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Local Isometric immersions of pseudo-spherical surfaces and evolution equations

, we have shown that this property fails to hold for all other second order equations, except for those belonging to a very special class of evolution equations. In the present paper, we consider a class of evolution equations for u(x,t) of order k ≥ 3 describing pseudo-spherical surfaces. We show that whenever an isometric immersion in

E 3 exists, depending on a jet of finite order of u, then the coefficients of the second fundamental forms are functions of the independent variables x and t only.

Introduction and Statement of Results

The notion of a partial differential equation describing pseudo-spherical surfaces was defined and studied extensively in a paper by Chern and Tenenblat [START_REF] Chern | Pseudospherical surfaces and evolution equations[END_REF]. The class of these equations is of particular interest because it enjoys a remarkable set of integrability properties in the case when a parameter playing the role of a spectral parameter is present in the 1-forms associated to the pseudo-spherical structure. Indeed, one obtains in that case an infinite sequence of conservation laws and an associated linear problem whose integrability condition is the given partial differential equation. 1 We begin by recalling some basic definitions. A partial differential equation ∆ (t, x, u, u t , u x , . . . , u t l x k-l ) = 0, (

is said to describe pseudo-spherical surfaces if there exist 1-forms

ω i = f i1 dx + f i2 dt, 1 ≤ i ≤ 3, (2) 
where the coefficients f i j , 1 ≤ i ≤ 3, 1 ≤ j ≤ 2, are smooth functions of t, x, u and finitely many derivatives of u, such that the structure equations for a surface of Gaussian curvature equal to -1,

dω 1 = ω 3 ∧ ω 2 , dω 2 = ω 1 ∧ ω 3 , dω 3 = ω 1 ∧ ω 2 (3) 
are satisfied if and only if u is a solution of (1) for which ω 1 ∧ω 2 = 0. In other words, for every smooth solution of (1) such that ω 1 and ω 2 are linearly independent, we obtain a Riemannian metric

ds 2 = (ω 1 ) 2 + (ω 2 ) 2 , (4) 
of constant Gaussian curvature equal to -1, with ω 3 being the Levi-Civita connection 1-form. This condition is equivalent to the integrability condition for the linear problem given by

dv 1 = 1 2 (ω 2 v 1 + (ω 1 -ω 3 )v 2 ), dv 2 = 1 2 ((ω 1 + ω 3 )v 1 -ω 2 v 2 ). ( 5 
)
1 It is worth pointing out at this stage that the conservation laws arising from the geometry of pseudo-spherical surfaces may be non-local. We refer to [START_REF] Reyes | Pseudopotentials, nonlocal symmetries and integrability of some shallow water wave equations[END_REF] and the references therein for an explicit treatment of the relationship between the conservation laws obtained in [START_REF] Cavalcante | Conservation laws for nonlinear evolution equations[END_REF] and the standard series of conservation laws obtained via the classical Wahlquist-Estabrook construction. We also refer to [START_REF] Huber | The Cavalcante-Tenenblat equation -Does the equation admit physical significance?[END_REF], [START_REF] Sakovich | Solitary wave solutions of the short pulse equation[END_REF] and [START_REF] Sakovich | On transformations of the Rabelo equations[END_REF] for the study of the integrability properties of some specific families of equations describing pseudo-spherical surfaces.

For the purposes of this paper, the motivating example of a partial differential equation describing pseudo-spherical surfaces is the sine-Gordon equation

u tx = sin u, (6) 
for which a choice of 1-forms (2) satisfying the structure equations ( 3) is given by

ω 1 = 1 η sin u dt, ω 2 = η dx + 1 η cos u dt, ω 3 = u x dx, (7) 
where η is a non-vanishing real parameter. This continuous parameter is closely related to the parameter appearing in the classical Bäcklund transformation for the sine-Gordon equation and is central to the existence of infinitely many conservation laws for the sine-Gordon equation. It is noteworthy that there may be different choices of 1-forms satisfying the structure equations (3) for a given differential equation. For example, for the sine-Gordon equation ( 6), a choice different from the one given in ( 7) is given by

ω 1 = cos u 2 (dx + dt), ω 2 = sin u 2 (dx -dt), ω 3 = u x 2 dx - u t 2 dt. (8) 
Partial differential equations (1) which describe pseudo-spherical surfaces and for which one of the components f i j can be chosen to be a continuous parameter will be said to describe η pseudo-spherical surfaces. One important feature of the differential equations describing η-pseudo-spherical surfaces is that each such differential equation is the integrability condition of a linear system of the form [START_REF] Ferraioli | Fourth order evolution equations which describe pseudospherical surfaces[END_REF], which may be used as a starting point in the inverse scattering method and lead to solutions of the differential equation (see for example [START_REF] Beals | Bäcklund transformations and inverse scattering for some pseudospherical surface equations[END_REF]).

It is therefore an interesting problem to characterize the class of differential equations describing η-pseudo-spherical surfaces, and this is precisely what Chern and Tenenblat [START_REF] Chern | Pseudospherical surfaces and evolution equations[END_REF] did for k-th order evolution equations

u t = F(u, u x , ..., u x k ). (9) 
These results were extended to more general classes of differential equations in [START_REF] Rabelo | A characterization of differential equations of type u xt = F(u, u x , . . ., u x k ) which describe pseudo-spherical surfaces[END_REF], [START_REF] Rabelo | On equations which describe pseudo-spherical surfaces[END_REF], [START_REF] Rabelo | On equations of the type u xt = F(u, u x ) which describe pseudospherical surfaces[END_REF], and [START_REF] Rabelo | A classification of equations of the type u t = u xxx + G(u, u x , u xx ) which describe pseudo-spherical surfaces[END_REF]. One can also remove the assumption that f 21 = η and perform a complete characterization of evolution equations of the form (9) which describe pseudo-spherical surfaces, as opposed to η pseudo-spherical surfaces [START_REF] Kamran | On differential equations describing pseudo-spherical surfaces[END_REF]. It is also noteworthy that the classification results obtained by Chern and Tenenblat [START_REF] Chern | Pseudospherical surfaces and evolution equations[END_REF] for ηpseudo-spherical surfaces were extended in [START_REF] Reyes | Pseudospherical surfaces and integrability of evolution equations[END_REF] to differential equations of the form u t = F(x,t, u, u x , ..., ∂ u/∂ x k ). Finally we mention that the concept of a differential equation that describes pseudo-spherical surfaces has a spherical counterpart [START_REF] Ding | On differential equations describing surfaces of constant curvature[END_REF], where similar classification results have been obtained. Further developments can be found in [START_REF] Cavalcante | Conservation laws for nonlinear evolution equations[END_REF], [START_REF] Ferraioli | Fourth order evolution equations which describe pseudospherical surfaces[END_REF], [START_REF] Gomes Neto | Fifth-order evolution equations describing pseudospherical surfaces[END_REF], [START_REF] Gorka | The modified Hunter-Saxton equation[END_REF], [START_REF] Jorge | Linear problems associated to evolution equations of type u tt = F(u, u x , . . ., u x k )[END_REF], [START_REF] Foursov | On formal integrability of evolution equations and local geometry of surfaces[END_REF], [START_REF] Reyes | Pseudospherical surfaces and integrability of evolution equations[END_REF], [START_REF] Reyes | Pseudopotentials, nonlocal symmetries and integrability of some shallow water wave equations[END_REF]. The property of a surface being pseudo-spherical is by definition intrinsic since it only depends on its first fundamental form. It is only recently [START_REF] Kahouadji | Second-order equations and local isometric immersions of pseudo-spherical surfaces[END_REF] that the problem has been considered of locally isometrically immersing in E 3 the pseudo-spherical surfaces arising from the solutions of partial differential equations describing pseudo-spherical surfaces. Let us first recall that any pseudo-spherical surface can be locally isometrically immersed into three-dimensional Euclidean space E 3 . This means that to any solution u of a partial differential equation ( 1) describing pseudo-spherical surfaces (for which ω 1 ∧ ω 2 = 0), there corresponds a local isometric immersion into E 3 for the corresponding metric of constant Gaussian curvature equal to -1. The problem investigated in [START_REF] Kahouadji | Second-order equations and local isometric immersions of pseudo-spherical surfaces[END_REF] was to determine to what extent the second fundamental form of the immersion could be expressed in terms of the solution u of a second-order equation and finitely many of its derivatives. The motivation for this question came from a remarkable property of the sine-Gordon equation, which we now explain. Let us first derive a set of necessary and sufficient conditions that the components a, b, c of the second fundamental form of any local isometric immersion into E 3 of a metric of constant curvature equal to -1 must satisfy. Recall that a, b, c are defined by the relations

ω 3 1 = aω 1 + bω 2 , ω 3 2 = bω 1 + cω 2 , ( 10 
)
where the 1-forms ω 3 1 , ω 3 2 satisfy the structure equations

dω 3 1 = -ω 3 2 ∧ ω 2 1 , dω 3 2 = -ω 3 1 ∧ ω 1 2 , (11) 
equivalent to the Codazzi equations, and the Gauss equation

ac -b 2 = -1. (12) 
For the sine-Gordon equation, with the choice of 1-forms ω 1 , ω 2 and ω 3 = ω 2 1 given by ( 8), it is easily verified that the 1-forms ω 3 1 , ω 3 2 are given by

ω 3 1 = sin u 2 (dx + dt) = tan u 2 ω 1 , ω 3 2 = -cos u 2 (dx -dt) = -cot u 2 ω 2 .
It is a most remarkable fact that the components a, b, c of the second fundamental form that we have just obtained depend only on the solution u of the sine-Gordon equation. Our main goal in [START_REF] Kahouadji | Second-order equations and local isometric immersions of pseudo-spherical surfaces[END_REF] was to investigate to what extent this property was true for all second-order equations describing pseudo-spherical surfaces, in the sense that a, b, c should only depend on u and at most finitely many derivatives of u. We showed that this is an extremely rare event, essentially confined to the sine-Gordon equation. Indeed, what we proved was that except for the equation

u xt = F(u), F ′′ (u) + αu = 0, ( 13 
)
where α is a positive constant, every second-order partial differential equation describing η-pseudo-spherical surfaces is such that either a, b, c are universal functions of t, x, meaning that they are independent of u, or they do not factor through any finite-order jet of u. The starting point of the proof of this result is a set of nec-essary and sufficient conditions, given in terms of the coefficients f i j of the 1-forms (2), for a, b and c to be the components of the second fundamental form of a local isometric immersion corresponding to a solution of (1). These are equivalent to the Gauss and Codazzi equations, and are easily derived. We consider the pair of vector fields (e 1 , e 2 ) dual to the coframe (ω 1 , ω 2 ). It is given by

f 11 f 21 f 12 f 22 e 1 = f 22 ∂ x -f 21 ∂ t , f 11 f 21 f 12 f 22 e 2 = -f 12 ∂ x + f 11 ∂ t . (14) 
By feeding these expressions into the structure equations [START_REF] Kahouadji | Second-order equations and local isometric immersions of pseudo-spherical surfaces[END_REF], we obtain

dω 3 1 = db(e 1 ) -da(e 2 ) ω 1 ∧ ω 2 -a ω 2 ω 3 + b ω 1 ∧ ω 3 , ( 15 
)
dω 3 2 = dc(e 1 ) -db(e 2 ) ω 1 ∧ ω 2 -b ω 2 ∧ ω 3 + c ω 1 ∧ ω 3 , (16) 
Denoting by D t and D x the total derivative operators, these are equivalent to

f 11 D t a + f 21 D t b -f 12 D x a -f 22 D x b -2b f 11 f 31 f 12 f 32 + (a -c) f 21 f 31 f 22 f 32 = 0, ( 17 
)
f 11 D t b + f 21 D t c -f 12 D x b -f 22 D x c + (a -c) f 11 f 31 f 12 f 32 + 2b f 21 f 31 f 22 f 32 = 0. ( 18 
)
These differential constraints, which amount to the Codazzi equations, have to be augmented by the Gauss equation

ac -b 2 = -1. (19) 
The proof of the main result of [START_REF] Kahouadji | Second-order equations and local isometric immersions of pseudo-spherical surfaces[END_REF] consists in a detailed case-by-case analysis of the equations ( 17), ( 18) and [START_REF] Sakovich | Solitary wave solutions of the short pulse equation[END_REF], where use is made of the expressions and constraints on the f i j 's that result from the classification results of [START_REF] Chern | Pseudospherical surfaces and evolution equations[END_REF], [START_REF] Rabelo | On equations of the type u xt = F(u, u x ) which describe pseudospherical surfaces[END_REF], and where we assume that a, b and c depend on t, x, u and only finitely many derivatives of u.

Our goal in the present paper is to extend the results of [START_REF] Kahouadji | Second-order equations and local isometric immersions of pseudo-spherical surfaces[END_REF] concerning the components a, b, c of the second fundamental form to the case of k-th order evolution equations. Our main result is given by:

Theorem 1. Let u t = F(u, u x , . . . , u x k ) (20) 
be an evolution equation of order k describing η-pseudo-spherical surfaces. If there exists a local isometric immersion of a surface determined by a solution u for which the coefficients of the second fundamental form depend on a jet of finite order of u, i.e., a, b and c depend on x,t, u, . . . , u x l , where l is finite, then a, b and c are universal, that is l = 0 and a, b and c depend at most on x and t only.

In Section 2, we give a proof of Theorem 1 based on a careful order-by-order analysis of the Codazzi equations ( 17), [START_REF] Reyes | Pseudopotentials, nonlocal symmetries and integrability of some shallow water wave equations[END_REF] and the Gauss equation [START_REF] Sakovich | Solitary wave solutions of the short pulse equation[END_REF]. In Section 3, we show by means of an example that the class of evolution equations of order k ≥ 3 for which the components a, b, c are universal in the sense of Theorem 1, that is independent of u and its derivatives, is non-empty.

Proof of the main result

In the case of a differential equation describing η-pseudo-spherical surfaces, the structure equations ( 3) are equivalent to

D t f 11 -D x f 12 = ∆ 23 (21) D x f 22 = ∆ 13 ( 22 
)
D t f 31 -D x f 32 = -∆ 12 ( 23 
)
where D t and D x are the total derivative operators and

∆ 12 := f 11 f 22 -η f 12 ; ∆ 13 := f 11 f 32 -f 31 f 12 ; ∆ 23 = η f 32 -f 31 f 22 . ( 24 
)
We shall use the notation

z i = u x i = ∂ i u ∂ x i , 0 ≤ i ≤ k, (25) 
introduced in [START_REF] Chern | Pseudospherical surfaces and evolution equations[END_REF] to denote the derivatives of u with respect to x and write the evolution equation ( 20) as

z 0,t = F(z 0 , z 1 , . . . , z k ). (26) 
We will thus think of (t, x, z 0 , . . . , z k ) as local coordinates on an open set of the submanifold of the jet space J k (R 2 , R) defined by the differential equation [START_REF] Sakovich | On transformations of the Rabelo equations[END_REF]. We first recall the following lemma from [START_REF] Chern | Pseudospherical surfaces and evolution equations[END_REF]:

Lemma 1. Let (26) be a k-th order evolution equation describing η-pseudo-spherical surfaces, with associated 1-forms (2) such that f 21 = η. Then necessary conditions for the structure equations (3) to hold are given by

f 11,z k = • • • = f 11,z 0 = 0 (27) 
f 21 = η (28) f 31,z k = • • • = f 31,z 0 = 0 (29) f 12,z k = 0 (30) f 22,z k = f 22,z k-1 = 0 (31) f 32,z k = 0 (32) f 2 11,z 0 + f 2 31,z 0 = 0 (33) 
We now proceed with the proof of Theorem 1. If a, b, c depend of a jet of finite order, that is a, b, c are functions of x,t, z 0 , . . . , z l for some finite l, then ( 17) and ( 18) become

f 11 a t + ηb t -f 12 a x -f 22 b x -2b∆ 13 + (a -c)∆ 23 - l ∑ i=0 ( f 12 a z i + f 22 b z i )z i+1 + l ∑ i=0 ( f 11 a z i + ηb z i )z i,t = 0,
and

f 11 b t + ηc t -f 12 b x -f 22 c x + (a -c)∆ 13 + 2b∆ 23 - l ∑ i=0 ( f 12 b z i + f 22 c z i )z i+1 + l ∑ i=0 ( f 11 b z i + ηc z i )z i,t = 0.
Differentiating ( 17) and ( 18) with respect to z l+k , and using the fact that F z k = 0 and η = 0, it follows that

b z l = - f 11 η a z l , c z l = f 11 η 2 a z l . (34) 
Differentiating the Gauss equation ( 19) with respect to z l leads to ca z l + ac z l -2bb z l = 0, and substituting (34) in the latter leads to

c + f 11 η 2 a + 2 f 11 η b a z l = 0. (35) 
We therefore have two cases to deal with. The first case corresponds to

c + f 11 η 2 a + 2 f 11 η b = 0. ( 36 
)
It follows then by (35) that a z l = 0, and hence by (34) that b z l = c z l = 0. Successive differentiating leads to a z i = b z i = c z i = 0 for all i = 0, . . . , l. Finally, if the functions a, b and c depend on a jet of finite order, then there are universal, i.e., they are functions of x and t only. We now turn to the second case, defined by the condition

c + f 11 η 2 a + 2 f 11 η b = 0, (37) 
on an open set, for which the analysis is far more elaborate. Substituting the expression of c in the Gauss equation -ac

+ b 2 = 1 leads to ( f 11 a/η + b) 2 = 1 so that b = ±1 - f 11 η a, c = f 11 η 2 a ∓ 2 f 11 η . ( 38 
)
We have then

D t b = -f 11 η D t a -a η f 11,z 0 F, D t c = f 11 η 2 D t a + 2 η f 11 η a ∓ 1 f 11,z 0 F, D x b = -f 11 η D x a -a η f 11,z 0 z 1 , D x c = f 11 η 2 D x a + 2 η f 11 η a ∓ 1 f 11,z 0 z 1 ,
and hence

f 11 D t a + ηD t b = -a f 11,z 0 F, (39) 
f 11 D t b + ηD t c = f 11 η a ∓ 2 f 11,z 0 F, (40) 
f 12 D x a + f 22 D x b = - ∆ 12 η D x a - a f 22 η f 11,z 0 z 1 , (41) 
f 12 D x b + f 22 D x c = f 11 η ∆ 12 η D x a + ∆ 12 η 2 a f 11,z 0 z 1 + f 22 η f 11 η a ∓ 2 f 11,z 0 z 1 . ( 42 
)
Substituting the latter four equalities in ( 17) and ( 18) leads to

-a f 11,z 0 F + ∆ 12 η D x a + a f 22 η f 11,z 0 z 1 -2b∆ 13 + (a -c)∆ 23 = 0 (43)
and

f 11 η a ∓ 2 f 11,z 0 F - f 11 ∆ 12 η 2 D x a - ∆ 12 η 2 a f 11,z 0 z 1 - f 22 η f 11 η a ∓ 2 f 11,z 0 z 1 + (a -c)∆ 13 + 2b∆ 23 = 0 which are equivalent to -a f 11,z 0 F + ∆ 12 η a x + ∆ 12 η l ∑ i=0 a z i z i+1 + a f 22 η f 11,z 0 z 1 -2b∆ 13 + (a -c)∆ 23 = 0 (44)
and

f 11 η a ∓ 2 F - f 22 η z 1 f 11,z 0 - f 11 ∆ 12 η 2 a x - (45) 
f 11 ∆ 12 η 2 l ∑ i=0 a z i z i+1 - ∆ 12 η 2 a f 11,z 0 z 1 + (a -c)∆ 13 + 2b∆ 23 = 0.
We are now led to several cases depending on the value of l.

• If l ≥ k, then differentiating (44) with respect to z l+1 leads to ∆ 12 a z l /η = 0. Thus a z l = 0 and also b z l = c z l = 0 for l ≥ k since ∆ 12 = 0. • If l = k -1, then differentiating (44) and (45) with respect to z k leads to

-a f 11,z 0 F z k + ∆ 12 η a z k-1 = 0, (46) 
f 11 η a ∓ 2 f 11,z 0 F z k - f 11 η ∆ 12 η a z k-1 = 0. (47) 
Taking into account (46), equation (47) becomes ∓2 f 11,z 0 F z k = 0. It follows then from (46) that a z k-1 = 0, and therefore that b z k-1 = c z k-1 = 0. • If l ≤ k -2, then differentiating (44) and (45) with respect to z k leads to

-a f 11,z 0 F z k = 0, (48) f 11 η a ∓ 2 f 11,z 0 F z k = 0, (49) 
which imply that

f 11 = µ, (50) 
for some real constant µ. Equations ( 44) and (45) then become it is straightforward to check that the 1-forms ω 1 = udx + (u xxx + φ )dt, (65) ω 2 = -2m 0 dx + r 0 dt, (66)

∆ 12 η a x + (µ f 22 -η f 12 ) η l ∑ i=0 a z i z i+1 -2b(µ f 32 -f 31 f 12 ) (51) 
+(a -c)(η f 32 -f 31 f 22 ) = 0 and - f 11 ∆ 12 η 2 a x - µ(µ f 22 -η f 12 ) η 2 l ∑ i=0 a z i z i+1 + (a -c)(µ f 32 -f 31 f 12 ) (52) 
ω 3 = udx + (u xxx + φ )dt, (67) 
satisfy the structure equations (3) whenever u is a solution of (62). Let now h = e 2(-2m 0 x+r 0 t) ,

and let γ and l be real constants such that l > 0 and l 2 > 4γ 2 . The functions a, b, c defined by

a = lh -γ 2 h 2 -1, b = γh, c = γ 2 h 2 -1 a , (69) 
satisfy the Gauss equation ( 19) and the Codazzi equations ( 17), ( 18) whenever u is a solution of (62).

+2b(η f 32

 32 f 31 f 22 ) = 0, where ∆ 12 = µ f 22 -η f 12 .(53)Note that when f 11,z 0 = 0, the structure equation (21) becomes D x f 12 = -∆ 23 , or equivalentlyf 12,z k-1 z k + • • • + f 12,z 0 z 1 = f 31 f 22 -η f 32 .(54)Differentiating (54) with respect to z k leads then to f 12,z k-1 = 0. If l = k -2, then taking into account the latter, and differentiating (51) and (52) with respect to z k-1 lead toµ f 22 -η f 12 η a z k-2 -2bµ f 32,z k-1 + (ac)η f 32,z k-1 = 0, (55) -µ(µ f 22 -η f 12 ) η 2 a z k-2 + (ac)µ f 32,z k-1 + 2bη f 32,z k-1 = 0. (56)Note that f 11 = µ = 0, otherwise we would have b = ±1 and therefore (56) would become ±2η f 32,z k-1 = 0 which would lead to a contradiction. Indeed, differentiating the structure equation (23) with respect to z k , we obtain f 31,z 0 F z k = f 32,z k-1 .
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The vanishing of f 32,z k-1 would then imply the vanishing of f 31,z 0 , but this is not possible because f 2 11,z 0 + f 2 31,z 0 = 0. Therefore, f 11 = µ = 0 and f 32,z k-1 = 0. Now, multiplying (55) by µ/η and adding (56), we now obtain that µ(ac)

If µ 2 = η 2 , then (58) leads to ac = 0 which runs into a contradiction because it follows from (37), (50) and the hypothesis µ 2 = η 2 that ac = ∓2µ/η = 0.

We have then µ 2 -η 2 = 0. Substituting (38) in (58) leads to

which simplifies to µ 2 + η 2 = 0 which runs into a contradiction. Finally, if l < k -2, where k ≥ 3, then differentiating (51) and ( 52) with respect to z k-1 and using the non-vanishing of f 32,z k-1 leads to

Since η 2 + µ 2 = 0, we have a = c and b = 0 which runs into a contradiction with the Gauss equation.

Therefore, for all l, (17), ( 18) and the Gauss equation form an inconsistent system. Hence, if the immersion exists then (36) holds and a, b and c are functions of x and t only. This completes the proof of our theorem.

An Example

We now show by displaying an example that the class of evolution equations of order k ≥ 3 for which the components a, b, c are universal in the sense of Theorem 1, that is independent of u and its derivatives, is non-empty. Consider the following fourth-order evolution equation obtained in [START_REF] Ferraioli | Fourth order evolution equations which describe pseudospherical surfaces[END_REF] 

where m 0 , m 1 , m 2 are arbitrary real constants. Letting

where