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New State Observer Based On Takai-Sugeno Fuzzy Controller of
Induction Motor

M.Y Hammoudi, M.E.H Benbouzid, Senior Member, IEEE, N. Rizoug, A. Allag

Abstract— This paper presents a nonlinear observer-based
on Takagi-Sugeno(T-S)fuzzy controller design approach for
induction motor (IM). The peculiarity of this paper is the
synthesis of a mono- Luenberger observer for highly coupled
system. The TS fuzzy model is firstly used to approximate the
nonlinear IM systems. Next, based on the differential mean
value theorem combined to the sector nonlinearity transfor-
mation, a nonlinear fuzzy observer is designed to estimate the
system states in order to implement the fuzzy controller. Then,
the parallel distributed compensator (PDC) scheme is used
to design the fuzzy controller for the overall system. Fuzzy
Controller and observer gains are obtained by solving a set of
Linear Matrix Inequality (LMI).Finally, illustrative simulation
results represented to validate the performance of the proposed
approach.

Index Terms— Observer design, Differential mean value theo-
rem, Sector nonlinearity transformation, Linear matrix inequal-
ities (LMI), Induction motor, Parallel distributed compensator,
T-S Fuzzy Model.

I. INTRODUCTION

The induction motor (IM) has many excellent performance
features such as rugged, high reliability, low cost and simple
hardware structure. Due to the advantages mentioned above,
the induction motor has been used widely in the field of
industrials driving systems and their applications [1]-[2].

Due to the intrinsic nonlinear coupling between the dy-
namics of the electrical part and of the mechanical part,
inaccessibility for the rotor flux, and system-parameter vari-
ations, many modern control techniques have been designed
to overcome the tracking problem. Adaptive control methods
are proposed in [3]; Fuzzy adaptive control has been studied
in [4] and, sliding mode control has been adopted by [5].

In [3] an adaptive controller for speed regulation of
induction motor was designed based on the input-output
decoupled technique.

An adaptive fuzzy MIMO control of induction motors
is studied in [4]. M. Rodicand all [5] proposed Speed-
sensorless sliding-mode torque control of an induction motor.
Fuzzy control design methods for induction motor with
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a guaranteed H model reference tracking performance is
proposed by [6].

The Takagi-Sugeno fuzzy approach has been extensively
used to the nonlinear systems [7], [2]. This kind of model
is described by a group of fuzzy IF-THEN rules which
describe the local inputoutput relationships of original non-
linear system. The basic idea is to decompose the model
of a nonlinear system into a set of linear subsystems with
associated nonlinear weighting functions [6].

The PDC offers a procedure to design a fuzzy controller
from a given T-S fuzzy model. The main idea of the PDC
technique is the partition of a nonlinear system dynamics into
a number of linear subsystems, design a number of local
controllers for each linear subsystem, and finally generate
the overall controller by the fuzzy blending of such local
controllers [8].

All states of IM systems are not measurable. Hence, we
envision that a nonlinear observer would be important in
fuzzy control. Over the past few years, various observers
have been considered to the state of IM system.

In [9], a robust adaptive observer for sensorless induc-
tion motor was designed based on the linearized dynamic
equation and linear matrix inequality method. Sliding mode
observers to estimate rotor flux were proposed in [10]-
[11]. In [12] an extended Kalman filter method was adapted
to estimate the rotor flux of induction motor. Nonlinear
Luenberger observers [13] have been proposed for Sensorless
Vector Control of Induction Motors. In [14], a new non-linear
observer structure based on the backstepping principle for
sensorless IM drive is proposed. A nonlinear observer based
control of induction motors is proposed by [15].

In [16] an adaptive resilient observer for a Lipschitz
nonlinear system was designed, the authors [17] proposed an
observer based on DMVT for a nonlinear system. Another
LMI-based observer design for a class of Lipschitz nonlinear
dynamical systems can be found in [18].

The design procedure in this paper aims at designing
stable nonlinear observer based fuzzy controllers for Induc-
tion motor. Firstly, the Takagi-Sugeno approach is used to
approximate the nonlinear system of induction motor. Once
the fuzzy model is obtained, the control design is carried
out via the PDC scheme. The basic idea is that for each
local linear model, there is an associated linear feedback
control [19]. Secondly, the DMVT fuzzy observer is also
designed independently for the controller according to the
separation property. Controller and observer gains may be
computationally solved from stability criteria formulated into
linear matrix inequalities. The stability of the overall control



system including a fuzzy regulator and a fuzzy observer is
guaranteed.

This paper is organised as follows: the TS fuzzy modeling
is performed in Section 2, Sections 3 provide the controller
design and the observer design respectively. The dynamic
model of IM system is illustrated in Section 4. In Section 5,
simulation results are represented to illustrate the effective-
ness of proposed methods. Finally, conclusions are drawn in
Section 6.

II. NONLINEAR OBSERVER BASED FUZZY CONTROLLER
DESIGN

Consider a nonlinear system described by

{
ẋ(t) = f (x(t),u(t))

y(t) = h(x(t)) (1)

Where x ∈ Rn, u ∈ Rp and y ∈ Rm are the state, the
input and the output measurement vectors, and C ∈ Rn×m

are appropriate matrices. In addition, the function f (x) and
h(x) are assumed to be differentiable.

A. Takagi-Sugeno fuzzy model

The TS fuzzy model is described by fuzzy if-then rules
which represent local linear input-output relations of a non-
linear system. The ith rule of the T-S fuzzy model is of the
following form:

Plant Rule i
IF z1(t) is Fi1 and z2(t) is Fi2 . . . zp(t) is Fip

THEN{
ẋ(t) = Aix(t)+Biu(t)) i = 1,2, . . . ,r
y(t) =Cix(t)

(2)

The above fuzzy model is represented as ẋ(t) =
r

∑
i=1

hi(z(t))(Aix(t)+Biu(t))

y(t) =Cix(t)
(3)

Where hi(z(t)) are the weighting functions depending on
the variables zi(t) and satisfy the convexity property:

hi(ξ (t)) =
µi(ξ (t))

r

∑
i=1

µi(ξ (t))
(4)

r

∑
i=1

hi(ξ (t)) = 1 and 0≤ hi(ξ (t))≤ 1 (5)

B. Observer Design

1) Problem statement: This section presents an efficient
methodology for designing observers for the class of nonlin-
ear systems [20]: The proposed observer is described by:

˙̂x(t) =
r

∑
i=1

hi(x̂(t))(Aix̂(t)+Biu(t)+L0(y(t)− ŷ(t)) (6)

Let us introduce the following matrices

A0 =
1
r

r

∑
i=1

Ai,B0 =
1
r

r

∑
i=1

Bi, Āi = Ai−A0, B̄i = Bi−B0 (7)

Then, it is easy to rewrite the system (2) in the following
Lipchitzien form

ẋ(t) = A0x(t)+B0u(t)+
r

∑
i=1

hi(x(t))(Āix(t)+ B̄iu(t)) (8)

We denote that the matrices A0 and B0 play the role of
nominal values of the system. The state equation of the
observer (6) can also be presented in the following form

˙̂x(t) = A0x̂(t)+B0u(t)+L0(y(t)− ŷ(t))

+
r

∑
i=1

hi(x̂(t))(Āix̂(t)+ B̄iu(t)
(9)

Let us defined a new function ϕ(x) Where

Φ(x,u) =
r

∑
i=1

hi(x(t))(Āix(t)+Biu(t)) (10)

The dynamic of the state estimation error e(t) is given by:

{
e(t) = x(t)− x̂(t)
ė(t) = (A0−L0C)e(t)+(Φ(x,u)−φ(x̂,u)) (11)

2) Differential mean value theorem: In this section, we
present the mean value theorem for vector functions in order
to develop the observer gain in the next section [21].

Lemma 1:

Let a vector function (x) : Rn → Rq, we can write f as
follow:

f (x) =
q

∑
i=1

eq(i) fi(x) (12)

Where fi is the ith component of f . And eq defined by:{
eq(i) = [0 . . 0 1 0 . . . . 0]T

1 i−1 i i+1 q (13)

Theorem 1:

Consider fi(x) : Rn→R Let ,b ∈Rn . We assume that fi is
differentiable on [a,b] . Then there exists a constant vector
ξ ∈]a,b[, such that

fi(a)− fi(b) =
∂ fi(ξ )

∂x
(a−b) (14)

Applying the theorem on (12), it is obtained fora,b ∈ Rn

f (a)− f (b) =
n

∑
i=1

n

∑
j=1

en(i)eT
i

∂ fi(ξ )

∂x
(a−b) (15)

The observation problem consists in finding a gain L0 such
that the observer error converges exponentially and asymp-
totically towards zero. Comparing (9) with (10), we find

φ(x,u) = ( f (x)−A0x)+(g(x)u−B0u) (16)



From (16), and By the DMVT, there exists ξ (t) ∈]x, x̂[,such
that:

ϕ(x)−ϕ(x̂) =
∂ϕ(ξ )

∂x
(x− x̂) (17)

Then, (17) could be written as:

ϕ(x)−ϕ(x̂) =
n

∑
i=1

n

∑
j=1

en(i)eT
n ( j)

∂ϕi(ξ )

∂x j
(x− x̂) (18)

The expression (18) into (11), the dynamics of the observer
error becomes:

ė(t) = (A0−L0C+
n

∑
i=1

n

∑
j=1

en(i)eT
n ( j)

∂ϕi(ξ )

∂x j
).e (19)

C. Fuzzy regulator design via parallel distributed compen-
sation:

The parallel distributed compensation (PDC) [19] is em-
ployed to design a fuzzy controller from the T-S fuzzy model.
The main idea of the PDC is to design each local control rule
so as to compensate each local rule of a fuzzy system. Each
control rule is distributively designed from the corresponding
rule of the T-S fuzzy model in the PDC. The PDC provides
the fuzzy rule structure (20) for the fuzzy model.

Plant Rule i
IF z1(t) is Fi1 and z2(t) is Fi2 . . . zp(t) is Fip

THEN

u(t) =−Kix(t) i = 1,2, . . . ,r (20)

The fuzzy control rules have linear state feedback laws in the
consequent parts. The overall fuzzy controller is represented
by

u(t) =−
n

∑
i=1

µi(x̂(t))Ki(x̂(t)− xc(t)) (21)

The feedback gains of the controller Kiare determined by
an LMI-based design technique, the desired states xc(t)in
our application are determined by the field oriented control
(FOC). By substituting (20) into (3), we obtain


ẋ(t) = A0x(t)−B0

r

∑
i=1

µi(x̂(t))Kix̂(t)+ϕ(x)

ė(t) = (A0−L0C+
n

∑
i=1

n

∑
j=1

en(i)eT
n ( j)

∂ϕi(ξ )

∂x j
).e(t)

(22)
1) Assumption : We assume that the functions ϕ(x)is a

differentiable function satisfying

αi j < ϕi(x)< βi j (23)

We assume that the functions ∂ϕi(ξ )
∂x j

is a differentiable
function satisfying

∂ϕi(ξ )

∂x j
= λ

1
i j(ξ ).αi j +λ

2
i j(ξ ).βi j (24)

Where 

0≤ λ 1
i j =

∂ϕi(ξ )
∂x j
−αi j

βi j−αi j
≤ 1

0≤ λ 2
i j =

βi j− ∂ϕi(ξ )
∂x j

βi j−αi j
≤ 1

λ 1
i j +λ 2

i j = 1

(25)

We replace (24) in (22):

ė(t) = ((A0−L0C)+
n

∑
i=1

hiAi).e (26)

Then[
ẋ(t)
ė(t)

]
=

r

∑
i=1

r

∑
j=1

µi(z(t))hi(z(t))×[
A0−B0Ki +Ai −B0Ki

0 A0−L0C+A j

]
.

[
x(t)
e(t)

] (27)

Now the main problem consists in finding the gains Ki
and L0 such that the system (27) is asymptotically stable.
Due to the coupling of the observer and controller equations,
we cannot calculate directly the gains by solving the LMI’s,
however, we exploit the separation principle holds to getting
the observer and controller gains, and therefore one can make
use of the results and relaxations techniques in literature [13].

D. LMI based designs for augmented system
In this section, we propose LMI-based designs for the

augmented system containing the nonlinear the observer and
the fuzzy regulator. From the above discussions, the whole
system which consists of the fuzzy regulator and the DMVT
observer are required to satisfy:{

Reg x(t)→ xc(t) when t→ ∞

Obs x̂(t)→ x(t) when t→ ∞

The stability analysis of the system (27) is studied in order
to find the gains (Ki and L0).This analysis is performed by
using the Lyapunov theorem and a tow quadratic Lyapunov
function, defined by:{

Reg V (x(t)) = xT (t)Px(t)
Obs W (e(t)) = eT (t)Se(t)

Theorem 2:
The state estimation error asymptotically converges to

ward zero if there exist a symmetric positive definite matrix
P and a matrix M such that the following linear matrix
inequalities hold i = 1, . . . ,q

A0P+PAT
0 +AiP+PAT

i −B0Gi−GT
i BT

0 < 0 (28)

AT
0 S+SA0 +AT

i S+SAi−NC−CT NT < 0 (29)

Where the observer gain and the controller gains are given
by {

Ki = GiP−1

L0 = S−1N
(30)



Proof:
Considering the Lyapunov functions (28), therefore, there

derivative is given as follows:

V̇ (x(t)) = xT (t)(AT
0 P+PA0−KT

i BT
0 P−PB0Ki

+AT
i P+PAi).x(t)< 0 (31)

Ẇ (e(t)) = eT (t)(AT
0 S+SA0−CT LT

0 S−SL0C
+AT

i S+SAi).e(t)< 0 (32)

The stability of the state and state estimation error are
ensured if the time derivative of the Lyapunov equations (31)
and (32) are negative definite, which leads to the LMIs (26-
27), for more details of the proof of the theorem see [19].

Remark:

Note that the dynamics of the observer is very fast as the
controller; consequently, it does not affect the stability of the
latter.

III. DYNAMICAL MODEL OF INDUCTION MOTOR

Let(isd , isq),(φrd ,φrq),ωs and (usd ,usq)denote the compo-
nents of the stator currents, rotor fluxes, electrical speed
of stator, and the stator voltages, respectively. The elec-
tromagnetic dynamic model of the induction motor in the
synchronous d−q reference frame can be described in [6]:

ẋ = f (x(t))+g(x(t))u(t)+ v(t) (33)

f (x) =



−γisd +ϖsisq +
Ks
τr

φrd +Ksnpωmφrq

−ϖsisd− γisq−Ksnpωmφrd +
Ks
τr

φrq
M
τr

isd− 1
τr

φrd +(ϖs−npωm)φrq
M
τr

isq− (ϖs−npωm)φrd− 1
τr

φrq

npM
JLr

(φrd isq−φrqisd)−
f
J

ωm


g(x)

[
1
Ls

0 0 0 0
0 1

Ls
0 0 0

]T

x =
[
isd isq φrd φrq ωm

]T
,u =

[
usd usq

]T and
y =

[
0 0 0 0 −Cr

J

]T
τr =

Lr

Rr
, τs =

Ls

Rs
, Ks =

Msr

σLsLr

σ = 1− (
M2

sr

LsLr
), γ = (

1
στs

+
1−σ

στr
)

The motor parameters are: stator resistance and
inductance(Rs,Ls ), rotor resistance and inductance(Rr,Lr),
moment of inertia, mutual inductance M, friction coefficient
f and number of poles pairs np. The electrical speed of the
stator defined in the synchronous d− q frame is proved in
[6]:

wsc = npωc +
M

τrφrdc
isqc (34)

In order to determine the desired states xc(t),we exploit
the theory of Field Orientated Control (FOC). The Field
Orientated Control (FOC) [20] consists of controlling the

stator currents represented by a vector. This control is based
on projections which transform a three phase time and speed
dependent system into a two co-ordinate (d and q co-
ordinates) time invariant system. These projections lead to
a structure similar to that of a DC machine control. After
replacing the state variables of the induction motor by the
reference signals

x =
[
isdc isqc φrdc 0 ωmc

]T
in (33) we obtain the following equations lead to the stator
current reference:

 isdc =
φrdc
M + τr

M
d
dt φrdc

isqc =
JLr

npMφrdc
(Cr

J + f
J ωmc +

d
dt ωmc)

(35)

A. TS fuzzy model representation of Induction Motor

The method based on nonlinear sector transformation
allows to exactly transform the system (33) into the T-S
model with 8 sub models [2]. The chosen premise variables
are given by:

 z1(t) = isd(t)
z2(t) = isq(t)
z3(t) = ωm(t)

(36)

Then the TS fuzzy model can be written as follow [6] :

{
ẋ(t) =

r

∑
i=1

hi(z(t))(Aix(t)+Biu(t)+ v(t)) (37)

Where hi(z(t))are the weighting functions depending on the
variables zi(t) and satisfy the convexity property:

 ẋ(t) =
r

∑
i=1

hi(z(t)) = 1∀i ∈ {1,2, . . . ,n}

≤ hi(z(t))≤ 1
(38)

B. Fuzzy controller and fuzzy Observer for induction motor

We design a fuzzy controller and a fuzzy DMVT observer
for induction motor In order to estimate the unknown states
of the induction motor we use the fuzzy observer. We assume
that the components of the stator currents are measured The
basic design steps for the mean value theorem observer are
summarized below. Calculate the matrix A0 from the T-
S representation. Forming the matrix ∂ f

∂x (ξ ). Calculate the
matrices ψ . Solving the linear matrix inequality. Next, we
design a fuzzy regulator and a nonlinear observer from the
fuzzy model using the procedure proposed in this paper.
Using the convex optimization technique involving LMIs, we
find Ki and L0. Therefore, the augmented system is stable.



K1 =

[
59.002 −41.998 11735 −7270 0.6959
18.291 59.324 1828.5 10631 −0.16108

]
K2 =

[
0.13 17.79 1079 1751.9 0.237
−42.01 58.19 −7320.6 11560 −0.67

]
K3 =

[
59.502 −41.883 11793 −7265.9 0.85021
18.151 58.84 1818 10576 −0.15997

]
K4 =

[
60.634 17.78 10852 1741.9 0.39255
−42.023 57.708 −7316.8 11504 −0.6678

]
K5 =

[
59.005 −41.741 11732 −7242.5 0.69208
18.029 59.324 1800.2 10634 −0.3176

]
K6 =

[
60.135 17.789 10792 1751 0.23509
−42.011 58.194 −7320.2 11561 −0.82468

]
K7 =

[
59.502 −41.889 11793 −7266.6 0.84773
18.153 58.843 1818.1 10576 −0.315

]
K8 =

[
60.634 17.779 10852 1741.8 0.39004
−42.026 57.711 −7317.2 11505 −0.82286

]

L0 =


−1095.7 −895.3
−403.04 102.19
−9.4541 7.721
−32.049 −45.56

16150 17254


The Overall scheme of the nonlinear observer based fuzzy

controller is shown by figure 1.

Fig. 1. Overall diagram of the proposed observer based controller

IV. SIMULATION RESULTS

Numerical simulations were carried out in order to verify
the efficiency of the approach. We used the following motor
parameters:

Mutual inductance M = 0.4475H
Moment of inertia J = 0.0293Kg.m2

Stator resistance Rs = 9.65Ω

Rotor resistance Rr = 4.3047Ω

Stator inductance Ls = 0.4718H
Rotor inductance Lr = 0.4718H
Pole Pair np = 2
The premise variables are bounded as:

−200rd/s≤ ω(t)≤ 200rd/s

−6A≤ isd(t)≤ 6A

−6A≤ isq(t)≤ 6A

Simulation results are presented for step change in speed.
The actual and estimated speed responses of induction motor
are shown in Fig.2, where the rotor Speed of IM is increased
from 60rd/s to 120rd/s to 157 rd/s at t = 1s and t = 2s
respectively. Fig.3, show the error rotor speed. Initially, the
load is zero and motor, at t = 3s, a balanced load of 5Nmis
applied to induction motors. Always, the system is still at
stable state. The motor and load torque responses are shown
in Fig.4 .

Fig. 2. Rotor speed and their estimated

Fig. 3. Error speed

Fig. 4. Motor Torque



Fig. 5. d-axis stator flux and their estimate

The d-axis stator flux and their estimate are depicted in
Fig.5.

Fig.2 and Fig.5, show a less tracking errors is observed
for the speed and the d-axis ux in spite of the load torque,
but it remains close to its reference value.

These results demonstrate and confirm the highlight effec-
tiveness of the proposed observer based controller. However,
low cost and fast Digital Signal Processors capable of im-
plementing relatively complex algorithms are available in the
market that makes this method suitable for high performance
applications.

V. CONCLUSION

In this paper, a fuzzy regulator and fuzzy observer based
on differential mean value theorem for induction motor is
developed. First, we transform the nonlinear model of in-
duction motor into a T-S fuzzy representation, which derived
from the sector nonlinearity approach. Then, LMI based
design procedures for fuzzy controller have been constructed
using the parallel distributed compensation. Next, we used
the differential mean value theorem which allows writing the
dynamics of the observer error as a LPV system for concept
the fuzzy observer. The stability conditions are expressed
in terms of Linear Matrix Inequalities. Finally, a design
algorithm of fuzzy control system containing fuzzy regulator
and fuzzy observer has been constructed. The simulation
results are provided to verify the validity of the proposed
approach.
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