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Renormalizability of Liouville Quantum Gravity at the Seiberg

bound

François David ∗, Antti Kupiainen †, Rémi Rhodes ‡, Vincent Vargas §

Monday 8th June, 2015

Abstract

Liouville Quantum Field Theory can be seen as a probabilistic theory of 2d Riemannian metrics
eφ(z)dz2, conjecturally describing scaling limits of discrete 2d-random surfaces. The law of the random
field φ in LQFT depends on weights α ∈ R that in classical Riemannian geometry parametrize power law
singularities in the metric. A rigorous construction of LQFT has been carried out in [2] in the case when
the weights are below the so called Seiberg bound: α < Q where Q parametrizes the random surface
model in question. These correspond to conical singularities in the classical setup. In this paper, we
construct LQFT in the case when the Seiberg bound is saturated which can be seen as the probabilistic
version of Riemann surfaces with cusp singularities. Their construction involves methods from Gaussian
Multiplicative Chaos theory at criticality.

Key words or phrases: Liouville Quantum Gravity, quantum field theory, Gaussian multiplicative chaos, KPZ formula, KPZ
scaling laws, Polyakov formula, punctures, cusp singularity, uniformization theorem.
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1 Introduction and main results

In this paper we continue the rigorous study of the two dimensional Liouville Quantum Theory or Liouville
Quantum Gravity (LQG) started in [2] by means of probabilistic tools. We summarize in this introduction
only the main points established there and then we describe our results. We refer the reader to [1, 3, 8, 9,
10, 12] for seminal physics references on LQG and to [2] for more background and references in maths and
physics.

1.1 Summary of LQG

The LQG is a probabilistic theory of Riemannian metrics of the form eγXg where g is a fixed smooth
Riemannian metric on a two dimensional surface Σ and X is a random field on Σ whose law is formally
given in terms of a functional integral

E[F (X)] = Z−1

∫
F (X)e−SL(X,g)DX (1.1)

where Z is a normalization constant, DX stands for a formal uniform measure on some space of maps
X : Σ → R and

SL(X, g) :=
1

4π

∫

Σ

(
|∂gX |2 +QRgX + 4πµeγX

)
dλg (1.2)

is the so-called Liouville action, where ∂g, Rg and λg respectively stand for the gradient, Ricci scalar
curvature and volume measure in the metric g (see Section 2 for the basic definitions used in here). The
parameter µ > 0 is called “cosmological constant”, γ ∈ [0, 2) is a parameter that is determined by the
random surface model in question and Q = 2

γ + γ
2 .

The rigorous definition of the integral (1.1) in the case of the sphere Σ = S2 was carried out in [2]. In
the sequel, by stereographic projection, we will often identify S2 with R2 ∪ {∞} (the identification should
be clear from the context). We take g = g(z)|dz|2 conformally equivalent (Section 2) to the standard round
metric and set

X = c+Xg

where Xg is the Gaussian Free Field with vanishing λg-mean on the sphere S2,
∫
Xgλg = 0 (Section 2), and

c ∈ R . Definition of the Liouville term eγXdλg requires a regularization and a renormalization. Let

Xg,ǫ(x) =
1

2π

∫ 2π

0

Xg(x+ ǫeiθ) dθ. (1.3)

be the circle average regularization of the GFF and define the random measure

dMγ = lim
ǫ→0

ǫ
γ2

2 eγ(Xg,ǫ+Q/2 ln g) dλ, (1.4)

where dλ is the standard Lebesgue measure. The limit is in probability in the sense of weak convergence of
measures. Mγ is a random measure on S

2 with total mass Mγ(S
2) almost surely finite.

The precise definition of e−SLDX is given by the measure

dµL(X) := e−
Q
4π

∫
S2
RgXdλg−µeγcMγ(S

2)dP(Xg) dc (1.5)

defined on H−1(S2, λg)×R. This measure is not normalizable to a probability measure due to the c variable.
Indeed, by the Gauss-Bonnet theorem, Q

4π

∫
S2
Rgdλg = 2Q and thus the total mass of dµL is infinite due

to divergence of the c-integral at −∞. This divergence is related in an interesting way to the (quantum)
geometry described by the LQG.
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First, Liouville theory is conformally invariant. With this respect, one should distinguish the classical
and quantum theory. On the classical level, one studies the functional (1.2) on a functional space and chooses
Q = 2

γ to ensure that it is invariant under the following action of group of Möbius transformations ψ of S2

SL(Xψ, g) = SL(X, g) (1.6)

where Xψ = X ◦ψ+ 1
γ ln

gψ
g , gψ = |ψ′|2g ◦ψ 1. On the quantum level, one is interested in the path integral

formulation (1.1). It was proven in [2] that

∫
F (Xψ)dµL(X) =

∫
F (X)dµL(X) (1.7)

for F ∈ L1(µL) where now Xψ = X ◦ ψ + Q
2 ln

gψ
g and Q = 2

γ + γ
2

2.

The invariance of µL under the action of the non-compact group SL(2,C) is one reason to expect that
µL has infinite mass. The other reason has to do with the fact that the classical action functional (1.2)
is not bounded from below. Indeed the minimizers of the Liouville action are the solutions of the classical
Liouville equation ReγXg = −2πµγ2. These are metrics conformally equivalent to g with constant negative
curvature. On S2 there are no smooth negative curvature metrics since by the Gauss-Bonnet theorem the
total curvature is positive.

Both of these problems can be fixed by adding punctures to the sphere. Let zi ∈ S2, αi ∈ R, i = 1, . . . , n
and consider the measure

∏
i e
αiX(zi)µL. The vertex operators eαX(z) require renormalization. Define

Vα,ǫ(z) = ǫ
α2

2 eα(c+Xg,ǫ(z)+Q/2 ln g(z)) (1.8)

and set

Πα,z,ǫ :=

∫ ∏

i

Vαi,ǫ(zi)dµL(X), (1.9)

Due to the c variable this exists only if
∑

i αi > 2Q. In [2] it was shown that Πα,z = limǫ→0 Πα,z,ǫ > 0 if
and only if αi < Q for all i. Briefly, the reason for this is as follows. One can absorb the vertex operators in
(1.9) by an application of the Girsanov transform i.e. by a shift of the gaussian field Xg → Xg +H with

H(z) =
∑

i

αiGg(z, zi). (1.10)

where Gg is the covariance of the GFF. Taking g equal to the round metric ĝ (with Rĝ = 2), this leads to

Πα,z = K(z)

∫

R

e(
∑
i αi−2Q)c(Ee−µe

γc
∫
eγHdMγ )dc (1.11)

with

K(z) =
∏

i

ĝ(zi)
−α2

i
4 +Q

2 αie
1
2

∑
i6=j αiαjGĝ(zi,zj)+

ln 2−1/2
2

∑
α2
i (1.12)

1 In fact, following standard conventions in the physics literature, one can absorb the metric dependence of the action by
shifting the field X, i.e. introducing the Liouville field φ(x) = X(x) + Q

2
ln g(x). This convention was used in [2] and will also

be used later in this paper: see definition (1.21). In this case, the action can be written with respect to the standard Euclidean
distance as background metric on R2 and takes on the following form:

SL(φ, g) :=
1

4π

∫
R2

(|∂φ|+ 4πµeγφ)dλ, φ ∼
Q

2
ln g,

where λ is the standard Lebesgue measure and ∼ says that the difference is bounded. In this case, we get the invariance
SL(φ◦ψ+Q ln |ψ′|, g) = SL(φ, g) which is more familiar with the physics literature. One also gets an analogue on the quantum
side.

2The extra term γ
2
comes from the ǫ

γ2

2 -renormalization of (1.4).
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Due to the logarithmic singularity of Gĝ the integrand eγH(z) blows up as |z − zi|−αiγ when z → zi. By
analyzing the modulus of continuity of the Gaussian multiplicative chaos measure it was shown in [2] that∫
eγHdMγ is a.s. finite if and only if αi < Q. Moreover, the probability measures

Pα,z,ǫ := Π−1
α,z,ǫ

∏

i

Vαi,ǫ(zi) dµL(X). (1.13)

converge
lim
ǫ→0

Pα,z,ǫ = Pα,z. (1.14)

The bounds
∑
i αi > 2Q and αi < Q are called the Seiberg bounds (see also [12]). They lead to the

conclusion that to have a nontrivial correlation function of vertex operators one needs at least three of
them. Note that fixing three points on the sphere fixes also the SL(2,C) invariance. When we have three
insertions with αi = γ the law of the chaos measure eγcMγ under Pα,z is conjectured to agree with the
scaling limit of planar maps decorated with a critical statistical mechanics model and conformally embedded
onto the sphere. In [2] this correspondence was checked explicitly for the law of the total volume eγcMγ(S

2).
It is instructive to consider the classical problem in the presence of vertex operators i.e. with their

logarithms subtracted from the Liouville action (the reader may consult [13] for further explanations than

those given below). Performing the substitution X = c+H + X̃ with
∫
X̃dλĝ = 0 this functional becomes

using the classical value Q = 2
γ

(
4

γ
−
∑

i

αi)c+
1

4π

∫

S2

|∂X̃|2 + µeγc
∫

S2

eγX̃ dλg − lnK(z) (1.15)

where g = eγH ĝ and K(z) is given in (1.12). (1.15) is bounded from below iff
∑

i αi >
4
γ . The volume form

λg is integrable provided αi <
2
γ . These are the classical versions of the Seiberg bounds. The metric g has

negative curvature in the complement of the punctures and a conical singularity at zi with the angle θi of
the cone equal to π(2 − αiγ), that is, a neighborhood of zi is asymptotically isometric to a neighborhood

of the tip of a cone with the map z → z
θ
2π . The second Seiberg bound thus states that the angle needs to

be positive. In this case (1.15) has a bounded minimizer (c, X̃). Note also that again we need at least three
punctures to satisfy the Seiberg bounds.

1.2 Main Results

In this paper we extend the analysis of [2] to the case of vertex operators with weight Q, called Q-punctures.

Classically as αi → 2
γ the minimizer H̃ of (1.15) is no more bounded and the metric eγH̃(z)g blows up as

(take zi = 0) (|z| ln |z|)−2|dz|2. Geometrically this corresponds to a cusp singularity of the metric with
the volume around the puncture finite whereas distances become infinite. These are the so called parabolic
solutions of the Liouville equation.

In the quantum case as noted above, Πα,z tends to zero as αi → Q. However, a simple renormalization
suffices for obtaining a nontrivial limit 3:

Theorem 1.1. Let
∑
i αi > 2Q and αi 6 Q with exactly k of the αi equal to Q. Then the limit

lim
ǫ→0

(− ln ǫ)
k
2 Πα,z,ǫ := Πα,z (1.16)

exists and is strictly positive. Moreover, the limit

lim
ǫ→0

Pα,z,ǫ := Pα,z (1.17)

exists in the sense of weak convergence of measures on H−1(S2).

3�
In fact we will use a slightly different definition of Πα,z,ǫ from (1.9) because we will regularize simultaneously the vertex

operators (1.8) and the measure µL defined by (1.7) (see equation (3.1)).
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This theorem means that the vertex operator VQ needs an additional factor (− ln ǫ)
1
2 for its normalization

in addition to the Wick ordering used for α < Q. This normalization is familiar from the Seneta-Heyde
normalization needed for the construction of the multiplicative chaos measure at criticality [5, 6]. As in that
context an important ingredient in the proof of convergence (1.16) is to show that the limit agrees (up to a
multiplicative constant) with the one constructed with the derivative vertex operator

ṼQ,ǫ(z) = − d

dα
|α=QVα,ǫ(z) = −(Q ln ǫ+ c+Xg,ǫ +

Q

2
ln g)Vα,ǫ(z). (1.18)

Let Π̃α,z,ǫ be the correlation function where for αi = Q we use ṼQ,ǫ(z). Then

Theorem 1.2.

lim
ǫ→0

Π̃α,z,ǫ = (
π

2
)
k
2 Πα,z (1.19)

The convergence (1.17) extends to functions of the chaos measure. Let Eα,z,ǫ denote expectation in Πα,z,ǫ
and let F = F (X, ν) be a bounded continuous function on H−1(S2) ×M(S2) where M(S2) denotes Borel
measures on S2. Define the Liouville measure

Z := eγcMγ (1.20)

and the Liouville field
φ := X +

Q

2
ln g. (1.21)

Then

Theorem 1.3. With the assumptions of Theorem 1.1, Eα,z,ǫF (φ, Z) converges as ǫ → 0 to a limit Eα,zF
which is conformally covariant

Eα,zF (φ, Z) = Eα,ψ(z)F (φ ◦ ψ +Q ln |ψ′|, Z ◦ ψ)

and independent of g in the conformal equivalence class of ĝ. Moreover, the law of Z(S2) under Pα,z is given
by the Gamma distribution

Eα,zF (Z(S
2)) =

µ
σ
γ

Γ(σγ )

∫ ∞

0

F (y)y
σ
γ−1e−µy dy, σ :=

∑

i

αi − 2Q (1.22)

and the law of the random measure Z(·)/A conditioned on Z(S2) = A does not depend on A.

Remark 1. The correlation functions Πα,z have the same properties as in the αi < Q case proven in [2]:
conformal covariance, Weyl covariance and KPZ scaling. Since the statements are identical we refer
the reader to [2] recalling here only the KPZ formula for the µ-dependence:

Πα,z = µ
2Q−∑

i αi
γ Πα,z|µ=1.

Remark 2. Theorem 1.3 is the quantum analog of the convergence of the elliptic solutions of the Liouville
equation to parabolic ones as one saturates the second Seiberg bound. As in the classical case, the quantum
volume of the metric is a.s. finite.

Remark 3. With some extra work it should be possible to prove that the measures Pα,z with αi < Q for all
i = 1, . . . n converge as αi ↑ Q, i = 1, . . . k to the Pα,z constructed in this paper by proving that

lim
αi↑Q

k∏

i=1

(Q − αi)
−1Πα,z (1.23)

has a limit. We leave that question as an open problem.
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Remark 4. It is natural to ask about the convergence of the quantum laws Pα,z to the classical solutions
of the Liouville equation i.e. the semiclassical limit γ → 0. For this, let us take, for i = 1, . . . , k αi = Q
and for i > k

αi =
χi
γ

with χi < 2 and µ = µ0

γ2 for some constant µ0 > 0. Then we conjecture that the law of γX under Pα,z

converges towards the minimizer c + X̃ of equation (1.15) which has cusp singularities at zi, i 6 k and
conical ones at the remaining zi.

Finally, let us mention that these Q-punctures are especially important to understand how to embed
conformally onto the sphere random planar maps with spherical topology weighted by a c = 1 conformal
field theory (like the Gaussian Free Field). Indeed, in the case c = 1, one can formulate the conjecture
developed in [2, subsection 5.3] with γ = 2 and Q = 2: the vertex operators with γ = 2 in [2, conjecture 2]
are precisely the Q-punctures constructed in this paper. Though we do not treat explicitly the case γ = 2,
the techniques we develop adapt to this case.

2 Background and notations

Here we recall some background, taken from [2], which will be used throughout the paper.

Basic notations. B(x, r) stands for the ball centered at x with radius r. We let C̄(R2) stand for the space
of continuous functions on R2 admitting a finite limit at infinity. In the same way, C̄k(R2) for k > 1 stands
for the space of k-times differentiable functions on R2 such that all the derivatives up to order k belong to
C̄(R2).

Metrics on S2. The sphere S2 can be mapped by stereographic projection to the plane which we view both
as R2 and as C. We take as the background metric the round metric on S

2 which becomes on R
2 and on C

ĝ =
4

(1 + |x|2)2 dx
2 =

2

(1 + z̄z)2
(dz ⊗ dz̄ + dz̄ ⊗ dz).

Its Ricci scalar curvature is Rĝ = 2. We say a metric g = g(x)dx2 is conformally equivalent to ĝ if

g(x) = eϕ(x)ĝ(x)

with ϕ ∈ C̄2(R2) such that
∫
R2 |∂ϕ|2 dλ < ∞. We often identify the metrics g with their densities g(x) (or

g(z)) with respect to the Euclidean metric. We denote the volume measure g(x)λ(dx) by λg(dx) where λ is
the Lebesgue measure on R2. The total volume of ĝ is

∫
R2 dλĝ = 4π.

Given any metric g conformally equivalent to the spherical metric, we let H1(S2) = H1(R2, g) be the
Sobolev space defined as the closure of C̄∞(R2) with respect to the Hilbert-norm

∫

R2

|h|2 dλg +
∫

R2

|∂h|2 dλ. (2.1)

Gaussian free fields. For each metric g conformally equivalent to ĝ, we consider a Gaussian Free Field
Xg with vanishing λg-mean on the sphere, that is a centered Gaussian random distribution with covariance
kernel given by the Green function Gg of the problem

△gu = −2πf on R
2,

∫

R2

u dλg = 0

i.e. u =
∫
Gg(·, z)f(z)λg(dz) := Ggf . In case of the round metric, we have the explicit formula

EXĝ(z)Xĝ(z
′) = Gĝ(z, z

′) = ln
1

|z − z′| −
1

4
(ln ĝ(z) + ln ĝ(z′)) + ln 2− 1

2
. (2.2)
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The GFF Xg lives almost surely in the dual space H−1(S2) of H1(S2), and this space does not depend on
the choice of the metric g in the conformal equivalence class of ĝ.

Gaussian multiplicative chaos. The circle average regularization (1.4) Xĝ,ǫ of the free field Xĝ satisfies

lim
ǫ→0

E[Xĝ,ǫ(x)
2] + ln ǫ+

1

2
ln ĝ(x) = ln 2− 1

2
(2.3)

uniformly on R2. Define now the measure

Mγ,ǫ := ǫ
γ2

2 eγ(Xĝ,ǫ+Q/2 ln ĝ) dλ. (2.4)

For γ ∈ [0, 2), we have the convergence in probability

Mγ = lim
ǫ→0

Mγ,ǫ = e
γ2

2 (ln 2− 1
2 ) lim
ǫ→0

eγXĝ,ǫ−
γ2

2 E[X
2
ĝ,ǫ] dλĝ (2.5)

in the sense of weak convergence of measures. This limiting measure is non trivial and is a (up to a
multiplicative constant) Gaussian multiplicative chaos [7, 11] of the field Xĝ with respect to the measure
λĝ.

3 Partition of the probability space

The singularity at the Q-punctures will be studied by partitioning the probability space according to the
maximum of the circle average fields around them. As we will see this is a local operation and it will suffice
to consider the case with only one Q-insertion, say α1 = Q, αi < Q, i > 1. Also, we will work from now on
with the round metric ĝ; the general case g = eφĝ is treated as in [2]. It will be convenient to modify the
definition (1.9) slightly around the Q-insertion. For this remove an ǫ-disc around the z1

Dǫ := R
2 \B(z1, ǫ)

and define

Πα,z,ǫ(F ) =

∫

R

eσcE
[
F (c+Xĝ)

∏

i

Vzi,αi,ǫ(zi)e
−µeγcMγ(Dǫ)

]
dc (3.1)

where we use throughout the paper the notation

σ :=
∑

i

αi − 2Q (3.2)

as in (1.22). We have then
Ez,α,ǫF = Πα,z,ǫ(F )/Πα,z,ǫ(1). (3.3)

The Girsanov argument then gives Πα,z,ǫ(F ) = Kǫ(z)Aǫ(F ) with

Aǫ(F ) =

∫

R

eσcE
[
F (c+Xĝ +Hǫ)e

−µeγc
∫
Dǫ

eγHǫdMγ

]
dc. (3.4)

where (recall (1.10))

Hǫ(z) =
∑

i

αi

∫ 2π

0

Gĝ(zi + ǫeiθ, z)
dθ

2π
(3.5)

and Kǫ(z) converges to K of (1.12) as ǫ→ 0.
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Similarly for the derivative vertex operator (1.18) we get

Π̃α,z,ǫ(F ) = −Kǫ(z)

∫

R

eσcE
[
F (c+Xĝ +Hǫ)(Q ln ǫ+ H̃ǫ + c+Xĝ,ǫ(z1) +

Q

2
ln ĝ(z1))e

−µeγc
∫
Dǫ

eγHǫdMγ

]
dc.

(3.6)
where

H̃ǫ =
∑

i

αi

∫ 2π

0

∫ 2π

0

Gĝ(z1 + ǫeiθ2 , zi + ǫeiθ2)
dθ1
2π

dθ2
2π
. (3.7)

Using (2.2) we see that the Q ln ǫ singularity in (3.6) is cancelled by the one in the i = 1 term in (3.7) so

that Q ln ǫ+ H̃ǫ+
Q
2 ln g(z1) is bounded uniformly in ǫ. Since Πz,α,ǫ(F ) → 0 as ǫ→ 0 ([2]) we conclude that

the limit, if it exits, of Π̃z,α,ǫ(F ) equals the limit of Kǫ(z)Ãǫ(F ) where

Ãǫ(F ) =

∫

R

eσcE
[
F (c+Xĝ,ǫ +Hǫ)(−c−Xĝ)e

−µeγc
∫
Dǫ

eγHǫdMγ

]
dc. (3.8)

Hence Theorems 1.1 and 1.2 follow if we prove

Proposition 3.1. Let F be bounded and continuous on H−1(S2). Then the following limits

A(F ) = lim
ǫ→0

(− ln ǫ)
1
2Aǫ(F ) =

2

π
lim
ǫ→0

Ãǫ(F ) (3.9)

exist and A(1) > 0.

Now we partition the probability space according to the values of the maximum of the mapping u 7→
Xĝ,u(z1) over u ∈ [ǫ, 1]. So we set

Mn,ǫ =
{

max
u∈[ǫ,1]

Xĝ,u(z1) ∈ [n− 1, n]
}
, n > 1, (3.10)

M0,ǫ =
{

max
u∈[ǫ,1]

Xĝ,u(z1) 6 0
}
., (3.11)

and we expand the integral Aǫ(F ) along the partition made up of these sets (Mn,ǫ)n:

Aǫ(F ) =
∑

n > 0

∫

R

eσcE
[
1Mn,ǫF (c+Xĝ +Hǫ)e

−µeγc
∫
Dǫ

eγHǫ dMγ

]
dc :=

∑

n > 0

Aǫ(F, n). (3.12)

For Ãǫ(F ) we write

Ãǫ(F ) =
∑

n > 0

(Ãǫ(F, n) +Bǫ(F, n))

with

Ãǫ(F, n) =

∫

R

eσc E
[
1Mn,ǫ

(
n−Xĝ,ǫ(z1)

)
F (c+Xĝ +Hǫ)e

−µeγc
∫
Dǫ

eγHǫ dMγ

]
dc (3.13)

and

Bǫ(F, n) = −
∫

R

eσc E
[
1Mn,ǫ(n+ c)F (c+Xĝ +Hǫ)e

−µeγc
∫
Dǫ

eγHǫ dMγ

]
dc. (3.14)

Note that Ãǫ(F, n) > 0 for F > 0. We prove

Lemma 3.2. Let F be bounded and continuous on H−1(S2). Then for all n > 0 the limits

A(F, n) = lim
ǫ→0

(− ln ǫ)
1
2Aǫ(F, n) =

√
2/π lim

ǫ→0
Ãǫ(F, n). (3.15)
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exist and A(1, n) > 0. Moreover

∑

n > 0

sup
ǫ∈]0,1]

(− ln ǫ)
1
2 Aǫ(1, n) <∞ (3.16)

∑

n > 0

sup
ǫ∈]0,1]

Ãǫ(1, n) <∞ (3.17)

∑

n > 0

Bǫ(F, n) → 0, as ǫ→ 0. (3.18)

Proposition 3.1 then follows from Lemma 3.2 since limǫ→0Aǫ(F, ǫ) =
∑
A(F, n) follows from (3.15) and

(3.16) by the dominated convergence theorem, idem for Ã. The remaining part of this paper is devoted to
proving this lemma.

4 Decomposition of the GFF and Chaos measure

With no loss, we may set the Q insertion at z1 = 0 and suppose that the other zi are in the complement of
the disc B(0, 1). We further denote by Fδ (δ > 0) the sigma-algebra generated by the field Xĝ ”away from
the disc B(0, δ)”, namely

Fδ = σ{Xĝ(f); supp f ∈ B(0, δ)c}. (4.1)

F∞ stands for the sigma algebra generated by
⋃
δ>0 Fδ. First observe that (see [2, 4, 11])

Lemma 4.1. For all δ > 0, the process

t 7→ Xĝ,δe−t(0)−Xĝ,δ(0)

evolves as a Brownian motion independent of the sigma algebra Fδ.

The following decomposition of the field Xĝ will be crucial for the analysis:

Lemma 4.2. The field Xĝ may be decomposed

Xĝ(z) = Xĝ,|z|(0) + Y (z) (4.2)

where the process r ∈ R∗
+ 7→ Xĝ,r(0) is independent of the field Y (z). The latter has the following covariance

E[Y (reiθ)Y (r′eiθ
′
)] = ln

r ∨ r′
|reiθ − r′eiθ′ |

Proof. From (2.2) we get using rotational invariance E[Xĝ(z)Xĝ,|z′|(0)] = E[Xĝ,|z|(0)Xĝ,|z′|(0)]. which in
turn leads to independence:

EXĝ(z)Xĝ(z
′) = EXĝ,|z|(0)Xĝ,|z′|(0) + EY (z)Y (z′).

Furthermore we calculate

E[Y (reiθ)Y (r′eiθ
′
)] = ln |reiθ − r′eiθ

′ |−1 − 1

4π2

∫ 2π

0

∫ 2π

0

ln |reiu − r′eiv|dudv.

The claim follows from
∫ 2π

0
ln |reiθ − r′eiu|du = ln(r ∨ r′).

Now, we get the decomposition

Mγ(dz) = cγ ĝ(z)|z|
γ2

2 eγXĝ,|z|(0)Mγ(dz, Y )

9



where Mγ(dz, Y ) is the multiplicative chaos measure of the field Y with respect to the Lebesgue measure λ

(i.e. EMγ(dz, Y ) = λ(dz)) and cγ := e
γ2

2 (ln 2−1/2)− γ2

2 E[Xĝ,1(0)
2] is some constant.

We will now make change of variables z = e−s+iθ, s ∈ R+, θ ∈ [0, 2π) and let µY (ds, dθ) be the
multiplicative chaos measure of the field Y (e−s+iθ) with respect to the measure dsdθ. We will denote by xs
the process

s ∈ R+ → xs := Xĝ,e−s(0).

We have arrived at the following useful decomposition of the chaos measure around z1 = 0:

Lemma 4.3. On the ball B(0, 1) we have the following decomposition of the measure Mγ:

∫

A

1

|x|γQ Mγ(dx) = cγ

∫ ∞

0

∫ 2π

0

1A(e
−seiθ)eγxs ĝ(e−s)µY (ds, dθ)

for all A ⊂ B(0, 1) where µY (ds, dθ) is a measure independent of the whole process (xs)s > 0. Furthermore,
for all q ∈]−∞; 4

γ2 [, we have

sup
a>0

E

[( ∫ a+1

a

∫ 2π

0

eγ(xs−xa)µY (ds, dθ)
)q]

< +∞. (4.3)

Proof. We have for q < 4
γ2

E

[(∫ a+1

a

∫ 2π

0

eγ(xs−xa)µY (ds, dθ)
)q]

6 (2π)qE
[
eqγ supσ∈[0,1](xa+σ−xa)

]
E

[
µY ([a, a+ 1]× [0, 2π])q

]

= (2π)qE
[
eqγ supσ∈[0,1](xa+σ−xa)

]
E

[
µY ([0, 1]× [0, 2π])q

]
,

by stationarity of (s, θ) ∈ R∗
+×[0, 2π] 7→ Y (e−seiθ). By Lemma 4.1 the first exponent is Brownian motion and

hence the expectation is bounded uniformly in a. From Gaussian multiplicative chaos theory [11, Theorem

2.12], we have finiteness of the quantity E
[
µY ([0, 1]× [0, 2π])q

]
<∞, hence we get (4.3).

It will be useful in the proofs to introduce for all a > 1 the stopping times Ta defined by

Ta = inf{s; xs > a− 1}, (4.4)

and we denote by GTa the associated filtration. We have the following analog of (4.3) with stopping times

Lemma 4.4. For all q 6 0, n > 1,

E

[(∫ Tn

Tn−1

∫ 2π

0

eγ(xs−xTn−1
)µY (ds, dθ)

)q]
<∞. (4.5)

Proof. Using the independence of the processes xr and Y , Lemma 4.1 and stationarity of Y (s, θ) in s we
see that (4.5) is equivalent to proving

E

[( ∫ τ

0

∫ 2π

0

eγβsµY (ds, dθ)
)q]

<∞. (4.6)

where β is a Brownian motion independent of Y and τ = inf{s;βs > 1}. We have

E

[( ∫ τ

0

∫ 2π

0

eγβsµY (ds, dθ)
)q]

6 E

[
1τ 6 1

(∫ τ

0

∫ 2π

0

eγβsµY (ds, dθ)
)q]

+ E
[(∫ 1

0

∫ 2π

0

eγβsµY (ds, dθ)
)2q] 1

2
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The second term is bounded by Lemma 4.3. The first one equals

∑

n > 1

E

[
11/2n+1<τ 6 1/2n

(∫ τ

0

∫ 2π

0

eγβsµY (ds, dθ)
)q]

6
∑

n > 1

E

[
11/2n+1<τ 6 1/2n

( ∫ 1/2n+1

0

∫ 2π

0

eγβrµY (dr, dθ)
)q]

6
∑

n > 1

P(1/2n+1 < τ 6 1/2n)1/2E
[(∫ 1/2n+1

0

∫ 2π

0

eγβrµY (dr, dθ)
)2q]1/2

6
∑

n > 1

P(1/2n+1 < τ 6 1/2n)1/2E
[
eqγ supσ∈[0,2−n−1] β(σ)

] 1
2

E

[
µY ([0, 2

−n−1]× [0, 2π])q
] 1

2

6 C
∑

n > 1

e−c2
n

E

[
µY ([0, 2

−n−1]× [0, 2π])q
] 1

2

6 C
∑

n > 1

e−c2
n

E

[
µY ([0, 2

−n−1]× [0, 2−n−1])q
] 1

2

.

One can find some constant C > 0 such that the covariance E[Y (e−seiθ)Y (e−s
′
eiθ

′
)] is bounded by

ln 1
|seiθ−s′eiθ′ | + C hence by Kahane’s convexity inequality [11, Theorem 2.1] one gets the existence of

some constant C > 0 such that

E

[
µY ([0, 2

−n−1]× [0, 2−n−1])q
]
6 C

1

2nξ(−q)
,

with ξ(−q) = −(2+ γ2

2 )q−γ2 q22 . Hence
∑

n > 1 e
−c2n

E

[
µY ([0, 2

−n−1]× [0, 2−n−1])q]
1
2 <∞, which concludes

the proof.
Finally, we will consider a probability measure associated to the martingale (fnǫ )ǫ∈]0,1] defined by

fnǫ = 1{
minu∈[ǫ,1] n−Xĝ,u(0) > 0

}(n− xln 1
ǫ
). (4.7)

The martingale property of (fnǫ )ǫ∈]0,1] is classical and results from Lemma 4.1 as well as the stopping time
theorem. We can define for each ǫ ∈]0, 1] a probability measure on Fǫ by

Θnǫ =
1

E[fnǫ ]
fnǫ dP,

where one has the following bound E[fnǫ ] = E[fn1 ] 6 n + C for some constant C. Because of Lemma 4.1
and the martingale property of the family (fnδ )δ∈]0,1], it is plain to check that these probability measures
are compatible in the sense that, for ǫ′ < ǫ

Θnǫ′|Fǫ = Θnǫ . (4.8)

By Caratheodory’s extension theorem we can find a probability measure Θn on F∞ such that for all ǫ ∈]0, 1]

Θn|Fǫ = Θnǫ . (4.9)

We denote by EΘn the corresponding expectation.
Recall the following explicit law of the Brownian motion conditioned to stay positive

Lemma 4.5. Under the probability measure Θn, the process

t 7→ n− xt

evolves as a 3d-Bessel process starting from n− x0 where x0 is distributed like Xĝ,1 (under P) conditioned
to be less or equal to n.
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We will sometimes use the following classical representation: under Θn, the process t 7→ n − xt is
distributed like |n− x0 +Bt| where Bt is a standard 3d Brownian motion starting from 0 (here, we identify
n− x0 with (n− x0)(1, 0, 0)).

5 Construction of the derivative Q-vertex

In this section, we prove the claims in Lemma 3.2 concerning Ãǫ.

Proof of (3.18). From (3.14) we get

|Bǫ(F, n)| 6 C

∫

R

eσcE
[
1Mn,ǫ |n+ c|e−µe

γc
∫
Dǫ

eγHǫ dMγ

]
dc. (5.1)

Recall that |zi| > 1 for i > 2. Then, recalling (3.5) and (2.2) we get for ǫ 6 |z| 6 1

eγHǫ(z) > C|z|−γQ. (5.2)

By Lemma 4.3, we get

|Bǫ(F, n)| 6 C

∫

R

eσc E
[
1Mn,ǫ |n+ c|e−Cµeγc

∫ ln 1
ǫ

0 eγxr µY (dr)
]
dc, (5.3)

where µY (dr) is the measure defined by µY (dr) =
∫ 2π

0
µY (dr, dθ).

Below, we want to show that the integral in the exponential term above carries a big amount of mass,
and we will look for this mass at some place where the process r 7→ xr takes on values close to its maximum,
which is between n− 1 and n on the set Mn,ǫ. To locate this place, we use the stopping times Tn−1 and Tn
defined by (4.4) which are finite and belong to [0, ln 1

ǫ ] on Mn,ǫ. We deduce

|Bǫ(F, n)| 6 C

∫

R

eσcE
[
1Mn,ǫ |n+ c|e−µeγcCeγ(n−1)In

]
dc

where we have set

In =

∫ Tn

Tn−1

eγ(xr−xTn−1
) µY (dr). (5.4)

By making the change of variables y = eγ(c+n)In, we get

Bǫ(F, n) 6 Ce−nσ
∫ ∞

0

y
σ
γ−1(1 + | ln y|)e−µCe−γy dyE

[
1Mn,ǫ(1 + | ln In|)I

− σ
γ

n

]
.

Then we bound

E

[
1Mn,ǫ(1 + | ln In|)I

− σ
γ

n

]
6 P(Mn,ǫ)

1/2
E

[
1Mn,ǫ(1 + | ln In|)2I

− 2σ
γ

n

] 1
2

.

Hence, by Lemma 4.4 we conclude

B(F ; ǫ, n) 6 Ce−nσP(Mn,ǫ)
1/2.

The claim (3.18) then follows by the dominated convergence theorem since for each fixed n, the proba-
bility P(Mn,ǫ) goes to 0 as ǫ goes to 0 (see Lemma A.1).
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Proof of (3.17).

Proceeding as in the proof of (3.18) we get

Ãǫ(1, n) 6 Ce−nσE
[
1Mn,ǫ(n− xln 1

ǫ
)I

− σ
γ

n

]
,

where In is as in (5.4). Now, we have

E[1Mn,ǫ(n− xln 1
ǫ
)|FTn ∨ σ(Y )] = E[1min

s∈[0,ln 1
ǫ
]
(n−xs) > 0(n− xln 1

ǫ
)|FTn ∨ σ(Y )]1Tn 6 ln 1

ǫ

= 1mins∈[0,Tn](n−xs) > 0(n− xTn)1Tn 6 ln 1
ǫ

= 1mins∈[0,Tn](n−xs) > 01Tn 6 ln 1
ǫ

so that
Ãǫ(1, n) 6 Ce−nσE I

− σ
γ

n 6 Ce−nσ.

from which the estimate (3.17) follows.

Proof of the first part of (3.15), i.e. the existence of limǫ→0 Ãǫ(F, n).

Now, we need to establish the existence and non triviality of the limit of Ãǫ(F, n), i.e. one part of (3.15).
Since Hǫ converges in H

−1(S2) towards H , it suffices to study the convergence and non triviality of the limit
for F = 1 and fixed n. We claim that this will result from the convergence in probability of the quantity∫
Dǫ
eγHǫ dMγ under the probability measure Θn towards a non trivial limit. To see this, make the change

of variables y = eγc
∫
Dǫ
eγHǫ dMγ to get

∫
eσcE

[
1Mn,ǫ(n− xln 1

ǫ
)e−µe

γc
∫
Dǫ

eγHǫ dMγ

]
dc

=γ−1
E[fn1 ]

∫ ∞

0

y
σ
γ−1e−µy dy × EΘn

[
1Mn,ǫ

(∫

Dǫ

eγHǫ dMγ

)− σ
γ
]
.

Under the probability measure Θn the process t 7→ (n − xt) is a 3d Bessel process hence mins∈[0,ln 1
ǫ ]
(n −

xs) converges almost surely to a finite random variable as ǫ goes to 0 and therefore 1Mn,ǫ converges to
1maxs∈[0,∞](xs)∈[n−1,n].

Take any non empty closed ball B of R2 containing no insertions zi. Then supǫHǫ is bounded in B and
thus (∫

Dǫ

eγHǫ dMγ

)− σ
γ

6 CMγ(B)−
σ
γ .

Let δ > 0 be such that B ⊂ B(0, δ)c. Then

E
Θn

[
Mγ(B)−

σ
γ

]
6 C(n+ 1)−1

E[fnδMγ(B)−
σ
γ ] 6 C(n+ 1)−1

E[(fnδ )
2]

1
2 E

[
Mγ(B)−

2σ
γ ]

1
2 .

Because GMC admits moments of negative order [11, theorem 2.12], the last expectation is finite. Hence the
dominated convergence theorem entails that to prove our claim it is enough to establish the convergence
in probability of the quantity

∫
Dǫ
eγHǫ dMγ under the probability measure Θn towards a non trivial limit.

Because Mγ is a positive measure and because of the bound (5.2), this is clearly equivalent to the finiteness
under Θn of the quantity

∫
R2 e

γH dMγ . Outside of the ball B(0, 1), the finiteness results from the fact that∫
D1
eγH dMγ < ∞ under P (see see [2, proof of Th. 3.2]), and the absolute continuity of Θn with respect

to P when restricted to F1. The main point is thus to analyze the integrability inside the ball B(0, 1). It is
clearly enough to show ∫

B(0,1)

1

|x|γQ dMγ <∞, a.s. under Θn. (5.5)

This follows from the following Lemma 5.1:
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Lemma 5.1. The measure Mγ satisfies

E
Θn

[ ∫

B(0,1)

1

|x|γQMγ(dx)
]
<∞. (5.6)

Proof. Under the measure Θn, the process t 7→ n−xt is distributed like |n−x0+Bt| where Bt is a standard
3 dimensional Brownian motion (here, we identify n− x0 with (n− x0)(1, 0, 0)). We suppose the Brownian
motion lives on the same probability space. Then, if N denotes a standard 3d Gaussian variable (under
some expectation we will also denote E), we have

E
Θn

[ ∫

B(0,1)

1

|x|γQMγ(dx)
]
6 CEΘn

[ ∫ ∞

0

∫ 2π

0

eγxr µY (dr, dθ)
]

= CeγnEΘn
[ ∫ ∞

0

∫ 2π

0

e−γ|n−x0+Br| µY (dr, dθ)
]

= CeγnEΘn
[ ∫ ∞

0

e−γ|n−x0+Br| dr
]

6 Ce2γnE [eγ|x0|]EΘn
[ ∫ ∞

0

e−γ|Br| dr
]

= Ce2γnE
[ ∫ ∞

0

e−γ
√
r|N | dr

]
,

= Ce2γn(

∫ ∞

0

e−γ
√
r dr)E

[ 1

|N |2
]
<∞.

6 Renormalization of the Q-puncture vertex operators

6.1 Proof of (3.16)

Using (5.2) and proceeding as for (5.3) we get

Aǫ(1, n) 6 C

∫

R

eσc E
[
1Mn,ǫ exp

(
− µeγcC

∫ ln 1
ǫ

0

eγxr µY (dr)
)]
dc

The stopping time Tn = inf{s; xs > n− 1} is finite and belongs to [0, ln 1
ǫ ] on Mn,ǫ. We deduce that

Aǫ(1, n) 6 C

∫

R

eσc E
[
1Mn,ǫ∩{Tn<ln 1

ǫ−1} exp
(
− µeγcCeγ(n−1)I(Tn)

)]
dc (6.1)

+ C

∫

R

eσcE
[
1Mn,ǫ∩{Tn > ln 1

ǫ−1} exp
(
− µeγcCe

γx
ln 1
ǫ
−1
I(ln 1

ǫ−1)
)]
dc

=: aǫ(n) + bǫ(n) (6.2)

where we have set

I(z) =

∫ z+1

z

eγ(xr−xz) µY (dr).

We will show that there exists a constant C > 0 such that for all n

(ln
1

ǫ
)

1
2 aǫ(n), (ln

1

ǫ
)

1
2 bǫ(n) 6 Cne−σn, (6.3)

which is enough to complete the proof of (3.16).

We begin with aǫ(n). By making the change of variables y = eγ(c+n)I(Tn), we get

aǫ(n) 6 C e−nσ
∫ ∞

0

y
σ
γ−1e−µCe

−γy dyE
[
1Mn,ǫ∩{Tn<ln 1

ǫ−1}I(Tn)
− σ
γ

]
.
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It suffices to estimate the last expectation. Obviously, we have

E

[
1Mn,ǫ∩{Tn<ln 1

ǫ−1}I(Tn)
− σ
γ

]
(6.4)

6 E

[
1{minu∈[0,Tn] n−xu > 0}1{min

u∈[Tn+1,ln 1
ǫ
]
(n−xTn+1)−(xu−xTn+1) > 0}

1{Tn+1<ln 1
ǫ }

I(Tn)
σ
γ

]
.

By conditioning on the the sigma algebra HTn generated by {xr, r 6 Tn}, {xr − xTn+1, r > Tn + 1} and
{xTn+1 − n}, we see that we have to estimate the quantity

E[I(a)−
σ
γ |xa+1 − xa].

We claim

Lemma 6.1. There exists a constant C (independent of any relevant quantity) such that for all a > 0

E[I(a)−
σ
γ |xa+1 − xa] 6 C

(
e−σ(xa+1−xa) + 1

)
.

The proof of this lemma is given just below. Admitting it for a while and given the fact that the random
variable xTn+1 − n is a standard Gaussian random variable, the conditioning on HTn of the expectation
(6.4) thus gives

E

[
1Mn,ǫ∩{Tn<ln 1

ǫ−1}
1

I(Tn)
σ
γ

]

6 C

∫

R

E

[
1{minu∈[0,Tn] n−xu > 0}1{min

u∈[Tn+1,ln 1
ǫ
]
−y−(xu−xTn+1) > 0}

](
e−σ(y+1) + 1

)
e−y

2/2 dy

To estimate the expectation in the integral, use the strong Markov property of the Brownian motion to
write

E

[
1{minu∈[0,Tn] n−xu > 0}1{min

u∈[Tn+1,ln 1
ǫ
]
−y−(xu−xTn+1) > 0}

]

=E
[
1{minu∈[0,Tn] n−xu > 0}1{min

u∈[Tn,ln
1
ǫ
−1]

−y−(xu−xTn) > 0}
]

6 E

[
1{min

u∈[0,ln 1
ǫ
−1]

n+max(0,−y)−xu > 0}
]
6 (

2

π
)

1
2
n+max(0,−y)
(ln 1

ǫ − 1)
1
2

,

where in the last inequality we have used Lemma A.1. We deduce

E

[
1Mn,ǫ∩{Tn<ln 1

ǫ −1}
1

I(Tn)
σ
γ

]
6 C(ln

1

ǫ
)−

1
2 ne−nσ

All in all, we have obtained
sup
ǫ∈]0,1]

(ln
1

ǫ
)

1
2 aǫ(n) 6 Cne−nσ,

which proves the claim. The same argument holds for bǫ(n).

Proof of Lemma 6.1.Notice that the joint law of
(
(xr−xa)r∈[a,a+1], xa+1−xa

)
is that of

(
(Bu−Ba)u∈[a,a+1], Ba+1−

Ba) where B is a standard Brownian motion starting from 0 (independent of Y ). Hence the law of I(a)
conditionally on xa+1 − xa = x is given by

∫ 1

0

eγBridge0,xr µY (dr)
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where (Bridge0,xr )r 6 1 is a Brownian bridge between 0 et x with lifetime 1. Hence it has the law of r 7→
Br − rB1 + ux. By convexity of the mapping x 7→ x−q for q > 0 and the fact that the covariance kernel of
the Brownian Bridge and the Brownian motion are comparable up to fixed constant, we can apply Kahane’s
inequality [7] to get that

E[I(a)−
σ
γ |xa+1 − xa = x] 6 CE

[( ∫ a+1

a

eγ(Br−Ba)+(r−a)x µY (dr)
)− σ

γ
]

From Lemma 4.3 and the fact that e(r−a)x > ex ∧ 1 for r ∈ [a, a+ 1], this quantity is less than

E[I(a)−
σ
γ |xa+1 − xa = x] 6 C

(
e−σx ∨ 1

)
.

This proves the claim.

6.2 Proof of (3.15).

First notice that

N∑

n=0

Aǫ(1, n) =

∫

R

eσc E
[
1BN,ǫ exp

(
− µeγc

∫

Dǫ

eγHǫ dMγ

)]
dc

where
BN,ǫ = { min

u∈[ǫ,1]
N − xu > 0}.

Let us denote by Zǫ the measure eγHǫ dMγ and define

sǫ := (ln
1

ǫ
)

1
6 , hǫ := e−sǫ .

Now we prove the upper bound. We have

N∑

n=0

Aǫ(1, n) 6

∫

R

eσc E
[
1BN,ǫ exp

(
− µeγcZǫ(Dhǫ)

)]
dc

=

∫

R

eσc E
[
E
[
1BN,ǫ |Fsǫ

]
exp

(
− µeγcZǫ(Dhǫ)

)]
dc.

Using the standard estimate E
[
1BN,ǫ |Fsǫ

]
6

√
2/π

N−xsǫ√
ln 1

ǫ −sǫ
(see Lemma A.1) we deduce

lim sup
ǫ→0

N∑

n=0

(ln
1

ǫ
)

1
2 Aǫ(1, n) 6

√
2/π

N∑

n=0

Ã(1, n).

which completes the upper bound.

Let us now investigate the lower bound. We denote by C(ǫ) the annulus {x : ǫ 6 |x| 6 hǫ} and by Iǫ the
set

Iǫ = { min
u∈[0,sǫ]

(N − xu) > sθǫ}

where θ ∈]0, 1/2[. We have

N∑

n=0

Aǫ(1, n) >

∫

R

eσc E
[
1BN,ǫ1Iǫ exp

(
− µeγcZǫ(Dhǫ)− µeγcZǫ(C(ǫ)

)]
dc.
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Using e−u > 1− u
1
2 , we deduce

N∑

n=0

Aǫ(1, n) >

∫

R

eσc E
[
1BN,ǫ1Iǫe

−µeγcZǫ(Dhǫ )
(
1− µ

1
2 e

1
2 γcZǫ(C(ǫ))

1
2

)]
dc

=

∫

R

eσc E
[
1BN,ǫe

−µeγcZǫ(Dhǫ )
]
dc−

∫

R

eσcE
[
1BN,ǫ1Icǫ e

−µeγcZǫ(Dhǫ )
]
dc

− µ
1
2

∫

R

ec
(

1
2 γ+σ

)
E

[
1BN,ǫ1Iǫe

−µeγcZǫ(Dhǫ )Zǫ(C(ǫ))
1
2

]
dc

=:B1(N, ǫ)−B2(N, ǫ)−B3(N, ǫ). (6.5)

We now estimate the above three terms.

We start with B1(N, ǫ). We have

E
[
1BN,ǫ |Fhǫ

]
=1BN,hǫ (

2

π
)

1
2

∫ N−xsǫ√
ln 1
ǫ −sǫ

0

e−
u2

2 du

> 1BN,hǫ1{N−xsǫ 6 (ln 1
ǫ −sǫ)

1
4 }(

2

π
)

1
2

∫ N−xsǫ√
ln 1
ǫ −sǫ

0

e−
u2

2 du

> 1BN,hǫ
N − xsǫ√
ln 1

ǫ − sǫ
1{N−xsǫ 6 (ln 1

ǫ −sǫ)
1
4 }(

2

π
)

1
2 e−

1
2 (ln 1

ǫ −sǫ)
− 1

2

.

Plugging this relation into B1(N, ǫ) we deduce

B1(N, ǫ) > (
2

π
)

1
2 e−

1
2 (ln 1

ǫ −sǫ)
− 1

2

(ln
1

ǫ
− sǫ)

− 1
2
( ∫

R

eσc E
[
1BN,ǫ(N − xsǫ) exp

(
− µeγcZǫ(Dhǫ)

)]
dc

−
∫

R

eσc E
[
1{N−xsǫ>(ln 1

ǫ −sǫ)
1
4 }1BN,hǫ (N − xsǫ)e

−µeγcZǫ(Dhǫ )
]
dc

=: ∆1(ǫ) + ∆2(ǫ).

It is clear that

lim
ǫ→0

(ln
1

ǫ
)

1
2 ∆1(ǫ) = lim

ǫ→0

N∑

n=0

Ãǫ(1, n) =

N∑

n=0

Ã(1, n).

It remains to treat ∆2(ǫ). By making the change of variables y = eγcZǫ(Dhǫ), we get

(ln
1

ǫ
)

1
2 ∆2(ǫ) 6 CEΘN

[
1
{N−xsǫ>(ln 1

ǫ −sǫ)
1
4 }
Zǫ(Dhǫ)

− σ
γ

]
.

Now we will use the fact that under ΘN the event in the above expectation is very unlikely. Using the
elementary inequality ab 6 a2/2 + b2/2 we get

E
ΘN

[
1
{N−xsǫ>(ln 1

ǫ −sǫ)
1
4 }
Zǫ(Dhǫ)

− σ
γ

]

6 (ln
1

ǫ
)κEΘN

[
1
{N−xsǫ>(ln 1

ǫ −sǫ)
1
4 }

]
+ (ln

1

ǫ
)−κEΘN

[
Zǫ(D1)

−2σγ

]
.

Using the fact that a Gaussian Multiplicative Chaos has negative moments of all orders on all open balls,
the expectation in the second term in the above expression is easily seen to be bounded uniformly in ǫ.
Hence, the second term tends to 0 as ǫ→ 0. Concerning the first term, recall Lemma 4.5 and the estimate,
for a 3d-Bessel process βt and u > x

Px(βt > u) = P
x/t

1
2
(β1 > u/t

1
2 ) 6 C

t
1
2

u− x
∧ 1.
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Therefore

ΘN
(
N − xsǫ > (ln

1

ǫ
− sǫ)

1
4

)
6 CE[

s
1/2
ǫ

| ln 1
ǫ − sǫ − x0|

∧ 1]

6 2CE[
s
1/2
ǫ

| ln 1
ǫ − sǫ − x0|

] + P(x0 >
1

2
(ln

1

ǫ
− sǫ)

1
4 )

6 2C ln(
1

ǫ
)−

1
6 + C(ln

1

ǫ
)

1
4 e−

1
2 (ln 1

ǫ )
1
2

.

Hence, choosing κ < 1/6 leads to limǫ→0(ln 1
ǫ )

1
2 ∆2(ǫ) = 0. Thus

lim inf
ǫ→0

(ln
1

ǫ
)

1
2 B1(N, ǫ) >

N∑

n=0

Ã(1, n). (6.6)

Now we treat B3(N, ǫ). To this purpose, we use first the change of variables y = eγcZǫ(Dhǫ) to get

B3(N, ǫ) 6 CE[1BN,ǫ1IǫZǫ(Dhǫ)
−

1
2 γ+σ

γ Zǫ(C(ǫ))
1
2 ]

=CE
[
1BN,ǫ1IǫE[Zǫ(Dhǫ)

−
1
2 γ+σ

γ Zǫ(C(ǫ))
1
2 |(xs)s<∞]

]

6 CE
[
1BN,ǫ1IǫE[Zǫ(Dhǫ)

− γ+2σ
γ |(xs)s<∞]

1
2 E[Zǫ(C(ǫ))|(xs)s<∞]

1
2

]

=CE
[
1BN,ǫ1IǫE[Zǫ(Dhǫ)

− γ+2σ
γ |(xs)s<∞]

1
2
( ∫ ln 1

ǫ

sǫ

eγxu du
) 1

2

]

6 CE[Zǫ(Dhǫ)
− γ+2σ

γ ]
1
2E

[
1BN,ǫ1Iǫ

∫ ln 1
ǫ

sǫ

eγxu du
] 1

2

=CE
[
1BN,ǫ1Iǫ

∫ ln 1
ǫ

sǫ

eγxu du
] 1

2

On the set Iǫ, we have the estimate

∫ ln 1
ǫ

sǫ

eγxu du 6 C ln
1

ǫ
e−γs

θ
ǫ = C ln

1

ǫ
e−γ(ln

1
ǫ )
θ/6

which implies
lim
ǫ→0

(ln
1

ǫ
)

1
2B3(N, ǫ) = 0. (6.7)

Finally we focus on B2(N, ǫ). We first make the change of variables y = eγcZǫ(Dhǫ) to get

B2(N, ǫ) 6 C E
[
1BN,ǫ1IcǫZǫ(D1)

− σ
γ

]
(6.8)

We claim

Lemma 6.2. Let B be a standard Brownian motion and β > x > 0 and θ ∈]0, 1/2[. Then, for some constant
C > 0 (independent of everything)

Pǫ(x) :=Px

(
min

u∈[sǫ,− ln ǫ]
β −Bu < sθǫ , min

u∈[0,− ln ǫ]
β −Bu > 0

)

6 (β − x)(ln
1

ǫ
)−1/2sθ−1/2

ǫ .
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Conditioning (6.8) on the sigma algebra generated by {Xĝ,u(0);u > 1}, we can use Lemma 6.2 to get

(ln
1

ǫ
)

1
2 B2(N, ǫ) 6 Csθ−1/2

ǫ E

[
(N −Xĝ,1(0))+Zǫ(D1)

− σ
γ

]
(6.9)

The last expectation is clearly finite and bounded independently of ǫ so that

lim
ǫ→0

(ln
1

ǫ
)

1
2B2(N, ǫ) = 0. (6.10)

and, gathering (6.5)+(6.6)+(6.7)+(6.10), the proof of (3.16) and hence Lemma 3.2 is complete.

Proof of Lemma 6.2. We condition first on the filtration Fsǫ generated by the Brownian motion up to time
sǫ. From Lemma A.1, we obtain

P

[
min

u∈[sǫ,− ln ǫ]
β −Bu < (sǫ)

θ, min
u∈[sǫ,− ln ǫ]

β −Bu > 0|Fsǫ
]

6

√
2

π

∫ (β−Bsǫ )+
(ln 1

ǫ
−sǫ)1/2

(β−Bsǫ−(sǫ)θ)+

(ln 1
ǫ
−sǫ)1/2

e−
u2

2 du

6 1{β−Bsǫ∈[0,(sǫ)θ ]}

√
2

π

(β −Bsǫ)+

(ln 1
ǫ − sǫ)1/2

+ 1{β−Bsǫ>(sǫ)θ}
(sǫ)

θ

(ln 1
ǫ − sǫ)1/2

.

Integrating, we get that

Pǫ(x) 6

√
2

π
(ln

1

ǫ
− sǫ)

−1/2
E

[
1{minu∈[0,sǫ] β−Bu > 0}(β −Bsǫ)1{β−Bsǫ∈[0,(sǫ)θ ]}

]

+
(sǫ)

θ

(ln 1
ǫ − sǫ)1/2

E

[
1{minu∈[0,sǫ] β−Bu > 0}

]
.

The second expectation is estimated with Lemma A.1. Concerning the first one, we use the fact under the
probability measure 1

β−x1{minu∈[0,sǫ] β−Bu > 0}(β − Bsǫ), the process (β − Bu)u 6 sǫ is a 3d-Bessel process,
call it Besst. Hence, using the Markov inequality, the scale invariance of a Bessel process and the fact that

the mapping x 7→ E
x
[

1
Bess1

]
is decreasing, we deduce

Pǫ(x) 6

√
2

π
(ln

1

ǫ
− sǫ)

−1/2(β − x)Eβ−x
[
1{Besssǫ 6 (sǫ)θ}

]
+

√
2

π

(sǫ)
θ−1/2

(ln 1
ǫ − sǫ)1/2

(β − x)

6

√
2

π
(ln

1

ǫ
− sǫ)

−1/2(β − x)(sǫ)
θ−1/2

E
0
[ 1

Bess1

]
+

√
2

π

(sǫ)
θ−1/2

(ln 1
ǫ − sǫ)1/2

(β − x).

A Auxiliary lemma

Lemma A.1. We have for β > 0

P( sup
u 6 t

Bu 6 β) =

√
2

π

∫ β√
t

0

e−
u2

2 du 6

√
2

π

β√
t
.

The proof is elementary and thus left to the reader.
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