
HAL Id: hal-01161435
https://hal.science/hal-01161435

Submitted on 8 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New Framework for Score Segmentation and Analysis in
OpenMusic

Jean Bresson, Carlos Pérez-Sancho

To cite this version:
Jean Bresson, Carlos Pérez-Sancho. New Framework for Score Segmentation and Analysis in Open-
Music. Sound and Music Computing, 2012, Copenhagen, Denmark. �hal-01161435�

https://hal.science/hal-01161435
https://hal.archives-ouvertes.fr


NEW FRAMEWORK FOR SCORE SEGMENTATION AND ANALYSIS IN
OPENMUSIC

Jean Bresson
STMS: IRCAM-CNRS-UPMC, Paris, France

jean.bresson@ircam.fr

Carlos Pérez-Sancho
DLSI, Universidad de Alicante, Spain

cperez@dlsi.ua.es

ABSTRACT

We present new tools for the segmentation and analysis of
musical scores in the OpenMusic computer-aided compo-
sition environment. A modular object-oriented framework
enables the creation of segmentations on score objects and
the implementation of automatic or semi-automatic anal-
ysis processes. The analyses can be performed and dis-
played thanks to customizable classes and callbacks. Con-
crete examples are given, in particular with the implemen-
tation of a semi-automatic harmonic analysis system and a
framework for rhythmic transcription.

1. INTRODUCTION

Formalized musical models in the 20th Century introduced
new ways of representing, understanding and analysing
music [1, 2], which progressively and naturally led to
computational approaches [3, 4]. Today, computation and
computer-aided modelling make for a broad spectrum of
possibilities in music description and analysis.

The term computational analysis currently spreads on di-
verse domains and purposes. In the “musicological”
domain [5], computer systems and programs are used to as-
sist music analysts in improving their work with new rep-
resentational and computational possibilities (see for in-
stance [6], [7] or [8]). More related to the music infor-
mation retrieval domain is the extraction of high-level in-
formation or knowledge from scores or audio recordings,
such as musical genre classification [9], chord extraction
from audio [10], segmentation and phrase boundary detec-
tion [11], automatic (melodic and harmonic) analysis using
machine learning, pattern recognition algorithms [12] or
even cognitive approaches [13]. In these different domains
and applications, computational aspects can be either fully
automated or (more interestingly) integrate user interaction
and guidance to the analysis process.

Aside to computational approaches, and somehow in a
complementary way, other systems exist which focus on
the visualisation of musical scores and analytical struc-
tures [14], but they principally rely on external preliminary
analyses. Present computer systems offer useful tools for

Copyright: c©2012 Jean Bresson et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

extended graphical and auditory rendering, and enable new
interactions with the analysis models and processes.

Following seminal works by M. Mesnage and A. Riotte
[15], different projects aimed at integrating formalized anal-
ysis in computer-aided composition software. In partic-
ular, previous research such as [3, 16, 17], as well as the
“computer-assisted music analysis” project in PWGL [18,
19], paved the way to the recent extensions of the Open-
Music computer-aided composition environment (OM [20])
which we present in this paper.

2. SEGMENTATION AND GENERAL CONCEPTS

Music theory and analysis generally require and rely on
preliminary segmentation of the musical material. In many
cases actually, the segmentation itself is a crucial aspect of
the analysis process.

Several theoretical frameworks have been proposed so far
focusing on music segmentation [21,22], as well as imple-
mentations of automatic segmentation systems [17, 23].

Depending on the analysis or on the musical material at
hand, the concept of segment can be devised in very dis-
tinct ways. A segment can for instance be determined by
a time interval, by a set of (adjacent or scattered) notes,
chords, measures, sections, or even by a spectral region.
Segments are therefore highly dependent on the analysis,
but also on subjective choices from the analyst [21]. Hence,
we try to be as generic as possible and from here on will
consider as a segment any part of a score or musical struc-
ture, be it defined in time, by a set of score elements, or
even by a structural or functional specification.

We also consider a simplified representation of the anal-
ysis concept as a set of segments related to a musical ex-
tract and containing specific information. From this point
of view, an analysis is an augmented segmentation where
each segment is enriched with more or less complex data
related to the corresponding score contents (and segmenta-
tion itself can be seen as a particular analysis with no such
additional data).

3. FRAMEWORK ARCHITECTURE

OpenMusic musical structures are organized as an object-
oriented architecture 1 which has been extended to inte-
grate segments and analyses (see Figure 1).

1 These musical structures include all types of “score objects” in OM,
such as chord-seq, voice, poly, etc. They can be created in the OM vi-
sual programming framework, or imported (and possibly processed/con-
verted), e.g. from MIDI or MusicXML files.

mailto:jean.bresson@ircam.fr
mailto:cperez@dlsi.ua.es
http://creativecommons.org/licenses/by/3.0/


SCORE-OBJECT
- analysis
- ...

ABSTRACT-ANALYSIS
- analysis-segments

CHORD-SEQ
- ...

VOICE
- ...

...

...

SEGMENT
- segment-data

TIME-SEGMENT
- t1
- t2

MARKER-SEGMENT
- mrk-time

. . .CHORDS-SEGMENT
- chords-IDs

PROP-SEGMENT
- test-function

OM score 
objects

User-defined analysis
sub-classes

**

Segment 
classes

Figure 1. Class architecture for segmentation and analysis
attached to the OpenMusic objects framework.

In this object-oriented framework, the analysis (or seg-
mentation) is also a class. We define the general abstract
class abstract-analysis, of which any analysis or segmenta-
tion implemented in the environment should be a subclass.

All musical objects now have a new attribute (or slot)
called analysis containing a list of abstract-analysis in-
stances. As stated in the previous section, we mostly con-
sider an analysis as a set of more or less specific and in-
formative segments: the main slot of abstract-analysis, la-
belled analysis-segments and inherited by all analysis sub-
classes, therefore contains a list of segments. Of course,
subclasses of abstract-analysis can define new attributes
and behaviours, for instance to determine relations between
the segments. Note that the analysis slot value is a list, so
that multiple segmentations can be attached to a score ob-
ject, making for several interpretations or several types of
analyses of a same extract potentially coexist.

Following the previous scheme, segment classes as well
are all subclasses of a unique predefined class called seg-
ment. The main slot of this class is called segment-data. It
is an open entry allowing the different analysis classes to
store data in the segments. Some predefined segment types
have been defined, extensible if needed to encompass par-
ticular segmentation or analysis needs: time-segment is de-
fined as a simple time interval by two additional attributes
t1 and t2; marker-segment is even simpler and contains a
single temporal landmark mrk-time; chords-segment con-
sists of an ordered set of chord indices corresponding to
chords in the analyzed sequence; notes-segment is defined
by a set of notes from this sequence (possibly taken from
different chords and with no specific order); etc.

As we will show further on, each type and subtype of
segment can have specific behaviours and particularities at
the time of computing analysis data, drawing in the score
editor or during user-interactions. Interesting personalized
segment classes would also include functional (or “struc-
tural”) specification determining an implicit selection of
particular regions in the score. 2 In Figure 1, prop-segment
is a prototype class defining segments determined by a given
property (test-function): each score component verifying
the corresponding property (tested by this function) would
implicitly be considered belonging to the segment.

2 This is one of the main features of the system proposed and imple-
mented in [18] using a pattern matching syntax and a constraint-based
system.

4. PROTOCOL AND INTERACTION

In order to create a new type of segmentation or analy-
sis, one must define a subclass of abstract-analysis. In the
Appendix of this article is listed the Common Lisp code
for the definition of an example analysis class (called my-
analysis), which will implement most of the features de-
scribed below.

First, it is possible to specialize the analysis class for spe-
cific types of score objects (e.g. voice, chord-seq...). In-
stances of the analysis can then be attached to a compati-
ble score object, either via (visual) programming, or using
new commands available in the score editor (see Figure 2).
A new editing mode in the OM score editors enables all the
segmentation and analysis features.

Figure 2. Attaching an analysis class to a chord-seq in
the editor. The analysis types list presents all compatible
subclasses of abstract-analysis.

Different analyses and segmentations may coexist on a
same object, but one will always be at the “front” (current
segmentation) and handle drawing and user interaction. In
the editor, a keyboard short-cut allows to switch between
the different segmentations/analyses attached to the object.

Several options and methods can be defined in order to
specify or specialize the behaviour and interface of the
analysis. Analyses can perform either segmentation, anal-
ysis, or both in a same run. Depending on the implemented
features, the corresponding options will be proposed in the
OM editor menus (see Figure 3).

Figure 3. New actions available after attaching an analysis
instance to a score object.

In Figure 3 are also visible other general features to han-
dle the analyses (reset, remove, add new analysis, etc.) Ad-
ditional actions can be defined for the analysis class using
the get-analysis-menu-items method redefinition (see the
sample code in the Appendix, ll. 82-85).



4.1 Segmentation

The segmentation phase can be either automatic or per-
formed interactively by the user. If the method compute-
analysis-segment is defined for an analysis class, the corre-
sponding action can be made available in the score editor.
The only requirement of this method is to return a list of
segments (that is, instances of any subclass of segment).

The example analysis implemented in the Appendix, for
instance, performs segmentation by returning a segment
of type chords-segment for every single chord in the score
(ll. 28-34).

Interactive segmentation or modifications of existing/com-
puted segmentations depend on the analysis types. In or-
der to control and personalize this process, the main user
action and callbacks (e.g. “command-click”, keyboard ac-
tions, etc.) can be redefined for the different analysis classes
and generate or modify segments from the musical object
at hand and relevant corresponding callback parameters
(mouse position, current selection, etc.)

A number of actions related to the segmentation, such as
segments display, selection, or deletion, can also be imple-
mented in specific ways for the different analyses. 3

In order to facilitate the implementation of analyses, how-
ever, a set of behaviours are already defined for the main
existing segment types. The analysis classes can therefore
be attached to a segment type and just rely on its default be-
haviours. In our example (see Appendix, l. 22) the analysis
segments type is specified to be chords-segment. The de-
fault chords-segment behaviours and interactions will there-
fore apply: for instance, pressing key ‘s’ (for “segment”)
with a number of chords selected in the score at this mo-
ment will create and add to the analysis a new segment con-
taining these chords. In Figure 4 several chords-segments
have been created in my-analysis.

Figure 4. Creation of chord-segments in my-analysis.

Note that predefined actions themselves can be special-
ized for specific segment and/or analysis types. The mouse
click default behaviour, for instance, is a test performed
on the different segments of an analysis in order to deter-
mine if one (or several) of them is/are to get selected: in
this case, the test can be adapted to a segment or analysis
by overloading the method segment-clicked-p which deter-
mines whether a segment shall be selected when the editor
window is clicked at a given position.

3 The multiple dispatch provided by the Common Lisp Object Sys-
tem allows to specialize the callback methods with all of their arguments,
hence generally here for both the segment and analysis types.

4.2 Analysis

The second important step after segmentation is the anal-
ysis of the different segments. As described previously,
the segment class includes a data store (segment-data) to
be used freely by the different analyses. Hence, we basi-
cally consider that the analysis consists in computing and
attaching some data to the different segments. The nature
and computation of this data is totally open and is actually
what mostly differentiates analyses from one another.

The analysis classes can redefine or hook this process at
different levels, and let the default behaviours operate for
the rest. The main and easier way to go for that is to over-
load the method analyse-one-segment, meant to generate
the analysis data for every segment. An example is given
in the Appendix with our analysis class (ll. 40-53).

Another important point is the display of the analysis
data in the different segment. Here again, redefining the
draw-segment-data method allows every type of analysis
to provide the adequate visualization depending on what
has been stored in the segment’s analysis-data. Figure
5 shows the result of my-analysis, as implemented in the
Appendix (ll. 55-69). An object of type n-cercle [24] has
been computed, attached and is displayed below every seg-
ment. 4

Figure 5. Displaying the segments data in my-analysis.

In some cases, the segmentation and analysis steps are
intertwined in the analysis process, making it impossible
to differentiate them in a two-steps process. 5 Our frame-
work allows to accommodate such procedure and proposes
adapted commands and callbacks, so that the implemented
algorithms can return a set of analysed segments as a result
of a unique processing phase. In this case, analyses can just
redefine the method compute-and-analyse-segments and im-
plement a global analysis process generating segments and
data from the whole score.

5. APPLICATIONS

In this section we present additional examples of analyses
implemented in the presented framework, making more ad-
vanced uses of the interactions and callbacks.

4 my-analysis is actually a simplified model of pitch class set analysis.
5 This is the case of the harmonic analysis described in section 5.1.



5.1 Supervised Harmonic Analysis

The harmonic-analysis project is an interactive tool based
on the analysis model by Pardo and Birmingham [25], which
has been implemented in Java as a MIDI file analysis server
application, and integrated in OM using the framework de-
scribed in this paper. 6

5.1.1 Analysis Principles

The harmonic-analysis algorithm performs an automatic
segmentation of the analysed sequence and proposes a set
of weighted possibilities for the chord label of each seg-
ment (this is an example where analysis and segmenta-
tion of the score are considered and performed as a single
step). First, the whole melody is divided into a set of min-
imal segments delimited by note onsets, which are then
grouped considering all possible combinations. For each
possible segment, all the chords in the analysis vocabulary
are scored using a rule-based scoring function, and finally
the segmentation with highest score is selected as the out-
put of the algorithm following a graph search strategy.

For computational issues, at the current stage of this project
only the greedy version of the algorithm (HarmAn search
heuristic) has been implemented, which does not consider
the whole search space, while keeping a chord recognition
rate very close to the complete algorithm.

5.1.2 Interaction

Once the analysis is performed the user can “validate” the
successive segments or correct them. The correction of a
segment can consist either in choosing another chord la-
bel than the top-weighted proposed solution for this seg-
ment, or in changing its boundaries (hence a correction at
the level of the segmentation itself).

The correction and validation process is performed by the
user following a left-to-right approach. Every correction
made triggers a re-computation of the analysis from that
segment on, and the validation of a segment implies that
the user considers that all previous segments are also cor-
rect.

5.1.3 Integration in the OpenMusic Framework

The harmonic analysis software communicates with Open-
Music via OSC messages following a simple client/server
protocol. When the harmonic-analysis class is attached to
a chord-seq object in OM, a MIDI representation of the
sequence is sent to the analysis server. The only opera-
tion available at this stage is the “global” segmentation and
analysis: following the process described above, these two
operations are interleaved and performed together by the
analysis system.

The segment type associated to harmonic-analysis is a
subtype of time-segments, hence defined by absolute begin
and end times (t1 and t2) but additionally constrained with
the implicit time segments in the score determined by the
note begin and end times. The segments are instantiated by

6 This project is available for download and evaluation under an open
source license at http://grfia.dlsi.ua.es/cm/projects/drims/
software.php

the segmentation/analysis process and contain as segment-
data a list of harmonic proposals sorted by weight. The
first element of this list (therefore, the selected chord la-
bel) is displayed with the segment in the score editor (see
Figure 6).

Figure 6. Displaying the segments and analysis data in
harmonic-analysis. Musical excerpt taken from the String
Quartet Op. 20 No. 4, I, by Haydn.

A specific feature of the harmonic-analysis system is the
left-to-right process of validation and correction of the seg-
ments analysis. As shown in Figure 6, harmonic-analysis
actually complements the segment display by writing the
proposed chord label, but also by colouring the segments.
The “current segment” is the next segment to be validated
in the sequence: it is coloured in blue.

Several callbacks of the score editor are caught by
harmonic-analysis, and allow to modify its contents or prop-
erties before validating it. The segment length can be mod-
ified using the “click-and-drag” action, which allows to
specify the new end of the current segment and position
it at a different note in the sequence. This action forces the
analysis server to recompute the weights for the current
segment, as well as the complete analysis for the remain-
ing part of the score (see Figure 7).

Figure 7. New analysis after changing the first segment
length.

The double-click action validates the segment (which will
then be coloured in green) and sets the “current segment”
pointer to the next one in the sequence (see Figure 8).

http://grfia.dlsi.ua.es/cm/projects/drims/software.php
http://grfia.dlsi.ua.es/cm/projects/drims/software.php


Figure 8. Analysis after validating the first three segments.

Figure 9 shows the segment data being changed using a
contextual menu presenting to the user the list of secondary
solutions found by the analysis system (also stored, though
not visible to the user, in the segment’s analysis-data), as
well as additional items allowing to choose among the full
set of possible chord labels.

Figure 9. Modifing the chord label of a segment.

All the user modifications and actions result in notifica-
tions to the analysis server and eventual corresponding up-
dates. In future works we plan to take into account these
interactions to build an informed knowledge base allowing
to improve subsequent analysis results.

5.2 Interface for Rhythmic Quantification

A second foreseen application for the presented framework
is to improve the processes of rhythmic quantification per-
formed in OpenMusic [26]. Rhythmic quantification (also
sometimes referred to as “quantization”) basically consist
in converting a flow of temporal onsets (or inter-onset du-
rations) into a rhythmic structure (including tempo, meter
and pulse subdivisions). It is a major issue in computer
music and computer-aided composition, for which efficient
solutions are rare [27].

5.2.1 Quantification as a Special Case of Analysis

In a sense, rhythmic quantification can be considered as a
form of analysis of a musical sequence, for which super-
vised or subjective inputs may enable more flexibility and
will generally optimize the results. 7

7 Apart from the durations, we can also imagine that the rest of the
score contents (that is, its other attributes such as pitches and velocities)
can help the segmentation and analysis processes to deduce rhythmic in-
formation.

A typical problem in rhythmic quantification is the accu-
mulation of delays and errors due to temporal shifts, non-
constant tempo or approximations. From this perspective,
for instance, a preliminary (and wise) segmentation of the
sequence may ensure the rhythmic consistency inside suc-
cessive blocks, and avoid possible errors and shifts to prop-
agate in the score analysis.

The OMKant library for OpenMusic 8 allowed to per-
form such user-supervised segmentation as well as beat
and meter detection in order to improve the quantification
processes. This library has not been maintained and ported
to the recent OpenMusic versions; however, we believe
that the present segmentation framework may provide an
interesting way to generalize and extend the principles of
this project.

5.2.2 Implementation

We present here a preliminary implementation based on the
current quantification tools available in OpenMusic. The
kant-seg analysis class uses a new type of segment called
chord-marker, which is attached to a chord and bounds
implicitly the rest of the sequence until the next chord-
marker. This type of segment, instantiated by the user
on the same model as for the chord-segments in Section
4.1, allows to “slice” the whole sequence with no gaps nor
overlapping intervals (every segment starts at a chord in
the score, and its end is implicitly defined as the beginning
of the next segment).

The analysis also uses another callback provided by our
framework at initialization of the segments, and attaches
them a specific structure, stored in the segment-data, con-
taining all the parameters required to perform the quantifi-
cation (estimated tempo, meter, constraints on pulse subdi-
visions, etc.) Figure 10 shows how these data are displayed
in the score editor by the kant-seg analysis class.

Figure 10. Segmentation for rhythmic quantification.
With the kant-seg analysis class, every chord-marker seg-
ment is initialized with default quantification parameters.

The analysis process in this case consists in computing a
rhythm tree [28] starting from the durations in each indi-
vidual segment, using the OM quantification function and
the parameters stored in these different segments. The re-
sulting tree is also stored in the segments’ segment-data
and eventually displayed in the score editor (see Figure 11).

8 OMKant by Benoı̂t Meudic, IRCAM.



Figure 11. Analysis (quantification) of the kant-seg seg-
ments from Figure 10.

5.2.3 Interaction

The kant-seg analysis implements a special action at double-
clicking a segment, which opens a dialog window (see Fig-
ure 12) allowing to set the quantification parameters for
this segment before running the analysis.

Figure 12. Setting quantification parameters.

Figure 13 shows how setting segments and parameters
appropriately allows to get better results in the quantifica-
tion process (also note that the segment bounds have them-
selves also been modified as compared to Figure 11).

Figure 13. Analysis (quantification) of the new kant-seg
segments.

The quantified data (or any contents of the analysis seg-
ments) can eventually be extracted from the score objects.
In this case, a quantified score can be obtained by collect-
ing and concatenating the voices corresponding to the suc-
cessive segments’ contents and quantification results (stored
in segment-data—see Figure 14). In Figure 14 the voices
resulting from our two previous analyses are extracted, and
we can observe the difference in the quantification results
depending on the segmentation and assigned parameters.

Figure 14. Extracting analysis segments’ data (here, the
quantified voices) in OpenMusic visual programs. The
quantified voices at the bottom correspond to the analyses
in Figures 11 and 13.

6. CONCLUSION

We presented a new framework implemented in the Open-
Music environment allowing to connect and run user-defined
musical analysis processes and representations in the score
editors. 9

The inbuilt analysis and segment classes in this frame-
work are given as reference or examples: as we tried to
demonstrate, it is relatively easy to define new types of
analyses and benefit from the existing interaction and vi-
sualization tools provided by these predefined classes. The
examples of the harmonic-analysis or kant-seg analyses
presented in this article, conversely, show how it is pos-
sible to implement and redefine advanced interactions on
top of the initial system.

As compared to related work in the computational anal-
ysis field, this framework tries not to propose any specific
analysis approach. As far as possible, no assumption is
made on the nature and contents of the analyses, so that any
approach can be integrated and benefit from the graphi-
cal interfaces and additional processing possibilities on the
musical material provided by the environment (be it for an-
alytical or compositional purpose). This flexibility is how-
ever at the price of programming efforts (and correspond-
ing skills), although future improvement shall complement
the set of available segments and classes, and head toward
minimizing the programming tasks required from the user.

Acknowledgments

The harmonic analysis project is supported by the Univer-
sity of Alicante project GRE09-32, the Spanish Ministry
project TIN2009-14247-C02-02, and the program Conso-
lider Ingenio 2010 (CSD2007-00018).

9 The analysis framework shall be available in OM 6.6 and will con-
tain a preliminary set of example analysis classes, including the ones pre-
sented in this paper.



7. REFERENCES

[1] A. Riotte and M. Mesnage, Formalismes et modèles
musicaux. Editions Delatour France / IRCAM, 2006,
(2 volumes).

[2] I. Xenakis, Formalized Music: Thought and Mathe-
matics in Composition. Pendragon Press, 1992.

[3] M. Andreatta, “Méthodes algébriques dans la musique
et la musicologie du XXème siècle : aspects
théoriques, analytiques et compositionnels,” Ph.D. dis-
sertation, École de Hautes Études en Sciences Sociales,
Paris, 2003.

[4] E. Cambouropoulos, “Towards a General Computa-
tional Theory of Musical Structure,” Ph.D. dissertation,
University of Edinburgh, 1998.

[5] L. Camilleri, “Computational Musicology. A Survey
on Methodologies and Applications,” Revue Infor-
matique et Statistique dans les Sciences Humaines,
vol. 29, 1993.

[6] M. Mesnage, “Morphoscope, a Computer System for
Music Analysis,” Interface (Journal of New Music Re-
search), vol. 22, no. 2, 1993.

[7] D. Huron, Humdrum, Center for Computer Assisted
Research in the Humanities, 1994, (resources and doc-
umentations available at http://humdrum.ccarh.org/).

[8] G. Milmeister, “The rubato composer music software:
Component-based implementation of a functorial con-
cept architecture,” Ph.D. dissertation, University of
Zurich, 2006.

[9] C. Pérez-Sancho, D. Rizo, J. M. Iñesta, P. J. Ponce
de León, S. Kersten, and R. Ramirez, “Genre Classi-
fication of Music by Tonal Harmony,” Intelligent Data
Analysis, vol. 14, no. 5, 2010.

[10] E. Gómez, “Tonal Description of Music Audio Sig-
nals,” Ph.D. dissertation, MTG, Universitat Pompeu
Fabra, Barcelona, 2006.

[11] M. T. Pearce, D. Müllensiefen, and G. A. Wiggins, “A
Comparison of Statistical and Rule-based Models of
Melodic Segmentation,” in Proceedings of the Inter-
national Conference on Music Information Retrieval,
Philadelphia, USA, 2008.

[12] P. R. Illescas, D. Rizo, and J. M. Iñesta, “Learning
to Analyse Tonal Music,” in Proceedings of the Inter-
national Workshop on Machine Learning and Music,
Helsinki, 2008.

[13] O. Lartillot-Nakamura, “Fondements d’un système
d’analyse musicale computationnelle suivant une
modélisation cognitiviste de l’écoute,” Ph.D. disserta-
tion, Université Pierre et Marie Curie, Paris, 2004.

[14] P. Couprie, “iAnalyse : un logiciel d’aide à l’analyse
musicale,” in Actes des Journées d’Informatique Musi-
cale, Albi, 2008.

[15] M. Mesnage and A. Riotte, “Modelisation informa-
tique de partitions, analyse et composition assistees,”
in Les Cahiers de l’Ircam (3). Paris: IRCAM, 1993.

[16] B. Meudic, “Détermination automatique de la pul-
sation, de la métrique et des motifs musicaux dans
des interprétations à tempo variable d’œuvres poly-
phoniques,” Ph.D. dissertation, Université Pierre et
Marie Curie, Paris, 2004.

[17] Y.-K. Ahn, “L’analyse musicale computationnelle :
rapport avec la composition, la segmentation et la
représentation à l’aide des graphes,” Ph.D. dissertation,
Université Pierre et Marie Curie, Paris, 2009.

[18] M. Laurson, M. Kuuskankare, and K. Kuitunen, “In-
troduction to Computer-Assisted Music Analysis in
PWGL,” in Proceedings of the Sound and Music Com-
puting Conference, Salerno, Italy, 2005.

[19] M. Kuuskankare and M. Laurson, “Survey of Music
Analysis And Visualization Tools In PWGL,” in Pro-
ceedings of the International Computer Music Confer-
ence, Belfast, N. Ireland, 2008.

[20] G. Assayag, C. Rueda, M. Laurson, C. Agon, and
O. Delerue, “Computer Assisted Composition at IR-
CAM: From PatchWork to OpenMusic,” Computer
Music Journal, vol. 23, no. 3, 1999.

[21] D. Hanninen, “Orientations, Criteria, Segments: A
General Theory of Segmentation for Music Analysis,”
Journal of Music Theory, vol. 45, no. 2, 2001.

[22] C. Hasty, “Segmentation and Process in Post-Tonal
Music,” Music Theory Spectrum, vol. 3, 1981.

[23] M. Mesnage, “Techniques de segmentation automa-
tique en analyse musicale,” Musurgia, vol. 1, no. 1,
1994.

[24] M. Andreatta and C. Agon, “Implementing Algebraic
Methods in OpenMusic,” in Proceedings of the In-
ternational Computer Music Conference, Singapore,
2003.

[25] B. Pardo and W. P. Birmingham, “Algorithms for
Chordal Analysis,” Computer Music Journal, vol. 26,
no. 2, 2002.

[26] C. Agon, G. Assayag, J. Fineberg, and C. Rueda,
“Kant: a Critique of Pure Quantification,” in Proceed-
ings of the International Computer Music Conference,
Aarhus, Danemark, 1994.

[27] P. Desain and H. Honing, “The Quantization Problem:
Traditional and Connectionist Approaches,” in Under-
standing Music with AI: Perspectives on Music Cog-
nition, M. Balaban, K. Ebcioglu, and O. Laske, Eds.
Cambridge: MIT Press, 1992.

[28] C. Agon, K. Haddad, and G. Assayag, “Representation
and Rendering of Rhythm Structures,” in Proceedings
of the Second International Conference on Web Deliv-
ering of Music – WedelMusic’02, Darmstadt, Germany,
2002.



Appendix: Example of an Analysis Class
(Source code in Common Lisp)

1 ;==================================
2 ; CLASS DEFINITION
3 ;==================================
4
5 (defclass! my-analysis (om::abstract-analysis) ())
6
7 ;==================================
8 ; SETUP FOR DEFAULT BEHAVIOURS
9 ;==================================
10
11 ; MY-ANALYSIS is only compatible with objects of type ’chord-seq’
12 (defmethod compatible-analysis-p ((analyse my-analysis) (object om::chord-seq)) t)
13 (defmethod compatible-analysis-p ((analyse my-analysis) (object t)) nil)
14
15 ; MY-ANALYSIS is able to perform segmentation, analysis of the segments,
16 ; ... and both in the same run
17 (defmethod compute-segments-p ((self my-analysis)) t)
18 (defmethod analyse-segments-p ((self my-analysis)) t)
19 (defmethod compute+analyse-segments-p ((self my-analysis)) t)
20
21 ; The default segment type for MY-ANALYSIS is ’chord-segement’
22 (defmethod default-segment-class ((self my-analysis)) ’chord-segment)
23
24 ;==================================
25 ; DEFINING THE SEGMENTATION PROCESS
26 ;==================================
27
28 ; Automatic segmentation option: Each chord in the score makes a new segment
29 (defmethod compute-analysis-segments ((self my-analysis) (object t))
30 (loop for c in (om::get-real-chords object)
31 for i = 0 then (+ i 1) collect
32 (make-instance ’chord-segment :chord-ids (list i)
33 :color (om-random-color))
34 )))
35
36 ;==================================
37 ; DEFINING THE ANALYSIS PROCESS
38 ;==================================
39
40 ; Segment analysis:
41 ; Compute an object of type ’n-cercle’ (circular pitch class representation)
42 ; from all the pitches found in the segment.
43 (defmethod analyse-one-segment ((self my-analysis) (seg chord-segment) (object t))
44 (let* (
45 ; Get all chords from segment’s chord-IDs
46 (chords (loop for n in (chord-ids seg) collect (nth n (om::get-real-chords object))))
47 ; Gather all pitches (<lmidic>) from collected chords
48 (pitches (remove-duplicates (apply ’append (mapcar ’om::lmidic chords))))
49 ; Build a new global chord and convert to ’n-cercle’ (chord2c)
50 (circle (om::chord2c (make-instance ’om::chord :lmidic pitches) 2)))
51 ; Set the segment data
52 (setf (segment-data seg) circle)))
53
54 ; Segment display by MY-ANALYSIS (see Figure 5)
55 (defmethod draw-segment-data ((self my-analysis) segment view)
56 (let* (
57 ; Segment bounds in pixels
58 (x1 (time-to-pixels view (segment-begin segment)))
59 (x2 (time-to-pixels view (segment-end segment)))
60 ; Segment center in pixels
61 (mid (round (+ x1 x2) 2)))
62 (when (segment-data segment)
63 ; Segment-data is an instance of ’N-CERCLE’ (see analyse-one-segment)
64 (om::draw-cercle (segment-data segment) view mid (- (h view) 120) 40 2 3 t 0)
65 (om-with-font *om-default-font1*
66 (om-draw-string (- mid 20) (- (h view) 60)
67 (format nil "˜A" (car (om::puntos (segment-data segment))))))
68 )))
69
70 ;==================================
71 ; DEFINING ADDITIONAL ACTIONS
72 ;==================================
73
74 ; Analysis "cleanup": removes segments of size < 2
75 (defmethod clean-analysis ((self my-analysis))
76 (setf (analysis-segments self)
77 (remove-if
78 #’(lambda (seg) (< (length (chord-ids seg)) 2))
79 (analysis-segments self)))
80 )
81
82 ; Corresponding hook in the editor contextual menu (see Figure 3)
83 (defmethod get-analysis-menu-items ((self my-analysis))
84 (list (om-new-leafmenu "Clean Analysis" #’(lambda () (clean-analysis self)))
85 ))


	 1. Introduction
	 2. Segmentation and General Concepts
	 3. Framework Architecture
	 4. Protocol and Interaction
	4.1 Segmentation
	4.2 Analysis

	 5. Applications
	5.1 Supervised Harmonic Analysis
	5.1.1 Analysis Principles
	5.1.2 Interaction
	5.1.3 Integration in the OpenMusic Framework

	5.2 Interface for Rhythmic Quantification
	5.2.1 Quantification as a Special Case of Analysis
	5.2.2 Implementation
	5.2.3 Interaction


	 6. Conclusion
	 7. References

