
HAL Id: hal-01161427
https://hal.science/hal-01161427v1

Submitted on 8 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Object Oriented Visual Environment for Musical
Composition

Gérard Assayag, Carlos Agon, Joshua Fineberg, Peter Hanappe

To cite this version:
Gérard Assayag, Carlos Agon, Joshua Fineberg, Peter Hanappe. An Object Oriented Visual En-
vironment for Musical Composition. ICMC: International Computer Music Conference, Sep 1997,
Thessaloniki Hellas, Greece. pp.364-367. �hal-01161427�

https://hal.science/hal-01161427v1
https://hal.archives-ouvertes.fr

Serveur © IRCAM - CENTRE GEORGES-POMPIDOU 1996, 1997. Tous droits réservés pour tous pays. All rights reserved.

An Object Oriented Visual Environment for
Musical Composition

Gérard Assayag, Carlos Agon, Joshua Fineberg et Peter Hanappe

ICMC: International Computer Music Conference, Thessaloniki, Hellas, Greece, Septembre 1997
Copyright © Ircam - Centre Georges-Pompidou 1997

Abstract

OpenMusic is a visual programming environment for composers based on Macintosh
Common Lisp. It extends the functionalities of PatchWork to full object oriented
programming and provides a high level control on the musical form.

The Musical Research Group at Ircam has conceived and developed computer based systems to help
composers treat certain aspects of musical composition. While there are many different aspects to
composition, we have restrained ourselves to those which are directly linked to the symbolic manipulation
of musical material.
Thus, problems such as performance and real time processing do not form an integral part of our work.
The basic substance we treat are models, compositional techniques at their more basic level : treated as a
universe of forms, structures and relations.

Our group has specialized in visual programming languages for musicians. We have tried to make the
transition between various levels of compositional conception and realization as continuous as possible.
Our current work has taken the form of a new environment provisionly named OpenMusic.
OpenMusic is the continuation of PatchWork [Laurson 96] , an environment by Mikael Laurson and Ircam
which already made use of visual programming.

PatchWork is considered one of the most powerful and versatile program currently available to aid a
composer in the creation of his music. This program has become indispensable in the daily work of
numerous composers from the entire gamut of aesthetic tendencies. However, as composers have gained
experience with the program and as new types of applications have become feasible, the limitations, both
technical and theoretical, of the current form of PatchWork have necessitated the envisioning of a major
reworking of the program.

Currently, PatchWork is made up of hundreds of incremental improvements built directly upon previous
versions, leaving tremendous disorder and making the program difficult to maintain. In this context, major
structural changes are extremely difficult and may produce innumerable hidden consequences.

The current version of PatchWork is centered around the patch editor window ; in this window functional
modules may be connected in any way the user desires so as to perform calculations of almost any type.
These modules are made available to the composer either as standard PatchWork kernel boxes, as standard
Common Lisp functions, as parts of various user-libraries, or may be programmed directly by the user in
Common Lisp. Unfortunately, this great flexibility is confined within that one patch. While not
impossible, it is extremely difficult to collect information from one patch for exploitation in another.
Temporal aspects, too, may be controlled within a given patch but are difficult to transmit from one patch-
window to another. Even the formats of objects make inter-communication difficult (for example: a chord
may be defined by a list of midicents; a list of lists containing midicents, velocities, durations, etc.; a list

of note objects; a chord object; or a chord-line object). These different formats permit an individual chord
to be calculated with as much or as little complexity as required, but create endless conversion problems
when two different forms of this same type of musical object must be placed into relation.

For a new environment to supersede these problems it would have to have the capacity to place various
patches into more supple relationships, to dynamically create object definitions, to facilitate the
communication between various forms of the same musical structure and to be able to place all of this into
an easily editable temporal context.

A patch can be used as an abstraction in an other patch.

The basic patch editor which formed the center of PatchWork has been completely rewritten for use in
Open Music. This coherent and efficient patch editor has allowed the integration of important
improvements in programming power: including object oriented tools such as the easy graphical definition
of object, classes and methods, based on the underlying CLOS model [Steele 1990].

A patch may be passed as a functional argument to another patch.

A class hierarchy .

Access to the slots of a class.

Other Macintosh standard features such as scroll bars, balloon help and drag-and-drop were finally
implemented. Additionally, it is now possible to create sophisticated loops and tests which are nearly
impossible to perform in the current PatchWork without programming Lisp code directly. Many other new
features have been added including an inspector window that allows various aspects of modules or patches
to be defined.

From the class " note " an instance is generated and materialized as an icon.

A loop computing the list of prime numbers between 0 and 10.

These changes in the infrastructure will allow a tremendous degree of flexibility in the visual
customization of functions without writing code. It will be possible to cut and paste entire musical objects
directly into the default values for a function, allowing composers to rapidly modify defaults for a given
piece or even a section of a piece. Although the current patch editor is very effective for treating lists, once
a certain complexity of material is reached the use of objects becomes essential. OpenMusic provides a
visual interface for creating new classes by derivation of existing ones, instances of these classes, and
generic functions acting upon these instances and switching between the appropriate methods depending
on the type of the input. Thus the basic battery of functions will be much more musically direct than in the
past. For example a transposition module would be able to look inside any musical object (note, chord,
chord sequence, etc.), find the appropriate slot, perform an addition or subtraction and recreate a
transformed copy of the original object with its notes transposed. This would be in a uniform manner using
the same generic transposition module ; if the user required a particular non standard treatment he could
simply graphically create a new user defined method of transposition that would apply to the case at hand.

A generic addition function and its four methods defined for several combinations of the
classes number and list (R and ())

The second major problem in PatchWork was its limitations in establishing links between patches

and allowing the easy juxtaposition of musical materials in time to simulate complex musical
sequences. The solution that we have proposed in OpenMusic is the Maquette Editor. This
specialized interface allows the creation of blocks placed in spatial and/or temporal relationships.
These blocks are linked to patches. They may contain inputs or ouputs that are defined from within
the patch associated with each block. Besides these inputs and outputs which allow interconnections
to be made between different patches, directly within the maquette, each patch editor window
contains two special inputs and one special output. These inputs and output are used to
communicate temporal information to the patch or to recover it for the maquette editor. The inputs,
which are automatically present in each patch, though need not be used, communicates values
corresponding to the position and duration of the patch's block in the maquette editor. This value
may then be used in the calculation of the patches result [Lindemann 90]. The special output is used
to collect the musical structure provided to the maquette by the patch. These objects may be of any
type from a series of real durations to complex polyphonic sequences in shifting tempos and meters;
however, all types of musical or even just temporal objects must ultimately be connected to this
output for their results to be available from the maquette editor window. The temporal durations of
these objects, upon evaluation from within the maquette, will cause the block to be rescaled
horizontally for display. This 'real-duration' display reflects the actual duration of the musical
objects created from the patch contained in the block (in relation to the display scale, of course).
This display allows the user to obtain a clear graphic representation of the actual durations of
various musical materials and easily compare and juxtapose them. It is also possible, once a real-
duration has been calculated, to scale the entire block to a new horizontal-size; thus rescaling
proportionally all the durations contained therein. If the musical object was notated symbolically
the user has the option of rescaling through either a change of tempo or a re-quantification. This
'scaled-duration' display is always shown as a superposition over the real-duration display. Thus
allowing the user to keep in mind the degree of scaling that has been performed.

The maquette below contains another maquette (above) and three patches.

Other scaling tools will also be available including time-placement arrows, which allow, for
example, the beginning of one block to be linked to the end of another. This type of link will mean
that any subsequent change in the length of the latter block will shift the start position of the former.
More complex links, requiring rescaling are also possible, for example, a sequence could have its
beginning and end linked to another sequence; thus a change in the second sequence's duration will
automatically force a rescaling of the first. Since the scaled duration is always displayed superposed
on the real-duration it is easy to keep track of the effects provoked by these links. To avoid confusion
in the hierarchy, these links are displayed as arrows with a point at the end representing the master
and the arrow at the end representing the slave.

When a patch is dropped into a maquette, it receives two special inputs that represent its
start time and its duration. The musical structure computed by the patch and relevant to the
maquette is connected to the special output " tempout ". The other output " seq1 " is an
additional output that can be used to communicate with another patch in the maquette.

A maquette has been dropped into a patch. Its musical content can be provided to other
operators in order to be further transformed.

It will be possible to output either an entire maquette or only the selected blocks to a music notation
editor. If only selected blocks are used the spaces between the blocks will be respected, but the first
block will be shifted to time zero, full maquettes will strictly respect the placement of each block.

A maquette is a container where heterogenous musical data may be arranged (score
excerpts from " Huskless " by Paul Steenhuisen)

Conclusions

PatchWork had become an essential tool for all composers using complex materials. With the
computer to calculate material of an arbitrary complexity composers could be free to experiment
and refine even very complex materials into a satisfactory form. In spite of this great advance,
PatchWork's limitations, both conceptual and technical have necessitated the creation of a new
environment to allow composers to work more easily with multi-dimensional material and to
experiment with the interactions and formal relationships between all sorts of musical materials.
Currently, most composers perform the later, formal stages of composition at the table: current tools
often being more hindrance than help. With Open Music, this stage of the compositional process will
become susceptible to computer assistance. Not only will the current functions of PatchWork
become more powerful and accessible, but the maquette editor should also allow the same type of
experimentation and refinement that PatchWork offered for the generation of material at the formal
level. The new musical score editor should go even further, allowing the composer to begin to
transform a multi-layered model into a more refined and perfected form; thus advancing
significantly closer towards a finished score. While there are certainly limits to what aspects of the
compositional process may be practically or even ideally helped through the use of a computer, Open
Music should be able to go a long way toward removing the keenly felt limitations of PatchWork.
This will be done while still maintaining the open ended and flexible nature that have made
PatchWork successful and such an indispensable tool to so many different types of composers.

References

[Assayag 95] Assayag G., "Visual Programming in Music." Proceedings of the ICMC 96, Banff,
1996.

[Assayag & al 93] Assayag G., Rueda C. "The Music Representation Project at IRCAM."
Proceedings of the ICMC 93, Tokyo, 1993.

[Laurson 96] Laurson, M. " Patchwork, A Visual Programming Language and some Musical
Applications " Sibelius Academy, Studia Musica Ndeg. 6, Helsinki 1996.

/articles/textes/Assayag95
/articles/textes/Assayag93a

[Laurson & al 90] Laurson, M., Duthen, J. "A compositional environment based on Preform II,
PatchWork and Esquisse." Proceedings of the ICMC 1990. Glasgow 1990.

[Lindemann 90] Lindemann, E. "Animal: A Rapid Prototyping Environment For Computer Music
Systems". Proceedings of the ICMC 1990. Glasgow. 1990.

[Steele 1990] Steele, G., " Common Lisp The Language ", 2nd edition, Digital Press, 1990.

/articles/textes/Lindemann90

	An Object Oriented Visual Environment for Musical Composition
	Abstract
	Conclusions
	References

