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Abstract 

Today 4G mobile systems are evolving to provide IP connectivity for diverse applications and 

services up to 1Gbps. They are designed to optimize the network performance, improve cost 

efficiency and facilitate the uptake of mass market IP-based services.  Nevertheless, the growing 

demand and the diverse patterns of mobile traffic place an increasing strain on cellular networks. 

To cater to the large volumes of traffic delivered by the new services and applications, the future 

5G network will provide the fundamental infrastructure for billions of new devices with less 

predictable traffic patterns will join the network. The 5G technology is presently in its early 

research stages, so researches are currently underway exploring different architectural paths to 

address their key drivers. SDN techniques have been seen as promising enablers for this vision of 

carrier networks, which will likely play a crucial role in the design of 5G wireless networks. A 

critical understanding of this emerging paradigm is necessary to address the multiple challenges 

of the future SDN-enabled 5G technology. To address this requirement, a survey the emerging 

trends and prospects, followed by in-depth discussion of major challenges in this area are 

discussed. 

5.1 Introduction  

Mobile and wireless connectivity have made tremendous growth during the last decade. 

Today, the 3G/4G mobile wireless systems are becoming in the ground to provide connectivity 

through IP core network (i.e., Evolved Packet Core (EPC)). They also focus towards providing 

seamless connection to cellular networks such as 3G, LTE, WLAN and Bluetooth. The 5G (fifth 

Generation) is being seen as user-centric concept instead of operator-centric as in 3G or service-

centric as seen for 4G.  Mobile terminals will be able to combine multiple flows incoming from 

different technologies. Multimode mobile terminals have been seen towards the 4G cellular 

network. They aim to provide single user terminal that can cooperate in different wireless 

networks and overcome the design problem of power-consumption and cost old mobile terminals. 
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The Open Wireless Architecture (OWR) [1] is targeted to support multiple existing wireless air 

interfaces as well as future wireless communication standard in an open architecture platform.  

Nevertheless, the growing demand and the diverse patterns of mobile traffic place an increasing 

strain on cellular networks. To cater to the large volumes of traffic delivered by the new services 

and applications, the future fifth generation 5G of wireless/mobile broadband [2] network will 

provide the fundamental infrastructure for billions of new devices with less predictable traffic 

patterns will join the network.  

The 5G wireless network should enable the development and exploitation of massive capacity 

and massive connectivity of complex and powerful heterogeneous infrastructures. Accordingly, 

the network should be capable of handling the complex context of operations to support the 

increasingly diverse set of new and yet unforeseen services, users and applications (i.e., including 

smart cities, mobile industrial automation, vehicle connectivity, machine-to-machine (M2M) 

modules, video surveillance, etc.), all with extremely diverging requirements, which will push 

mobile network performance and capabilities to their extremes. Additionally, it should provide 

flexible and scalable use of all available non-contiguous spectrums (e.g., further LTE 

enhancements to support small cells (Non-Orthogonal Multiple Access (NOMA) [3], Future 

Radio Access (FRA)) for wildly different network deployment scenarios, in an energy efficient 

and secure manner). 

To address these key challenges, there is a need to enhance the future networks through 

intelligence, to proceed to successful deployment and realization of a powerful wireless world. 

Principals of virtual network management and operation, network function virtualization (NFV), 

and Software-Defined Networking (SDN) [4] are redefining the network architecture to support 

the new requirements of a new eco-system in the future. SDN techniques have been seen as 

promising enablers for this vision of carrier cloud, which will likely play a crucial role in the 

design of 5G wireless networks. Accordingly, the future SND-enabled 5G communications have 

to properly address key challenges and requirements driven by multiple society, users, and 

operators, which would give them greater freedom to balance operational parameters, such as 

network resilience, service performance and Quality of Experience (QoE). 

5.2 Evolution of the Wireless Communication towards the 5G 

Figure 5. 1 depicts an overview of the wireless world towards the 5G. The Figure gives a 

multi-dimensional overview of significant design challenges that 5G technology will face to 

simultaneously meet the future services, as to achieve cost-effective resource provisioning and 

ecosystem, built with novel technologies such as SDN and network virtualization. 

5.2.1 Evolution of the wireless world 

The mobile communication system has evolved through the first generation (1G), to the 

second generation (2G) and third generation (3G) through the 4G or Long-Term Evolution-

Advanced (LTE-A) of mobile/cellular communications, with the typical service improvement and 

cost efficiency for each generation. For example, 1G (i.e., Advanced Mobile Phone System 

(AMPS)) and 2G (i.e., GSM and GPRS) were designed for circuit switched voice application. 3G 
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(i.e., UMTS) and 4G (i.e., LTE-Advanced) were developed for packet switched services including 

multimedia, wide-band data and mobile Internet services. Meanwhile, there has been the 

introduction of other local, metropolitan, and wide area wireless/cellular technologies such as 

microcells, Femtocell, Pico-cell, small cells, etc.  

 

Figure 5. 1: A View of the Wireless World 

The other evolution, which has emerged in the past decade, aimed to exploit heterogeneous 

wireless communication, comprised the wireless access infrastructure in both licensed and 

unlicensed part of the wireless spectrum. It was intended to interconnect cellular system to 

wireless access networks (i.e., WLAN, WiMAX, etc.) to improve the service delivery and 

application provisioning end-to-end.  Thus, the network was composed of different mixed types 

of infrastructures, forming heterogeneous networks (HetNets) [5]. Driven by both technical and 

economic incentives, the proliferation of HetNets had offered opportunities to satisfy users and 

applications in terms of their capabilities to support the new services. 

Another important direction, which is expected to characterize beyond the 4G and 5G wireless 

networks, concerns the deployment of the application driven networks. Application-driven 

networks consist of interconnecting end-user devices, M2M (Machine to Machine) modules, and 

several machines, sensors, and actuators, so called IoT (Internet of Things) with billions of objects 

connected to the internet for supplying big data applications. In parallel, in recent years the 

introduction and deployment of cloud-based concepts have emerged as an important solution 

offering enterprises a potentially cost-effective business model. For example, mobile users can 
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use cloud-connected devices through public and private Mobile Personal Grid (MPG). Given the 

dynamic needs and supply of the network resource with rich resources available in the cloud, 

mobile users can benefit from resource virtualization to accommodate the different requirements 

as mobile devices move around within the mobile cloud. Furthermore, the integration of satellites 

in the future 5G networks reveals many challenges to support flexible, programmable and secure 

infrastructure. The intersection of the cloud, satellites, Big Data, M2M, and 5G will bring about 

an exciting new automated future. 

5G networks will not be based on routing and switching technologies anymore. They will be 

open, more flexible, able to support HetNets, and able to evolve more easily than the traditional 

networks. They will be able to provide convergent network communication across multi-

technologies networks (e.g., packet and optical networks), and provide open communication 

system to cooperate with satellite systems, cellular networks, clouds and data-centers, home 

gateways, and many more open networks and devices. Additionally, 5G systems will be 

autonomous and sufficiently able to adapt their behavior depending in the user’s requirements to 

handle application-driven networks in dynamic and versatile environments. Security, resiliency, 

robustness and data integrity will be a key requirement of future networks. 

5.3 Software-Defined Networks 

Introduction of intelligence towards 5G can address the complexity of Heterogeneous 

Networks (HetNets) by specifying and providing flexible solutions to cater for network 

heterogeneity. Software-Defined Networking (SDN) has emerged as a new intelligent architecture 

for network programmability. The primary idea behind SDN is to move the control plane outside 

the switches and enable external control of data through a logical software entity called controller. 

SDN provides simple abstractions to describe the components, the functions they provide, and the 

protocol to manage the forwarding plane from a remote controller via a secure channel. This 

abstraction captures the common requirements of forwarding tables for a majority of switches and 

their flow tables.  This centralized up-to-date view makes the controller suitable to perform 

network management functions while allowing easy modification of the network behavior 

through the centralized control plane.   
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Figure 5. 2: Reference Architecture of Software-Defined Networking 

Figure 5. 2 depicts the overall SDN architecture. The SDN community has adopted a number 

of northbound interfaces (i.e., between the control plane and applications) that provide higher 

level abstractions to program various network-level services and applications at the control plane. 

For the southbound interface (i.e., between the control plane and network devices), the OpenFlow 

standard [6] has emerged as the dominant technology.  For instance, consider the operation of an 

Ethernet switch.  From the functional point of view, Ethernet switches can be divided into a data 

plane and a control plane.  The data plane represents a forwarding table according to which 

incoming packets to an Ethernet switch are forwarded.  Forwarding tables consist of entries which 

tell to which output port the received Ethernet frames should be sent.  Populating of forwarding 

table with these entries is the task of the control plane.  The control plane is a set of actions 

exerted on the received Ethernet frames to decide their destination ports.  In order to quickly 

perform frame processing, these actions are implemented in hardware together with the 

forwarding table. 

SDN makes it possible to manage the entire network through intelligent orchestration and 

provisioning systems. Thus it allows on-demand resource allocation, self-service provisioning, 

truly virtualized networking, and secures cloud services.  Thus, the static network can evolve into 

an extensible vendor-independent service delivery platform capable of responding rapidly to 

changing business, end-user, and market needs, which greatly simplifies the network design and 

operation. Consequently, the devices themselves no longer need to understand and process 

thousands of protocol standards but merely accept instructions from the SDN controllers. 
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The value of SDN in 5G wireless networks lies specifically in its ability to provide new 

capabilities like network virtualization, automating and creating new services on top of the 

virtualized resources, in secure and trusted networks. Also, SDN enables the separation of the 

control logic from vendor-specific hardware to open and vendor-neutral software controllers. 

Thus, it enables implementing routing and data processing functions of wireless infrastructure into 

software packages in general purpose computer or even in the cloud. 

5.4 Network Function Virtualization 

One of the most interesting complementary technology of SDN which has the potential to 

dramatically impact the future 5G networking and how to refactor the architecture of legacy 

networks, is virtualizing as many network functions as possible, so called Network Function 

Virtualization (NFV). The aim of NFV is to virtualize (known also as network softwarization) a 

set of network functions by deploying them into software packages, which can assembled and 

chained to create the same services provided legacy networks. It is possible for example to deploy 

a virtualized Session Border Controller (SBC) [7] in order to protect the network infrastructure 

more easily than installing the conventional complex and expensive network equipment’s. The 

concept of NFV is inherited from the classical server virtualization that could by installing 

multiple virtual machines running different operating systems, software and processes.  

Traditionally, network operators had always preferred the use dedicated high available black-

box network equipment’s to deploy their networks. However, this old approach inevitably leads to 

long time-to-market (CapEx) and requires a competitive staff (OpEx) to deploy and run them. As 

depicted in Figure 5. 3Erreur ! Source du renvoi introuvable., the NFV technology aims to 

build an end-to-end infrastructure and enable the consolidation of many heterogeneous network 

devices by moving network functions from dedicated hardware onto general purpose 

computing/storage platforms such as servers. The network functions are implemented in software 

packages that can be deployed in virtualized infrastructure, which will allow for new flexibilities 

in operating and managing mobile networks. 

Another important topic in 5G carrier-grade mobile networks which may be improved by 

implementing NFV in cloud infrastructures is resilience. Implementing network functions in data 

centers allows transparent migration between either virtual machines or real machines. 

Furthermore, implementing mobile network functions in data centers will enable more flexibility 

in terms of resource management, assignment, and scaling. This impact the development of eco-

systems and energy efficiency of networks, as over-provisioning can be avoid by only using the 

necessary amount of resources. 
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Figure 5. 3: Network Function Virtualization 

NFV is currently discussed in the context of virtualizing the core network as well as 

centralizing the base band processing within Radio Access Networks (RAN). Examples of mobile 

network virtualization are used for Cloud-RAN (C-RAN). C-RAN can use virtualized software 

modules running in different virtual machines. Additionally, enhancing NFV with SDN may 

offload the centralized location within networks nodes which require high-performance 

connections between Radio Access Point (RAP) and data centers. Decentralizing these 

connections with SDN will enable managing heterogeneous network nodes (i.e., Pico-cell, macro-

cell, etc.) and heterogeneous back-haul connectivity such as fiber, wireless, etc. 

Another concept that received a lot of attention with the evolution of SDN and NFV is the 

Network Service Chaining (NSC) [8]. The NSC aimed to help carrier-grade to provide continuous 

delivery of services based on dynamic network function orchestration and automated deployment 

mechanisms to improve operational efficiency. Because SDN moves the management functions 

out of the hardware and places them in controller software running in general purpose server, and 

NFV moves network functions out of hardware and puts them onto software, too, building service 

chaining no longer requires hardware, so there is no need for over-provisioning since additional 

servers can be added when needed. 

One example of an increasingly complex network platform is the 3GPP Evolved Packet Core 

(EPC), which requires multiple functions (e.g., Network Address Translation (NAT), service 

access policing for VPN, video platforms and VoIP, infrastructure firewall protection, etc.) 

typically installed in independent boxes. Carrier-grade networks should define statically- One 

example of an increasingly complex network platform is the 3GPP Evolved Packet Core (EPC), 

which requires multiple functions (e.g., Network Address Translation (NAT), service access 



8 
 

policing for VPN, video platforms and VoIP, infrastructure firewall protection, etc.) typically 

installed in independent boxes. Carrier-grade networks should define statically-provisioned 

service chains for customer traffic crosses several middle boxes. In the future 5G networks 

carrier-grade will not use monolithic, closed, and mainframe-like boxes to provide a single 

service. SDN and NFV-driven service chaining can improve flexible allocation, orchestration and 

management of cross-layer (L2-L7) network functions and services and provides the substrate for 

dynamic network service chains. 

 

5.5 Information-Centric Networking 

The Information-Centric Networking (ICN) is a novel network architecture that is receiving a 

lot of attention in the 5G networks. ICN consists of new communication model that revolve 

around the production, consumption and matching users with content, in-network caching and 

content-based service differentiation, instead of communication channels between hosts. ICN 

pushes many design principals from the Web to the network architecture by centering on what is 

relevant to the user and not where the content is located in the network. So, ICN manages contents 

and names to ensure their uniqueness in the network (i.e., because data are routed based on their 

names). The ICN communication model allows built-in native features aiming at optimizing and 

simplifying future content delivery architecture. The service providers should prepare their 

infrastructure capabilities to support efficient multicast data delivery as well as provide seamless 

mobile connectivity so users can move and the network can continue delivering data packets 

without interruption. 

Typically, the ICN deployment schemes can be classified into three categories: (1)  ICN over 

IP, which encapsulate ICN protocol data in IP (or UDP/TCP) packets or take ICN protocol 

information using IP options; (2) ICN over L2, which completely replaces the IP layer and 

directly uses the data link protocol (such as PPP, Ethernet, IEEE 802.x) to deliver data between 

neighbors; and (3) ICN over virtualized network, which exploits network virtualization 

technologies, such as SDN, to implement ICNs. Although these schemes have advantages and 

disadvantages, most works on ICN implementations focus on how to implement a particular ICN 

architecture.  However, different ICN architectures employ different transmission techniques and 

packet format, which is not easy for the co-existence and inter-operability of different ICNs. SDN 

and NFV are amazing approaches for improving the integration of ICN in the 5G network without 

deploying new ICN capable hardware.  

Levering SDN for ICN requires a unified framework to facilitate the implementation and 

interoperability among different ICN architectures [9]. Such a content-centric framework should 

provide users network access to remote named-resources, rather than to remote hosts [10]. The 

integration of ICN in the 5G network includes storage and execution capabilities to evolve the 

network from a dumb pipe transport towards added value intelligent network. Introduction of 

intelligence in ICN architecture improves the flexibility and scalability of content-naming as well 



9 
 

as enhances the performance of the QoS in the network. Intelligent ICN can also made it feasible 

to integrate mobile radio aware ICN on the 5G networks. 

Although supporting ICN-enabled SDN allows transforming the current network model into 

simplified, programmable and generic one, ICN still faces a number of challenges to its 

realization including routing computation, path labeling to discover the network topology and 

locate data in the network, and routes assignments to route requests for data objects. Moreover, 

since ICN information should be inserted in each packet, the fragmentation of packets limits 

processing cost of the network resources. Mechanisms for caching objects in the network along 

the path need more investigation to deliver them more rapidly to an increasing number of users. 

Distribution of storage capabilities across the path with more elaborated content-routing 

algorithms are open issues, so researchers have to cope with a proliferation of new and complex 

application-contents and services, many of which are unknown today.  

5.6 Mobile and Wireless Networks 

The design of the future 5G systems should efficiently support a multitude of diverse services 

and introduces new methods making the network application-service aware. The future 5G 

network architecture should be highly flexible for supporting traditional use cases as well as easy 

integration of future one’s. Additionally, the 5G network will be able of handling user-mobility, 

while the terminals will make the final choice among different access networks transparently. 

Mobile terminals will also hold intelligent components to make choice of the best technology to 

connect, with respect of the constraints and dynamically change the current access technology 

while guaranteeing the end-to-end-connectivity.  

5.6.1 Mobility Management 

 

A key trend relates to mobility, as broadband mobile is expected to growth in the next decade. 

The future will encompass 1000 times more connected mobile device in the horizon 2020, all with 

different QoS requirements, which will interconnect to all kinds of heterogeneous and customized 

Internet based services and application. Accordingly, these developments demand rethinking 

about the network design, which leads to ask about the advantages of SDN in the most common 

wireless networking scenarios. It is also important to understand what the key challenges that 

exist in this realm are and how they can be addressed. 

Presently, there is not much discussion regarding the mobility support in SDN. Software 

Defined Wireless Networking (SDWN) would be a SDN technology for wireless/broadband 

networks that provides radio resource management, mobility management and routing [11]. 

SDWN infrastructure can support composition to combine results of multiple modules into a 

single set of packet-handling rules. For example, novel mobility management protocols should be 

provided to maintain session continuity from the application’s perspective and network 

connectivity through dynamic channel configuration. Furthermore, mobility modules should be 
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able to provide rapid client re-association, load balancing, and policy management (i.e., charging, 

QoS, authentication, authorization, etc.) 

 

 

Figure 5. 4: Orange Cloud Box Virtualized Residential Gateway 

Another important key challenge in wireless/broadband networks concerns multi-homing. 

Multi-homing means the attachment of end-host to multiple networks at the same time, so users 

could freely move between wireless infrastructures while also supporting the provider. This 

approach would emerge by applying SDN capabilities to relay between the home network and 

edge networks. The future wireless/broadband system can be envisioned as a world in which 

mobile devices can moves seamlessly between the wireless infrastructures, in trust and secure 

manner. For example, as shown in Figure 5. 4 in home networks a virtualized residential gateway 

can improve service delivery between the core home network and the network-enabled devices. 

The target architecture emerges by applying SDN and NFV between the home gateway and the 

access network, moving most of the gateway functionality to a virtualized execution environment. 

 

5.6.2 Ubiquitous Connectivity 

A part of the future wireless networks, end-users will need to communication with each other and 

with a surrounding objects and machines, e.g., sensors embedded in objects. Figure 5. 5Figure 5. 5 

shows how the cellular network will be completed by interaction with network topologies, 

including M2M, which completed with user/device-to-user/device communication at different 

level of cooperation and coordination between different nodes. 

Taking into account all kinds of interactions of these ubiquitous systems, will increasingly 

expend the network infrastructure, which will include new data services and applications, e.g., 

smart-phones and tablet with powerful multimedia capabilities or even connected things 

surrounding the environment, such as building, roads or even in car-to-car communication. 

Accordingly, essential design criteria to fulfill the requirements of future 5G systems are fairness 

between users over the covered area of ubiquitous systems, latency reduce, increase reliability, 

energy efficiency, and enhance QoS and QoE requirements originated from heterogeneous 

applications and services. 
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Figure 5. 5: Integration of ubiquitous systems with 5G networks 

SDN paradigm can be deployed as higher layers of the protocol stack, as well as for wireless 

networks, such as the LR-WPANs (Low-Rate Wireless Personal Area Networks). Extending SDN 

to support LR-WPAN was considered impractical because these networks are highly constrained, 

i.e., they require numerous low-cost nodes communicating over multiple hops to cover a large 

geographical area, duty cycles to provide low-energy consumption to operate for long lifetimes on 

modest batteries. Such an approach requires cross-layer optimization, data aggregation, and low 

software footprint due the limited amount of memory storage and CPU processing speeds. 

 

Wireless SDN (WSDN) remains a key challenge for the future SDN-enabled networks. The 

controllers should provide an appropriate module to define the rules for LR-WPAN environment. 

WSDN controllers should provide flexibility to support node mobility, topology discovery, self-

configuration and self-organization. They also have to deal with link unreliability, robustness to 

the failure of generic nodes and the control node. Furthermore, although energy efficiency has 

been the target of diverse research works in the past, it remains an open issue that wireless 

Internet of things (IoT) will face. The IoT eco-system has become extremely complex and highly 

demanding in terms of robustness, performance, scalability, flexibility, and agility. The IoT will 

require new air interfaces, protocols and models optimized for short and sporadic traffic pattern. 

SDN should significantly reduce the cost of powering the entire network, the hardware as well as 

for running software. Possible solutions are for example, by shutting off IoT components when 

they are idle, or adapting link rates to be as minimal as possible, and even by introducing new 

energy-aware routing protocols [12]. In the latter case, the SDN controller collects utilization 

statistics for links to get visibility of flows in the network, and forward flows according to these 

protocols. An important consideration should be taken into account when designing energy-aware 

protocol is the need of the network to recover after failure while supporting automatic topology 

discovery at the same time. 
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5.6.3 Mobile Clouds 

Mobile cloud computing is one of the technologies that are converging into a rapidly growing 

field of mobile and wireless network. Mobile cloud future applications in 5G will have a profound 

impact on almost all activities of our lives. Mobile cloud provides an excellent backend for 

applications on mobile devices giving access to resources such as storage, computing power etc., 

which are limited in the mobile device itself. The close interaction with cloud may create an 

environment in which mobile devices look attached locally to the cloud with low latency [13]. 

SDN promises an interactive solution to implement new capabilities, i.e., to enable cloud 

applications and services retrieve network topology, monitor the underlying network conditions 

(e.g., failures), and initiate and adjust network connectivity and tunneling [14]. The 5G design 

communication model aims to provide a global architecture with a modulator SDN layer to 

orchestrate the communication between the applications and services in the cloud and user's 

mobile terminal.  Given the dynamic needs and supply of the network resource, with rich 

resources available in the cloud, mobile users can benefit from resource virtualization. The 

virtualization can abstract these dynamic mobile resources to accommodate the different 

requirements as elements move around within the mobile-cloud. 

Despite SDN has some advantages such as resource sharing and session management, it 

incurs several limitations. In particular, because mobile users trigger repeatedly the embedded 

controller for marshalling and unmarshalling flow rules in OpenFlow messages, the overhead 

increases more significantly because of the limited computing capabilities and resources of 

mobile devices (i.e., extra memory consumption and extra latency). For example, mobile 

interactive applications (e.g., mobile gaming, virtual visits) require reliable connectivity to the 

cloud as well as low-latency and impose higher bandwidth requirements from wireless access 

networks to cloud service. Furthermore, mobile user's use cloud-connected devices through public 

and private Mobile Personal Grid (MPG), which induces multi-dimensional limitations including, 

dynamic mobility management across heterogeneous networks, power saving, resource 

availability, operating conditions), and further limits the movement of content across multiple 

devices and the cloud. Addressing these limitations simultaneously may increase device 

complexity, degrades the network performance, and causes connectivity dispersions. The key 

challenge for mobile clouds is how to transform physical access networks to multiple virtual and 

isolated networks, while maintaining and managing seamless connectivity.  

5.7 Cooperative Cellular Networks 

Another important paradigm has recently gained a lot of attention as one of the most 

promising technologies in next generation of wireless/cellular networking is multi-hop relay 

communication. Presently, cellular systems have a single direct link between the base station and 

the terminal. However, multi-hop networks require maintaining multi-link between multiple 

transmitter and receiver to form multi-path communication, so called multi-hop cooperative 

network. Compared to existing technology, which include mechanisms for re-transmission and 
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multiple acknowledgments, multi-hop cooperative network can overcome these limitations by 

providing high-density access network. However, multi-hop cooperative network incurs several 

limitations and often suffer a throughput penalties since it operates in half-duplex mode and 

therefore introduce insufficiency of the spectrum usage. 

To increase the capacity of 5G systems, SDN can provide solutions to overcome the 

limitations of multi-hop wireless networks [15]. Indeed, SDN can provide advanced caching 

techniques to store data at the edge network to reach the required high capacity of 5G systems. 

One way to increase per-user capacity is to make cells small and bring the base station closer to 

the mobile client. In cellular communications, an architecture based on SDN techniques may give 

operators greater freedom to balance operational parameters, such as network resilience, service 

performance and QoE. OpenFlow may work across different technologies (i.e., WiMAX, LTE, 

Wi-Fi) to provide rapid response to the subscriber mobility and avoid disruptions in the service. 

The decoupling between the radio network controller and the forwarding plane will enhance the 

performance of the base station. 

 

Figure 5. 6: Fully virtualized SDN-enabled cellular network 

Additionally, supporting many subscribers, frequent mobility, fine-grained measurement and 

control, and real-time adaptation introduces flexibility, scalability and security challenges for 

future 5G systems architecture. SDN-enabled network devices should be able to provide 

scalability (i.e., increasing number of subscribers), frequent changes in user location (i.e., 

redirecting traffic to proxies), QoS (i.e., handling traffic with specific priority), real-time 

adaptation to network conditions (i.e., load balancing). Cellular SDN networks should maintain 

Subscriber Information Base (SIB) to translate subscribers attributes into switch rules to set up 

and reconfigure services flexibly. 
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However, the dynamic reconfiguration of a service needs a mechanism to handle notifications 

sent from middle boxes to the controller. Therefore, a Deep Packet Inspection (DPI) engine would 

be required to enable finer-grain classification based on the application (i.e., such as Web, peer-

to-peer, video, and VoIP traffic). DPI also would help to support intrusion detection and prevent 

systems that analyze packet contents to identify malicious traffic. Likewise, cellular controller 

protocols would enable the control of remote virtualized resources to simplify resources and 

mobility management [16]. The SDN controller would enable slicing the network into multiple 

tenants, while enable dynamic routing, and traffic engineering, thereby easing the hand-off 

management, minimizing delays and packet loss may be reduced. Such a cellular SDN controller 

[17] (as depicted in Figure 5. 6 [16]) would implement Radio Resource Management (RRM) APIs 

as northbound interfaces to simplify the QoS management (i.e., admission control, resource 

reservation, and interference management) and the resource provisioning. The controller may be 

enhanced by other techniques like header compression/decompression to reduce the overhead for 

applications with small packet payloads (e.g., VoIP packets). Compressing these packets before 

transmission on low-bandwidth links substantially lowers the overhead. 

Cellular networks traditionally have been hierarchical with centralized control and data 

structures, which require high performance, custom hardware to process, and route traffic. The 

distributed-control SDN model would be a key challenge for the evolution of SDN-enabled 

cellular network to provide high performance, cost-effective and distributed mobility management 

in cellular architecture. The increasing roll out of 5G technology could lead to an upsurge in SDN 

adoption. It seems to be possible to offload a base station the rising number of mobile clients 

requesting the network resources and provide load balancing strategy [18], for example, by 

providing multiple parallel transmissions. Furthermore, as for cloud partitioning and network 

slicing, it would be possible to divide the wireless traffic into several slices matching different 

traffic criteria, which may allow traffic isolation with respect to their patterns (i.e., VoIP, Data, 

Video, etc.).  Such an approach may help to create virtual base stations and orchestrate the 

available resources among different mobile devices, thereby saving power and memory usage 

[19]. 

5.8 Unification of the control plane 

Looking back to the development of the existing wireless communication technologies, it is 

easy to find that they were designed to provide new services in isolation. The future 5G cannot be 

defined in single type of service or isolated services. Rather, it will provide a convergent network 

infrastructure which integrates multiple systems integrated together. Weaving different access 

technologies together in a fluid fashion and creating smart gateways in transparent manner will be 

the goal that gives life to 5G. Leveraging SDN technologies for designing new control 

mechanisms and protocols for relocating functions and protocol entities will fulfill the new 

requirements of scale, latency, harmonization of protocol stacks between fixed and mobile (data 

and control planes), distributed mobility, energy efficiency and unified access/aggregation 

network for infrastructure simplification. 



15 
 

 

5.8.1 Bringing Fixed-Mobile Networking Together 

The convergence of the fixed and mobile networks forms the backdrop for upgrades to the future 

networks. Both network infrastructures will represent the major part of investments for the 

network operators. The ultimate purpose is to offer better services over fixed and mobile networks 

with the best possible user’s quality of experience, while at the same time rationalizing and 

sharing fixed and mobile network infrastructures.  

Although some initiatives to offer some degree of converge alongside the emergence of IP-

based services and IMS (IP Multimedia Subsystem), the convergence of fixed and mobile 

networks is a highly complex issue. Convergence is trendy word because fixed and mobile 

networks were developed independently from each other and based on different technologies and 

protocols. Convergence is also synonym to energy efficiency, because it is expected that the 

development of the future network will be based on ecosystem of close cooperation between fixed 

and mobile infrastructure. In addition to the ever-higher capacity trend, convergence of fixed and 

mobile networks is a highly complex issue, because it assumes certain trade-offs, so as to fully 

leverage off the benefits of moving different network functionalities and/or device equipment 

closer to each other and to different parts of the network, and should corresponds to the behavior 

of end-users, who wish to remain agnostic about which technical infrastructure (3GPP, Wi-Fi, 

DSL, fiber) they may be using. 

Fixed-mobile convergence can be segmented into two concrete approaches: structural 

convergence and functional convergence. Structural convergence concerns sharing fixed and 

mobile network equipment’s and infrastructures as much as possible. The functional convergence, 

i.e. convergence of fixed and mobile network functions, to better distribute the various functions 

by distinguishing those that would be centralized from those that should be more distributed. This 

functional convergence is enabled by NFV and SDN. The decentralization of the network 

functions can be provided from the mobile core network down towards the access network, such 

as CDN (Content Delivery Network) through the virtualization of Home Gateway to cloud 

functions which are mostly dictated by the traffic optimization (e.g., latency, bandwidth, etc.). 

Fixed-mobile convergence is also expected to evolve different stakeholder roles: the classical 

network providers will continue to play there central role, but there will be other stakeholders 

such OTT (Over-The-Top) providers, which should be allowed to vertically integrate with content 

providers, or even and even the end-users themselves, will have a major involvement in the future 

evolving fixed-mobile ecosystem. In the context of SDN and NFV, the debate would be about 

exploring the network equipment that will be hosting the applications of other networks, and the 

functions that can migrated to the cloud. 

 

5.8.2 Creating a Concerted Convergence of Packet-Optical Networks 

Access technologies of future network systems would comprise various broadband 

transmission media such as optical fibers, millimeter-wave links, etc. The expected impact in 5G 
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wireless communication is to contribute to the emergence of new generations of optical transport 

networks, to cope with the expected significant traffic growth and meet the flexibility 

requirements. The convergence of packet and optical networks in the future 5G system make it 

possible to reconfigure the optical network to support high-capacity data rate with a guaranteed 

end-to-end latency for on-demand applications such as NaaS (Network as a Service) [20]. 

Accordingly, the future generation of photonic communication would require programmable 

optical hardware to increase flexibility in the control plane and management plane of optical 

networks and enable the advent of software defined optical networking. The increased 

programmability of SDN creates an opportunity to address the challenges of unifying packet-

optical circuit switching networks in a single converged infrastructure [21]. Unified software 

control of the physical layer is a key requirement for next generation 5G wireless networks. The 

SDN-enabled optical cross-connects would be used to demonstrate the efficiency benefits of 

hybrid packet-optical circuit switching architectures for dynamic management of large flows, 

scalability and flexibility of high-capacity service provision, in data-center applications. 

 

Figure 5. 7: Unifying Packet-Optical Data Plane 

Similarly, future SDN-enabled 5G systems should provide a convergence framework to make 

it more efficient to use the network resources, for example by unifying the control and the 

management of these heterogeneous networks. The packet-optical networks may be unified with 

two of abstractions by implementing (i) a common API abstraction (flow abstraction) at the 
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control plane, and (ii) a common-map abstraction based on a data-abstraction of a network wide 

common-map manipulated by a network-API. As depicted in Figure 5. 7, the common flow 

abstraction fits well with both networks and provides a common paradigm for control, by 

providing an abstraction of layers L2/L3/L4 packet headers as well as by L0/L1 circuit flows. The 

flow abstraction blurs the distinction between both technologies and processes them as flow of 

different granularity. The common-map has full visibility into both packet and circuit network 

devices to interconnect network applications across both packets and circuits. Full visibility 

allows applications to joint and optimize network functions and services across multiple layers. 

The network functions would be implemented as simple and extensible centralized northbound 

interface to hide the details of state-distribution from the applications. 

 

5.9 Supporting automatic QoS provisioning 

The advanced 5G network infrastructure for future Internet will include multiple 

heterogeneous networks that need sharing resources on all levels to meet the fast changing of 

traffic patterns from different services and applications. Network operators should be able to 

predict the various traffic patterns as functions of the services provided their networks. Service 

providers are evaluating implementations of storage and data traffic over a single network to meet 

the flexibility (e.g., the ability to accommodate short duration extra bandwidth requirements) and 

the efficient coexistence of multiple services [22] [23]. They have to cope with the large demands 

of QoS incoming from different wired and wireless devices, each with particular requirements. 

The QoS provisioning in the advanced SDN-enabled 5G networks to more complex and poses a 

real problem that need to be addressed. In particular, QoS automation should be supported at 

every wired and wireless technology that may share the same the network slice. Although SDN 

allows creating different network slices in the same network infrastructure to provide a strict QoS, 

performance and isolation required by across applications without interfering with traffics in other 

slices, however, SDN does not provide the ways for automating QoS provisioning per-

application/per-service.   

Indeed, one of the limitations of the OpenFlow protocol is it does not implement strict QoS in 

the forwarding plane. Even if some initiatives targeted implementing per-flow routing 

optimization to improve fined granularity for flow management [24] [25], nevertheless, resource 

sharing and dynamic QoS allocation was not enabled. Thus data packets will require an external 

tool/protocol to do so. Moreover, the current vision of SDN the QoS management is implemented 

at high abstraction level through the northbound interfaces. The SDN controller can map the flow 

requirements to the priority queues in the network device it controls and thereby reserving the 

network resources to individual and aggregated flows in a particular switch, but the QoS 

configuration cannot be done in real-time. A network administrator is required to specify the 

configuration of each service before the communication begins. It should install specific rules for 

each aggregated flows while omitting others, thereby sacrificing the fined control of services and 

losing the flexibility of using specific rules that match on certain packet-header fields.  
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In general, improving automatic QoS allocation for different and heterogeneous networks 

requires new methods, models and compositions to commit multiple Service Level Agreements 

(SLAs) end-to-end to provide a unified resulting SLA. These new mechanisms should allow 

services and applications evaluating SLAs in local and then be aware of all the context chaining 

before used in unified environments. Cloud service providers may be a good approach to follow, 

since virtualizing charging and security functions would improve network resiliency and 

availability and enforce QoS provisioning end-to-end. 

5.10 Cognitive Network Management and Operation 

The Operation and Management (OAM) of wireless mobile network infrastructure will play 

an important role in addressing the challenges of the future 5G system in terms of performance, 

constant optimization, fast-failure recovery, fast adapted in changes in the network loads, self-

network organization and fast configuration. Vendor-specific OAM tools provide little or no 

mechanism for automatically responding to events that may occur. Besides, these tools can 

provide their power in small and medium networks, in contrast due to the excessive cost to deploy 

them in large-scale networks they will be underutilized for the future networks. Additionally, the 

existing OAM tools need to be individually configured and supervised by human operator which 

limits their flexibility. Since the network topologies are becoming more and more complex, 

manual configuration and deployment are getting less and less attention and are becoming 

impracticable. Also, the migration to high-speed networks (i.e., from 1Gbps to 10Gbps to 

40Gbps) creates further scalability challenges for the future OAM tools. In particular, diagnosing 

the network performance and bottlenecks without visibility into the traffic characteristics 

introduces new complexity with regard to the consistency of the network. 

Accordingly, future 5G networks should be based on common network management and 

operation for mobile and wireless as well as for fixed network for economic network deployment 

and operation. Towards the automation of network OAM tasks, network operators must grapple 

vendor-specific configurations to implement complex high-level interfaces to manage and 

monitor network policies. Advanced intelligence should be developed for realizing the future 

OAM tools. The intelligence of OAM requires the development of new functional and system 

architecture, also taking the integration of both wireless and fixed networks into account. As SDN 

will be the Bedrock for the future wireless/broadband networks, the OAM will be a key challenge 

for SDN-enabled networks. 

Indeed, SDN introduces new possibilities for network management and monitoring 

capabilities that can improve performance, reduce the bottlenecks of the network, and enable 

debugging and troubleshooting of the control traffic. To avail of these possibilities, the future 

OAM tools should provide open and customizable interfaces to support event-driven model for 

SDN. SDN OAM tools should provide methodologies for the acquisition, analysis, improvement 

of knowledge representing the semantics and operational goals and strategies, network properties, 

and automated reasoning for the alignment of different network functionality at runtime. To this 
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end, high-level, declarative management languages will be required to ensure the consistency of 

the network states and detect failures in real-time. 

The expected impact of SDN OAM tools is to be able to scale to large-scale networks to deal 

with multiple controllers (i.e., in a distributed SDN model). They have to provide closed control 

loop functions dedicated to self-configuration, self-optimization, and self-healing. The control 

loop diagnostic and decision making processes need to be adapted automatically, e.g., by 

predicting the future actions based on the results of previous ones. This proactive capability will 

leverage the flexibility and programmability of the open SDN; improve their effectiveness and 

efficiency, thanks to cognitive processes that will enable creating more elastic network 

management either for the entire network or specific slices. The cognitive network management 

and operation approaches will develop a new management paradigm and investigate develop and 

verify processes, functions, algorithms and solutions that enable future 5G networks to be self-

managed. The cognitive OAM will include cognitive function orchestration and coordination, and 

system verification for provisioning, optimization and troubleshooting. 

 

5.11 Role of Satellites in the 5G networks 

The 5G system had been seen an increased demands on the back-haul with an increasing 

numbers of HetNets and small cells. Satellites will play a major role in the extension of 5G 

cellular network to new area such as ships on the sea and remote land area which are not covered 

by cellular networks. Also, high throughput Satellite Communication (SatCom) systems will able 

to complement terrestrial provision in an area where it is difficult to do so with other terrestrial 

cell such as LTE. Indeed, integrating satellites in the future 5G networks will be seen as essential 

part of the terrestrial infrastructure to provide strategic solution for critical and lifesaving services. 

Satellites would be able used to collect and distribute data from clusters of sensors in the IoT and 

made them available to the terrestrial networks. Coupling SatCom systems with terrestrial cellular 

networks to integrate new use cases with satellites will provide a powerful new fusion enabling 

the innovation of services. 

As SatCom systems can provide an overlay network, the integration of NVF/SDN would 

enable including network node functions on board satellite to save on physical sites on the ground 

and open up new chances to improve network resiliency, security and availability. The use of 

NFV and SDN in SatCom will allow networks to react on demand of the users whenever they are. 

They also allow the dynamic reconfiguration of the network to give users the perception of 

infinite capacity of their applications. Satellites would provide a wide coverage area of wireless 

networks to extend the dense of terrestrial cells. They can provide larger cells in heterogeneous 

arrangement to supply critical and emergency services take on and keep alive the network in cases 

of disasters. They also can be able to relieve terrestrial cells of signaling and management 

functions in a software defined network configuration. Satellites will be integrated to the 

terrestrial system to improve QoS as well as QoE to end-users.  
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The future SatCom systems will be able to provide intelligent traffic routing among the 

delivery systems, caching high capacity video to off-load the traffic from the terrestrial networks, 

and thereby enable saving on valuable terrestrial spectrum. In particular, one of the key drivers of 

5G network architecture is the lack of spectrum that would be used for the future wireless 

infrastructure, so frequency sharing between mobile and satellite systems can deliver major 

increases in the spectrum provided both sectors. Leveraging SatCom systems with techniques like 

SDN, NFV, cognitive and software-defined radio can be built into future systems to allow such 

frequency sharing. 

The extension of SDN to satellites would provide an attractive perspective for the SatCom 

community. By exploiting SDN/NFV satellite equipment will not be vendors-specific; instead 

they will be open, programmable and reconfigurable platforms. SDN and NFV are expected to 

offer new cost-effective services, since SatCom operators will be offering the ability to monetize 

on their network while offer these future/expected services. For example, the emergence of 

Cloud-RAN would be an enabled for virtualizing SatCom resources (i.e., ground equipment’s, 

aerospace access infrastructure), even more the applying NFV and Cloud-RAN to SatCom paves 

the way towards the full virtualization of satellite head-ends, gateways/hubs and even Satellite 

terminals, thus entirely transforming SatCom infrastructure, enabling novel services and 

optimizing resource usage.  

Network virtualization is considered as the key enabler for the efficient integration of the 

satellite and terrestrial domains. Via the unified management of the virtualized satellite and 

terrestrial infrastructures, fully integrated end-to-end network slices can be provided, integrating 

heterogeneous segments in a seamless and federated way. Additionally, the integration of satellite 

within the 5G future network will extend the coverage of SatCom systems to support new services 

such public transport service, vehicle to vehicle, surveillance with UAVs, high-definition video 

monitoring, localization and positioning. Moreover, non-geostationary satellites are actually 

investigated to achieve optimal networking and latency. Intelligent gateways can be designed to 

improve network resource use by providing hybridization of satellites and ADSL (Asymmetric 

Digital Subscriber Line) networks. Also, the virtualization can be used to provide black-box 

(flight data recorder) in the cloud for passenger's aircraft. 

The role of satellites in the future 5G networks reveals many challenges to support flexible, 

programmable and secure infrastructure. As satellites will be integrated in 5G broadband 

networks they should enable extending the coverage of cellular backhaul, while at the same time 

providing enhanced user-centric QoE, cost-effective user terminals and energy efficiency. 

SatCom systems should continue to honor guaranteed service delivery to end-users by providing 

higher throughput and low latency for interactive and immersive services independently from the 

user location. Additionally, the integration of satellites in 5G networks will introduce new 

challenges regarding the spectrum sharing. Since mobile terminal will use both terrestrial 

connectivity as well as satellite connection, mobile receivers should support both kinds of 

connectivity. Thus, multi-polarized schemes are key challenge for satellite and context aware 

multi-user detection. Techniques like SDN, NFV and SDR (i.e., mobile terminals will have 
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modulation and new error-control schemes that will be downloaded from the Internet on the run) 

are been seen as more challenging aspect of 5G networks so they should be able to provide 

intelligent orchestration as well as smart antenna beam forming to enable and facilitate frequency 

sharing between terrestrial and satellite systems. 

5.13 Conclusion 

Evolution, convergence and innovation are considered the technology routes towards 5G to 

meet a wide range of services and applications requirements of the information society in 2020 

and beyond. To that end, a network must be designed with the future in mind, so that hardware 

could be abstracted and dynamically utilized through virtualization technologies, which is why a 

holistic SDN and NFV strategies are paramount.  

The 5G network will be a combination of multi-systems, multi-technologies which need to 

share the frequency spectrum as well as the physical infrastructure. Nevertheless, wireless and 

mobile networks will pose challenging issues regarding their integration in the future 5G 

wireless/mobile broadband world. Leveraging SDN and NFV for supporting and improving LTE 

networks remains an open issue that should address the way the network functions and 

components will be moved a secured and virtualized cloud. SatCom system poses also 

challenging issues on how satellites will be integrated to the terrestrial backhaul wireless network, 

in such a way to provide heterogeneous segments in a seamless and federated way.  Security is an 

open issue in SDN-enabled 5G networks as well. The programmability of SDN presents a 

complex set of problems facing the increasing vulnerabilities, which will change the dynamics 

around securing the wireless infrastructure. 
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