] could lead to a more complex form for the random effects design matrix

and hence to a spatio-temporal modelling of between-trial variability.

Comparing the EEG error potentials across participants, not only on this dataset

but in the literature, see e.g. [49, figure 3], suggests large similarities between

participants, but also some differences, both in terms of topography and time courses.
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One might therefore consider incorporating also the between participant variability

within a more sophisticated mixed model, which would then model the deviation of

the participant (in time and in topography) to the mean behaviour. The model would

include common settings and parameters specific to each subject. From a statistical

point of view, the introduction of such common settings would presumably increase the

robustness of the estimates from small datasets. This would in particular allow a more

robust estimate of the single participant topography and time course. The question as

to whether such differences in topography is related to fine anatomical differences [44]

would become easier to test, especially when few trials are available.
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