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Abstract

This paper deals with sound synthesis using state space models. It focuses on two realizations we made of
state space synthesiser builders applied to the case of wind instruments and more generally to transmission
lines networks. The first realization, written in Maple is devoted to symbolic manipulation such as the
derivation of different formalisms - modal representation, ARMA filters or Kalman filtering equations. For
efficiency purposes, a second version has been designed in C++ which directly reads the description of a
physical instrument and computes its sound signal outputs.

Introduction

We present recent developments of synthesis using State Space Models (SSM) [DM92] and a state space
synthesiser builder applied to the case of wind instruments. SSM are particularly interesting since they
attempt to unify two main categories of sound synthesis techniques: signal modeling and physical
modeling. This approach relies on the state space formalism which is widely used in control system
theory. It allows to take into account all the physical parameters of the system under study and benefits
from the methods developed for automatic tracking of parameters values, such as adaptive filtering or
Kalman filtering.

Physical models usually require the complete construction of a model for each new instrument. On the
other hand our SSMs provide a methodology for modular construction of instruments [Tas94]. This
construction is done automatically in our formal calculus environment. It allows to obtain different
theoretical representations (state space equation, external or modal representation) and a synthesiser which
simulates the instrument.

This paper focuses on the production of state space representation of hierarchical networks. Thus, we only
briefly present the physical systems involved in wind instruments. We give some basics concerning the
state space representation and we describe in detail the methodology that we used to combine modules
together into networks of arbitrary complexity. In the third section, we apply this methodology to
transmission lines, and in the last section we describe two software realizations of synthesiser builders.

Physical Model of Tubes

The first class of physical systems we are interested in is that of wind instruments. We have to deal with
acoustic tubes, junctions of two or more tubes and boundary conditions (such as reflection on the excitator
and radiation in the air) [Smi92]. For each of this basic modules, we have to specify the degree of
refinement of the physical description we intend to use.

Acoustic Tubes



To model an acoustic tube, we use rather restrictive assumptions : we consider it a transmission line and
we suppose its walls are perfectly rigid. These assumptions are standard for speech processing even
though they are wrong especially for the vocal tract. We also take into account viscothermal losses
[Mat94].

In order to obtain a discrete model, the acoustic tube is spatially discretized in N elementary tubes of equal
length and given section. This spatial discretisation is directly related to the sampling period which is the
exact delay for a round trip in an elementary tube.

For a lossless tube the usual description of propagating waves in terms of superposition of ingoing and
outgoing waves leads to the Kelly-Lochbaum structure. This structure is made of two delays and is
parameterized by one reflection coefficient which represents the discontinuity between two elementary
tubes. For state space description,s we prefer the lattice structure which is obtained by putting all the
delays in the upper or in the lower branch of the lattice and by normalizing input and output waves
[Mat90]. In that way we represent an acoustic tube by a quadripole system with an N-dimensional state
space internal vector. As we normalize input and output waves of the acoustic tube in the lattice
representation, we have to denormalize the inputs and the outputs of the whole system to obtain physical
values.

When taking into account viscothermal losses, we prove that the acoustic tube is still described by a
generalization of the lattice filter. Following the delay we add a filter which approximates the frequency-
dependent attenuation [Mat94]. The attenuation factor being proportional to  (where  is the frequency),
we use specific techniques to approximate it by a digital filter. We get the same structure for the state
space equation than in the lossless case except for some scalars which are replaced by block matrices.

Junctions of Acoustic Tubes

A wind instrument is an assembly of interconnected tubes. Connections of tubes are modeled by junction
modules which implement Kirchoff's laws. At this time, we only consider two-port and three-port
junctions. As in electrical circuit systems, networks have to be oriented. Consequently, we distinguish four
three-port junctions.

Boundary Conditions

The input boundary condition represents the loading of the excitator on the system and the output
boundary condition, the radiation effect. A simple model for these boundary conditions is a frequency
independent reflection coefficient. A more refined model consists of frequency dependent feedback loops
which represent the load of the excitator or the radiation effect.

State Space Sound Synthesis

State Space Model

Most physical systems can be split up into basic components coupled according to a specific topology and
characterized by physical parameters. The general expression of such a model without the restrictions of a
linear system is eq. (1) where  ,  and  are respectively the internal state vector, the input vector, and the
output vector.

Furthermore, a wide range of physical systems can be considered as linear dynamical systems. Then, the
formal expression of such a model becomes (1.b) where the system is now represented by four matrices



(A, B, C, D) respectively the matrix of dynamics, the control matrix, the observation matrix and the direct
link matrix [Kai80]. These matrices are directly derived from the topology and the parameters of the
system under study. Then building the model of an instrument is equivalent to establishing its four
representative matrices. Once the representation is obtained, the system can be simulated by driving it
with input vectors. If evolving in time, the system is described by time dependent matrices.

Systems Combination

In order to obtain the state space representation of systems composed of more elementary sub-systems, we
developed a specific methodology. It consists of organizing the set of sub-systems into a hierarchical
network. Then the SSR of each sub-systems is combined automatically with our formal calculus
environment.

 
Figure 1: Serial (a), parallel (b) and feedback (c) connections of two modules.

To build a network, we proceed by recursive combinations of two sub-systems. Considering two systems
S1 and S2, they can be assembled (fig. 1) in a serial, parallel or feedback manner to create the system S.
For these three combinations, the internal state space vector is  = ( 1, 2).

For the serial combination the output of S1 is connected to the input of S2 and we have  = 2 and  = 1.
For the parallel combination, input and output are simply a concatenation :  = ( 1, 2) and  = ( 1, 2).
And for the feedback combination, we have  = 1 = 2 and  = 1 - 2.

Notice that these combinations have been defined in order to construct networks in a very general way.
They do not directly have a physical meaning. In particular, the connection of two acoustic tubes is not a
simple serial connection but is done through the connection of two quadripoles which involves 4 serial, 2
parallel and 1 feedback connections (fig. 3).

From State Space to Other Representations

Formal description is very useful for performing modifications such as the manipulation of state space
equations or for deriving other representations such as modal or external representations.

For example, in order to identify an unknown parameter by using the Kalman extended filtering
techniques, we classically add this parameter as an extra state space variable to the internal state vector.
Consequently, we have to derive automatically a new state space equation corresponding to the enlarged
state vector.

Establishing an external representation of physical systems is very useful, for example, for performing
real-time synthesis driven by physical parameters. The synthesis becomes very efficient computationally
speaking. Such an external representation is obtained by evaluating :

 is a transfer matrix and it reduces to a scalar expression when input and output vectors are
one-dimensional. In this case  is the transfer function corresponding to an ARMA filter.

Modal representation of physical systems is well adapted to the context of sound synthesis because of the



Modal representation of physical systems is well adapted to the context of sound synthesis because of the
structure of the sound output. Modal synthesisers such as Modalys (previously known as Mosaic) need a
data base of modes adapted to the structure which is to be excited. Modes can be obtained by establishing
the state space equation for the structure and by diagonalizing the matrix A of dynamics. This is
performed by formal or numerical calculus.

Global Representation of Linear Systems

In the linear case, a global representation ( A, B, C, D ) of a system network can be entirely deduced from
the representation ( Ai, Bi, Ci, Di ) of each of the components. Serial, parallel and feedback connections
are described in the following equations where + and are - respectively set to (I - D1D2)-1, (I - D2D1)-
1, with D1

- = +D2.

Modular Representation

  The global approach for system representation is not efficient from a computational standpoint:
simulating a 50 cm tube at 44.1kHz requires more than 6000 multiplication/additions per sample. To
avoid this problem we develop a modular approach which simulates a whole system by propagating signal
flows between modules. This approach is similar to the one developed in Music V, C-sound, Max, and
waveguides.

Figure 2: (a) Simulable feedback; (b) serial q-junction of two quadripoles.

We are interested in knowing in advance whether a network is computationally simulable or not. (By
simulable we mean simply: ``capable of being simulated''.) Let S be a module network, S is simulable if its
state equations (i.e.  and g) are explicit expressions of the component module equations. By extension, we
will say that a module is simulable for a given type of combination if any combination of the given type
results in a simulable network.

Simulable Modules Networks

Serial and parallel connected modules are simulable provided that all components are themselves
simulable. On the contrary, feedback (fig. 1.c) can not be simulated because [n] results from the
following implicit equation [n] = g1( [n] + g2( [n])).

However, if the feedback loop is broken by at least one delay, as shown in figure 2.a, we get an explicit
expression for the output ( [n] = g1( [n] + g2( [n-1])))(see also [FC90]).



Transmission Line Application

Simulable Combination of Quadripoles

One-dimensional transmission lines or junctions are quadripoles, i.e. a particular kind of system with two
distinct inputs ( -, +), and outputs ( +, -). These quadripoles may be connected together with specific
serial q-junctions (fig. 2.b) and parallel q-junctions12. These q-junctions are described as a hierarchical
network of parallel, serial and feedback connections (fig. 3 and 4).

 
Figure 3: decomposition of a serial q-junction.

Figure 4: decomposition of a parallel q-junction.

A serial q-junction between two quadripoles involves a feedback connection. It turns out that serial q-
junctions of quadripoles can not be simulated in the general case, but can be simulated if each incriminated
loop is broken by a delay. 
Basically a delay can be extracted either in the upper line (the ingoing waves) or in the lower line (the
outgoing waves) (fig. 5). We call them respectively quad-up and quad-down. We provide also an
orientation to a quad so that at least one delay is nested on its left side (i.e. e+ input or s- output ).

Figure 5: Two kinds of simulable quadripoles: the quad-up and the quad-down.

We deduce some interesting properties: two quad-up connected in parallel is still a quad-up, a quad-up
connected in serial with any quadripole is still a quad-up, two quad-up q-juncted together is simulable and
is also a quad-up. One other interesting computational property of quad-up is that g (eq. 1.a) does not rely
on e+ (resp. e- for quad-down). We deduce a simple algorithm for simulating the serial q-junction of two or
more quad-ups.



Notice that the most simple quadripole, i.e. the identity connection ( s+ = e+ and s- = e- ) is neither a quad-
up nor a quad-down, and is therefore not simulable for serial q-junction purposes, which could become a
drawback in the description of some transmission line networks.

Transmission Line Networks

It is now possible to simulate interconnected networks of transmission lines [GMR88] such as the one
shown in fig. 6. Musical applications would be simulations of finger holes in a wind instrument or
simulations of a multi-bore instrument such as a bagpipe.

Figure 6: Network of transmission lines.

If the network can be split in term of q-junctions, serial, parallel connections of oriented quad-ups and
junctions without an oriented loop, then it is simulable, and is also a quad-up.

Figure 7: Network decomposition.

Fig. 7.a demonstrates how the network may be split into a regular pattern. Figure 7.b represents the pattern
(a) as the parallel connection of different quad-ups. Thus this network is simulated by using simple basic
elements (only J12 and J21 junctions). Of course this decomposition is not unique, and we could propose
other combinations for this network.

SSM Builders

We developed a statespace library for Maple.55ex©.17em which performs all kinds of symbolic
computing. The statespace library implements the three basic combinations known here as augment,
connect and feedback. It also implements basic combinations for quadripoles known here as q-junctions
and q-append. It also provides facilities for transforming the Maple representation into any other kind of
representation. The library computes a transfer function representation from any linear system. It
communicates with the control toolbox of Matlab.55ex©.17em. And finally it generates C code which
simulates the linear system. The C code may be associated with other pieces of code for simulating non-
linear systems.

The Tube library is a library built around the statespace library which implements known linear models:
cylindrical tubes with or without viscothermal losses, boundary conditions, junctions and T-junctions.

SSS builders



The formalism described in the chapter "Modular Representation" can easily be translated into an object-
oriented language, such as C++. We've build a C++ library which implements a rather complex inheritance
tree around the Module abstract class. Any Module has two primary methods which approximately
correspond to the f and g functions (eq. 1.a), and another method for updating its parameters. As shown in
figure 8, we derive several different abstract Module subclasses such as Quadripole, Quad_up,
Quad_down, Filter...

Usable objects are either Compound Modules[3], or any non-abstract class which implements a particular
system. At this point we use parallel and serial connections, and q-junctions. We also implement classes
which represent boundary conditions, tube models with or without viscothermal losses [Mat95],
waveguide junctions [Tas94], non-linear reed models [Rod94]. This list may be completed by the
implementation of other physical models.

Each non-abstract Module is described by an algorithm which computes an output from the inputs and its
internal state. Some internal parameters (such as the reflection coefficient for a boundary condition) can be
updated at run-time by a specific method. Others cannot (such as the length of a tube which cannot change
dynamically).

We provide users with interactive interface with links, modules and vectors for designing and simulating
systems and for controlling the synthesis with time-varying parameters.

Figure 8: Inheritance tree for the Module class.

Conclusion

We have considered here sound synthesis using state space models. State space models are very promising
since they keep the positive aspects of both signal and physical modelling such as the ability for automatic
extraction of parameters, the internal description and the control by physical parameters. We described the
methodology that we developed for modular construction of wind instruments and software realizations of
formal calculus programs which build synthesisers. The first one written in Maple is devoted to theoretical
purposes and the second one written in C++ is devoted to sound synthesis. Future development plans for
this work include the addition of a fractional delay module in order to simulate tubes of arbitrary length
[Val94], and the identification of unknown physical parameters through the use of Kalman filtering
techniques.
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Notes

1 A Parralel q-junction is defined as - = ( -
1, -

2), + = ( +
1, +

2), + = ( +
1, +

2), and - = ( -
1, -

2).
2 There is no sense in defining a q-feedback for quadripoles.
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