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ABSTRACT

Query by example retrieval of environmental sound record-
ings is a research area with applications to sound design,
music composition and automatic suggestion of metadata
for the labeling of sound databases. Retrieval problems are
usually composed of successive feature extraction (FE) and
similarity measurement (SM) steps, in which a set of ex-
tracted features encoding important properties of the sound
recordings are used to compute the distance between ele-
ments in the database. Previous research has pointed out
that successful features in the domains of speech and mu-
sic, like MFCCs, might fail at describing environmental
sounds, which have intrinsic variability and noisy charac-
teristics. We present a set of novel multiresolution fea-
tures obtained by modeling the distribution of wavelet
subband coefficients with generalized Gaussian densities
(GGDs). We define the similarity measure in terms of
the Kullback-Leibler divergence between GGDs. Exper-
imental results on a database of 1020 environmental sound
recordings show that our approach always outperforms a
method based on traditional MFCC features and Euclidean
distance, improving retrieval rates from 51% to 62%.

1. INTRODUCTION

1.1 Background

Ever-larger sound databases, nowadays easily available on
the Internet or in sound banks, represent a great potential
for musical creativity. Yet most of this potential may re-
main hidden to the user without efficient means of explor-
ing the data: in 2005, for instance, the total duration of
the Creative Commons sound archive archive.org was es-
timated between 34.2 and 2,000 years [1], and has been
increasing ever since. Consequently, methods focusing on
content-based sound information retrieval, like query by
example (QBE), have attracted much attention in the past
years, as they allow easier and faster access to relevant
soundfiles than usual keywords-based search.

In this work, we focus on environmental sound record-
ings, which are prominent in most commercial databases
as the latter are mainly aimed at sound designers working
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in the film, game and virtual reality industries. Environ-
mental sounds are sought after by composers and artists as
well, who use them either as concrete sound objects or as
raw materials in granular or concatenative synthesis tech-
niques [2]. Our core application is a QBE retrieval system,
to which the user provides a short example (typically 2 to
5 seconds) of the kind of environmental sound he is inter-
ested in. After analysis of the acoustic and structural prop-
erties of the sound, the system searches the database for
a given number of relevant recordings. By making manual
specification of keywords unnecessary, such systems allow
users to retrieve sounds on the basis of their sonic proper-
ties alone: this approach gives access to a greater variety of
relevant sounds than a keyword-based system, which can
be biased by the way recordings have been tagged in the
database.

Other applications include metadata suggestion to
users submitting recordings to online databases like
Freesound 1 . The system could suggest tags for their sub-
mission by retrieving relevant database recordings, then
accessing the metadata they have been given by previ-
ous users. This could help to harmonize the way simi-
lar sounds are labelled, making keyword-based searches
easier. Note that QBE is not incompatible with keyword
search schemes, which can always be used to filter the sys-
tem’s output.

1.2 Problem

QBE systems are based on a notion of similarity between
sound recordings. Defining similarity first involves a fea-
ture extraction (FE) step, during which a set of features
that precisely represent a recording are computed. Features
are a much shorter description of the soundfile than raw
signal data; like the widely used Mel-frequency cepstral
coefficients (MFCCs), most features are based on time-
frequency representations such as the short-term Fourier
transform (STFT) or the wavelet transform (DWT). The
extracted features are then used for similarity measurement
(SM), which consists in computing the distance between
the query recording and each database image to return the
N closest matches.

By definition, environmental sounds present a greater
variability than music or speech. This makes the feature
extraction step difficult in the sense that one has to look for
features that can describe a wide range of sounds, without
assumptions on their timbral properties or structure. While

1 http://www.freesound.org
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MFCCs are widely used with excellent results for struc-
tured signals like speech and music, their performances
degrade in the presence of noise, like found in non-clearly
structured environmental sounds. Noisy signals that have
a flat spectrum, like rain and insect chirping, may also be
inefficiently analyzed by MFCCs [3].

Another difficulty is that environmental sounds contain
details at very different time scales, that cannot be cap-
tured by fixed-size sliding-window techniques like STFT.
These problems motivate the development of a multireso-
lution analysis tool capable of describing a wide class of
signals, without assumptions on the nature of events hap-
pening within them.

1.3 Our Approach

We present in section 3 a multiresolution feature extrac-
tion method based on the modeling of wavelet subband
coefficients’ distributions with generalized Gaussian dis-
tributions (GGDs). We use the symmetrized Kullback-
Leibler divergence (KLD) as similarity measure between
two sound recordings. This method extends the approach
developed by Do and Vetterli [4] for content-based re-
trieval of texture images to one-dimensional audio signals.
Our main contribution is a QBE retrieval system for en-
vironmental sounds, in which the similarity between the
query and the database elements is computed using GGD
wavelet features with KLD. We present and evaluate this
retrieval system in section 4.

As detailed in section 4.3, it occurred to us that no refer-
ence dataset has emerged in the domain of environmental
sound recognition. Thus, to evaluate our retrieval system,
we collected and labelled a large number of environmen-
tal sounds recordings from the widely-used Sound Ideas
Series 6000 library. We provide details about this set in
section 4.3, as well as an Internet link to a list of filenames
allowing one to build it back from the Sound Ideas library.

2. RELATED WORK

2.1 Environmental Sound Recognition

Compared to the speech and music domains, the field
of environmental sound recognition has few publications.
While most works point out the limits of conventional fea-
tures such as MFCCs [3, 5], only a few of them present
novel features [3]. More importantly, few works inves-
tigate the use of similarity measures [5–7]. This is be-
cause most works address the problem of classifying en-
vironmental sounds in a given set of classes, which are
known a priori [3, 8, 9]. Hence the “closeness” of sounds
is determined by a classifier (Gaussian mixture model, k-
nearest neighbor, etc.) which has some knowledge about
the distribution of the sounds amongst classes. On the con-
trary, a QBE retrieval system doesn’t assume the existence
of classes, and is only concerned by returning N relevant
sounds when given a specific query. Hence defining a sim-
ilarity measure between two sounds is essential in this con-
text.

Xue et al. [6,7] use a switching state-space model (SSM)
to measure the similarity between a given query and the

database sounds, using common perceptual features (RMS
level, Bark weighted spectral centroid, etc.). A compari-
son of existing features and distance measures performed
by Cowling and Sitte [5] show that wavelet-based features
tend to give good recognition results, combined with dy-
namic time warping (DTW). However, while this moti-
vates the use of wavelet-based features, the high compu-
tational cost of DTW invites to search for other similarity
measures.

2.2 Environmental Sound Synthesis

Most environmental sound synthesis works are based on
the modeling of the statistical properties of textures [10],
which are studied on extracted features. Although our aim
is a QBE retrieval system and not sound synthesis, such
works provide valuable information about which features
seem successful at encoding the variability of environmen-
tal sounds.

The feature extraction method detailed in section 3 is es-
sentially based on the modeling of wavelet subband statis-
tics with GGDs. Our assumption is that these statistics en-
code characteristic features of environmental sounds. It
is supported by works like that of McDermott et al. [11],
in which the authors synthesize stationary environmental
sounds by matching the statistics of a sample of noise with
those of real sounds. Furthermore, Dubnov et al. [12] and
O’Regan and Kokaram [13] use wavelet subband coeffi-
cients to model the statistics of environmental sounds (sta-
tionary and non stationary), yielding state of the art synthe-
sis results. This suggests that wavelet-based features might
perform well with environmental sounds.

2.3 Texture Image Recognition

The field of texture image recognition has more publica-
tions than its sound counterpart. The wavelet transform is
used in various feature extraction approaches for retrieval
applications. The core idea is that the energy in wavelet
subbands can be used to identify a texture. Wouwer et al.
[14] proposed to extend energy-based methods by adopt-
ing a more precise model of subband coefficients. In-
stead of considering the subband’s energy alone, they use
generalized Gaussian distributions to fit the subband co-
efficients’ histogram. This approach was extended by Do
and Vetterli [4], who derived a closed-form version of the
Kullback-Leibler divergence between two GGDs.

3. WAVELET-BASED FEATURES AND
SIMILARITY MEASURE

3.1 Wavelet Representation

The wavelet transform is a multiresolution, time-frequency
signal representation [15]. Each level encodes the signal’s
information at a particular resolution, and is non-redundant
with the next smaller resolution levels. The wavelet trans-
form of a one-dimensional signal can be computed using a
cascade filter bank (the so-called “pyramid” architecture),
as shown in figure 1. The signal S0 is first split into a low-
pass (or scaling) series of coefficients S−1 by convolving



subsample by a factor 2

convolve with filter X

D-1

S-1 Sj+1 Sj

Dj

S0

G

H

G

H

~

X~

~ ~

~

2

2

2 2

2

Figure 1: Pyramid architecture for computing the wavelet
transform of a one-dimensional signal.

the original signal with a low-pass filter H̃ , and subsam-
pling by a factor of 2. In parallel, the series of wavelet
(or detail) coefficients D−1 is computed by convolving the
signal with a wavelet filter G̃, and subsampling by a factor
of 2. The same filters can be applied again on the scaling
coefficients S−1 to obtain coefficients S−2 and D−2, and
so forth.

There is the same number of series of detail coefficients
as there are levels (referred to as subbands) in the wavelet
transform. A three-level wavelet transform would give se-
ries of detail coefficients D−1, D−2 and D−3, and the se-
ries of scaling coefficients S−3 which correspond to the
three-level approximation of the signal. Because each filter
response is subsampled by a factor 2, an N -level wavelet
transform requires a signal S0 of dyadic length 2J , with
J ≥ N . The series of detail coefficients at level i (S−i)
would then be a signal of length 2J−i.

In our experiments, we used the Daubechies maximally
flat orthogonal filters of length 8 (D4) as wavelet filters.
Evaluation of all families of wavelet filters is beyond the
scope of this paper; however, we should note that the
Daubechies filters are a common choice in both image and
sound processing domains [4, 12].

Sections 3.2 and 3.3 present the theoretical framework
from which the features and the similarity measure used in
our retrieval system are derived. It is based on the work of
Do and Vetterli [4], who originally applied it to describe
two-dimensional texture images.

3.2 Modeling of Subband Coefficients by GGDs

We model the distribution of each subband’s series of detail
coefficients with a generalized Gaussian density. We dis-
card the lowest band scaling (approximation) coefficients
as they do not encode sailent details at the chosen decom-
position depth. Generalized Gaussian distributions are de-
fined as:

p (x;α, β) =
β

2αΓ (1/β)
e−(|x|/α)β , (1)

where Γ is the Gamma function. For x > 0:

Γ(x) =

∫ ∞

0

e−ttx−1dt. (2)

They can be seen as an extension of Gaussian and Lapla-
cian distributions, which correspond to β = 2 and β = 1.
Parameter α (scale parameter) models the width of the
distribution (standard deviation), while β (shape param-
eter) is inversely proportional to the decreasing rate of the

distribution’s tail. Given the series of detail coefficients
D−j = (D1

−j , ..., D
n
−j) for subband j, a β̂ estimation can

be obtained by:
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(3)

where all sums are taken from p = 1 to n, and Ψ is the
digamma function, i.e. Ψ(x) = Γ′(x)/Γ(x). A α̂ estima-
tion is given by:

α̂ =

(
β̂

L

n∑
p=1

∣∣Dp
−j

∣∣β̂)1/β̂

. (4)

Equation 3 is transcendental. We solve it numerically us-
ing the Newton-Raphson iterative procedure [16]. The es-
timated β̂ parameter can then be used to obtain α̂ with
equation 4. Figure 2 shows two histograms of wavelet sub-
band coefficients, and the GGD fits. Note that, if the first
histogram could be modeled by a standard Gaussian distri-
bution (β̂ close to 2), the second histogram clearly shows
the benefits of the use of GGD fits, as a standard Gaussian
fit would fail at producing such a peaked distribution (we
find β̂ = 1.5281 by fitting with a GGD).

3.3 Distance Measure Between GGDs

The Kullback-Leibler divergence, or relative entropy, pro-
vides a statistical, non-symmetric measure of the distance
between two probability density functions (PDFs) [17].
The KLD between PDFs p (.;θq) and p (.;θi) is:

D (p (.;θq) ||p (.;θi)) =

∫
p (x;θq) ln

p(x;θq)

p(x;θi)
dx. (5)

Although this is usually not the case for most PDFs, a
closed-form version of the KLD between two GGDs can
be found [4]:

D (p (x;α1, β1) ||p (x;α2, β2)) = − 1

β1

+ ln

(
β1α2Γ (1/β2)

β2α1Γ (1/β1)

)
+

(
α1

α2

)β2 Γ ((β2 + 1)/β1)

Γ (1/β1)
.

(6)

This allows us to compute a similarity measure between
two different sound recordings, at a given subband. Be-
sides being theoretically motivated, the use of KLD as a
similarity measure provides a closed-form formula, yield-
ing lighter computational cost than DTW for instance. This
measure can be computed in terms of the two GGDs’
parameters, which also significantly reduces the space
needed to store the recordings’ features.

To define the overall similarity measure between two
recordings (taking into account all subbands), we make
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Figure 2: GGD fits of two histograms of second wavelet
subband coefficients. Two different subclips extracted
from the same recording of ambient city sounds were used.
a) subclip 1. The estimated parameters are α̂ = 0.0166
and β̂ = 1.9462.
b) subclip 2. The estimated parameters are α̂ = 0.0030
and β̂ = 1.5281.

the simplifying assumption that these subbands are sta-
tistically independent. As shown by Dubnov et al. [12],
there may in fact exist some correlations between sub-
bands. However, we assume that our independent-subband
model will have enough discriminating power amongst the
environmental sound class to be used in a retrieval context.
Hence we define the distance between two sound record-
ings R1 and R2 as the sum of the symmetrized KLDs be-
tween each subband pair:

D (R1, R2) =

N∑
i=1

D
(
p
(
x;αi

1, β
i
1

)
||p
(
x;αi

2, β
i
2
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1, β
i
1
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(7)

Where αi
k and βi

k are the GGD parameters from the
wavelet subband i of the recording Rk, and N is the num-
ber of levels (subbands) in the wavelet decomposition.

4. EVALUATION: QBE RETRIEVAL SYSTEM

4.1 Retrieval System

We evaluate our similarity measure in a QBE retrieval ap-
plication. Given a query i, our system computes the dis-
tance between i and each element of a database composed
of environmental sound recordings. The distances are then
sorted in ascending order to allow the system to return the
indices of the N closest (or most relevant) recordings.

The expected output of a retrieval system is a series of
sounds relevant to a user’s query. To evaluate our system,
we use a standard precision-recall procedure. For each
query sound clip i, we retrieve the N most relevant sound
clips, then define precision “per sound clip” P (i) as:

P (i) =
mi

N
. (8)

Where mi ≤ N is the number of relevant sound clips
amongst the N retrieved sound clips. Hence precision is
defined as the number of relevant retrieved sound clips over
the number of retrieved sound clips. To define recall “per
sound clip” R(i), we assume that there exist L sound clips
relevant to query i in all our dataset; for simplicity of expo-
sition, we assume that L is the same for each query. Recall
is then defined as the number of relevant retrieved sound
clips over the total number of relevant sound clips:

R(i) =
mi

L
. (9)

The quantities P (i) and R(i) are averaged on all possible
queries to obtain “global” precision P̄ and recall R̄. The
process is then iterated by varying the number N of re-
trieved sound clips from 1 to Nmax (usually Nmax � L
to ensure that all relevant sound clips have a chance to be
retrieved).

The F-measure “per sound clip” F (i) is defined as the
harmonic mean of P (i) and R(i):

F (i) = 2
P (i)R(i)

P (i) +R(i)
. (10)

The overall performance of a retrieval system can thus be
evaluated using the “global” F-measure F̄ , obtained by av-
eraging F (i) on all possible queries. As precision and re-
call, the F-measure is a number located between 0 and 1, 1
being the best value.

4.2 Evaluation Methodology

To define the L relevant sound clips for each query, we
adopt a standard methodology in the field of texture im-
age recognition [4, 18, 19]. The basic idea is to use
homogeneously-sounding source recordings, which can
be split into series of sound clips. By homogeneously-
sounding, we refer to recordings in which the number and
nature of sound sources remain constant throughout their
whole duration. For instance, we didn’t allow a recording
of machine noises to include isolated conversation noises,
in a similar spirit to widely-used texture images datasets
like the MIT Vision Texture database 2 (VisTex). In this

2 http://vismod.media.mit.edu/vismod/imagery/
VisionTexture/
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context, two sound clips extracted from the same file can
be defined as perceptually relevant to each other. This
methodology provides a convenient way of performing a
first evaluation of our retrieval system, since no manual
definition of relevance (e.g. manual labeling of each sound
clip) is needed. We acknowledge however that it should be
complemented with a human-based evaluation, which we
plan to perform in the future.

4.3 Dataset

Most reference databases in the speech and music recog-
nition communities are freely available, providing a con-
venient way of evaluating results on the same test sets as
other publications. To our knowledge, no comparable eval-
uation set has emerged for applications related to environ-
mental sounds. As a consequence, we decided to collect
a large number of environmental sounds from the Sound
Ideas Series 6000 commercial library 3 . This 40-CD col-
lection is mainly aimed at sound designers working in the
film industry, which makes it a relevant choice for our re-
trieval application. It is composed of short sound effects
and longer ambience recordings.

The selection process involved discarding the sound ef-
fects and very short recordings, as well as environmen-
tal sound clips in which precise identification of sound
sources was impossible. The remaining recordings form
a small subset of the original Sound Ideas database (358
files over 7546, or about 4.7 %). They cover a broad spec-
trum of environmental sound types (e.g. bubbles, conver-
sation, etc.). Class labels (i.e. sound source types) were at-
tributed manually for each sound, as such information was
not given by the Sound Ideas library 4 . A list of filenames
allowing one to build our database back from the Sound
Ideas library is available online 5 . Manual attribution of
class labels as well as pre-selection of homogeneously-
sounding recordings make it possible to use this dataset
in classification problems without further labeling work.

Table 1 shows the number of sound clips per type of
sound source used in our evaluation dataset. To comply
with our evaluation methodology requiring the same num-
ber of sound clips to be extracted from each source record-
ing, we select the recordings which are lengthy enough
amongst those in our Sound Ideas-based dataset, i.e. 68
recordings. We split each of them in 15 monophonic sound
clips of length 218 samples, or about 5 s at 44100 Hz.
We then iteratively select each of the 1020 obtained sound
clips as a query. For each query, we use the 1019 remaining
sound clips as a retrieval database, inside which we define
the query’s relevant sound clips as the 14 other sound clips
that have been extracted from the same recording as the
query (hence L = 14).

4.4 Results

Table 2 shows the results obtained by our system when re-
trieving N = 1 up to N = L = 14 top matches. The

3 http://www.sound-ideas.com/6000.html
4 Note that our QBE retrieval system application, in which no sound

classes are known a priori, doesn’t make use of such information.
5 http://imtr.ircam.fr/imtr/Environmental Sound Dataset

Class #soundfiles

ambience (city) 30
ambience (crickets) 30
ambience (crowd) 195
ambience (crowd with children) 45
ambience (forest) 75
ambience (machine) 60
ambience (plane) 30
ambience (riot) 30
ambience(shopping mall) 60
ambience (subway) 30
bubbles 30
fire 30
conversation 60
jet engine 15
race 45
water (flowing) 225
wind 30

Total 1020

Table 1: Number of sound clips per sound source type in
evaluation dataset.

minimum and maximum values of P̄ and R̄ are given as
Min. precision, Max. precision, Min. recall and Max.
recall. The entry Recall (N=14) shows the recall (or re-
trieval rate) obtained when retrieving 14 top matches. We
compare our method, which uses GGD-based features and
KLD, with a method based on MFCC features and nor-
malized Euclidean distance (ED). To outline the interest of
our KLD-based similarity measure, we have also included
the results of a method based on GGD features and Eu-
clidean distance. This allows to compare the gain in us-
ing GGD features over MFCC features with the same Eu-
clidean similarity measure. Note that a similar case using
the KLD similarity measure can’t be included, as the KLD
only makes sense as a measure of the distance between
two PDFs. To use it with MFCCs would require build-
ing an underlying probabilistic model for MFCC features,
which is beyond the scope of this paper. This further un-
derlies the interest of our feature extraction scheme based
on GGD modeling of wavelet subbands, which naturally
enables the use of the KLD as a similarity measure.

GGD-based features were computed using a six-level
wavelet decomposition. We computed the MFCCs on Mat-
lab with the Auditory Toolbox [20], using 13 coefficients,
a window size of 256 samples and a framerate of 100
Hz. We found that the inclusion of first-order derivatives
amongst MFCC features and removal of first MFCC coef-
ficient yielded lower retrieval rates. As a consequence, we
present the results obtained with MFCCs alone.

Figure 3 shows the precision-recall curves (P̄ vs. R̄) ob-
tained with the GGD+KLD and MFCC+ED methods, as
well as plots of the F-measure against recall (F̄ vs. R̄) 6 .

6 Notice that the 14th values of recall and F-measure are equal. This is
because by definition, P̄ = R̄ for N = L = 14.

http://www.sound-ideas.com/6000.html
http://imtr.ircam.fr/imtr/Environmental_Sound_Dataset


MFCC+ED GGD+ED GGD+KLD

Min. precision 0.5131 0.5586 0.6174
Min. recall 0.0482 0.0553 0.0637
Min. F-meas. 0.0899 0.1031 0.1188
Max. precision 0.6745 0.7735 0.8912
Max. recall 0.5131 0.5586 0.6174
Max. F-meas. 0.5131 0.5586 0.6174

Recall (N=14) 0.5131 0.5586 0.6174

Table 2: Minimum and maximum values of evaluation re-
sults obtained when retrieving N = 1 up to N = L = 14
matches. Recall (or retrieval rate) values are given for
N = 14. Best results are displayed in bold font.
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Figure 3: Precision-recall curves obtained with the
GGD+KLD and MFCC+ED retrieval methods when re-
trieving from N = 1 up to N = 50 > L matches. Also
shown are plots of F-measure against recall.

Each point corresponds to the results obtained when re-
trieving from N = 1 up to N = 50 > L top matches. The
minimum and maximum values of the curves within the 14
first points’ range correspond to those of table 2.

We observe in figure 3 that the precision-recall curve
of the GGD+KLD method is always above that of
MFCC+ED, which is also the case for the plot of F-
measure against recall. Hence our method (GGD+KLD)
always outperforms the method based on traditional fea-
tures and similarity measure (MFCC+ED). As shown in
table 2, our retrieval system is able to retrieve about 62%
of relevant sound clips in the 14 top matches, whereas the
traditional approach based on MFCCs and Euclidean dis-
tance only achieves a 51% retrieval rate.

Table 2 shows that the method based on wavelet features
and Euclidean distance (GGD+ED) also outperforms the
MFCC+ED approach. As these two retrieval systems only
differ in the choice of features, the notably superior results
of the GGD+ED method shows that the GGD wavelet fea-
tures provide a better description of environmental sounds
properties than MFCCs. This confirms our assumption that

our wavelet-based features encode important informations
about the characteristics of environmental sounds. As ex-
pected, the best results are obtained when using the wavelet
features in conjunction with the KLD, i.e. when combining
informative features with a proper, statistically-motivated
similarity measure.

5. CONCLUSION

We have introduced a novel set of multiresolution features
as well as a consistent similarity measure for QBE retrieval
of environmental sounds. Our approach consists in mod-
eling the distribution of wavelet subband coefficients by a
generalized Gaussian density. Assuming that subbands are
statistically independent, we propose a closed-form ver-
sion of the overall distance between two environmental
sound recordings using the symmetrized Kullback-Leibler
divergence.

We have collected a database of 1020 sound clips from
the Sound Ideas library, originating from 68 different
source recordings covering a broad spectrum of environ-
mental sound types. Experimental results on this database
show that our approach always outperforms a method
based on traditional MFCC features and Euclidean dis-
tance, improving retrieval rates from 51% to 62%. Re-
sults also show that the proposed method benefits simul-
taneously from its set of features and its proper similarity
measure.

Further improvements on our approach could be made by
considering multi-dimensional generalized Gaussian den-
sity distributions to model the joint probability distribu-
tion of wavelet subband coefficients. Another application
would be to use our method in classification-related do-
mains which have few publications devoted to environ-
mental sounds, like computational auditory scene recog-
nition (CASR). We are currently investigating the use of
support vector machines with KLD-based kernels to apply
our method to classification problems.

Finally, we plan to distribute a Freesound-based dataset
of environmental sound recordings. The building of a
Creative Commons-licensed evaluation bank, though de-
manding more time than for commercial libraries-based
datasets, is likely to allow more applications to benefit
from it. In particular, we will be conducting a user-based
study of the performances of our retrieval system on a col-
lection of Freesound recordings.
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