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Physical study of double-reed instruments for application to sound-synthesis
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∗IRCAM, Centre Pompidou/CNRS, 1 Place Igor Stravinsky, 75004 Paris, France
†LMA, CNRS, 31 Chemin Joseph Aiguier, 13402 cedex 20 Marseille, France

Physical models for most reed instruments have been studied for about 30 years and relatively simple models
are enough to describe the main features of their behavior. These general models seem to be valid for all
members of the family, yet the sound of a clarinet is distinguishable from the sound of a saxophone or an oboe.
Though the conical bore of an oboe or a bassoon has a strong effect over the timbre difference, it doesn’t seem
to be a sufficient explanation for the specific character of these double-reed instruments.

The main hypothesis currently being developed is related to the geometry of the mouthpiece, and its effect on
the flow inside the reed. Numerical simulations of a model based on this hypothesis show that it can introduce
quantitative differences capable of explaining the behavior of double-reed instruments.

A more realistic model will take into account current experiments and measurements of the flow and the
reed’s dynamic behavior. Preliminary observations seem to be consistent with the hypothesis being tested and
the mathematical model that we describe.

I. INTRODUCTION

Woodwind instruments of the reeds family are driven by
a common principle: the oscillation of an air column is
maintained by the intermittent flow running through the reed,
which works as a valve. Such a general formula in fact does
not explain the timbre difference between a double and a
single-reed instrument. Given the similarities, one could ex-
pect that a model built for a single-reed would also work for
a double-reed by adjusting its physical dimensions. This is
not true, and more profound changes have to be performed in
order to transform a single-reed model into a double-reed one.

For instance, one could argue that in a double-reed instru-
ment two oscillators are necessary instead of one. Never-
theless, reed motion observations have shown that, in usual
conditions the two reeds oscillate synchronously, so that the
reed’s slit width can be described by duplicating the coordi-
nate of a single oscillator (see section IV).

A well-known and crucial factor in the sound timbre is the
instrument bore: on one hand the frequency is controlled by
it, on the other hand cones have all harmonics, while cylinders
only have odd harmonics. Moreover, woodwind instruments
usually haveweakreeds, which are driven instead of driving
the air column oscillations. However, the bore cannot account
for the whole difference: there are instruments, such as the
saxophone that use a single-reed coupled to a conical bore,
and whose sound is immediately recognizable from that of
an oboe. Moreover, oboists and bassoonists know that subtle
tuning of the reed affects the sound independently from the
bore profile.

We thus turn ourselves to the embouchure. The principle
does not change much from the clarinet to the oboe, but its
geometry does. The present work explores this difference
through a physical model, and evaluates through observations
of reed oscillation some hypothesis made in the model.
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II. MATHEMATICAL MODEL

A. Embouchure

In all reed instruments, the reed itself behaves as an oscil-
lator driven by the pressure difference between its inner (pr,
reed pressure) and outer sides (pm, mouth pressure). A sim-
ple approach to model such a system is the harmonic oscil-
lator, which is equivalent to substituting the elastic reed by a
mass/damper/spring controlled valve.

ms
∂2z

∂t2
+ rs

∂z

∂t
+ ks(z − z0) = pr − pm (1)

where the mass (ms), damping factor (rs) and stiffness (ks),
are given per surface unit.

The same pressure difference that drives the reed creates a
flow through its opening. As proposed by Hirschberg [1] the
flow is restricted to a smaller section than the reed, due to the
Vena Contractaeffect. The ratio of the flow to the duct section
(α) is theoretically0.5 for an infinitesimal width of the reed
and a potential flow. In practice this coefficient varies from
0.6 [2] to 1 [3].

We will restrict ourselves to a quasi-static and non-viscous
description, so that the we can apply the Bernoulli formula
across the reed:

q = 2γzlrα
√

2
ρ

(pm − pr) (2)

The factor2z is the distance between the two reeds and
lr the reed’s slit length.γ is introduced to take account of
the geometry of the reed, which is different from a rectangle.
2γzlr is then the effective section of the flow.

The main difference between the clarinet and our double-
reed model is that there exists a difference between the pres-
sure at the beginning of the reed (pr) and the acoustic pressure
at the beginning of the bore. This difference is due to the ge-
ometry of the canal downstream of the reed, which induces
perturbations in the flow.
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In fact, in a clarinet the jet is formed at a narrow section re-
gion and, as it flows inwards, it goes through rapidly increas-
ing duct sections (see fig. 1). As this happens, it becomes a
free jet which, due to its high Reynolds Number, is unstable,
so that it eventually breaks out by turbulence. Its kinetic en-
ergy is completely dissipated and we assume there’s no pres-
sure recovery as the flow stops.

On the other hand, for an oboe or a bassoon the duct section
increases smoothly from the tip of the reed until nearly the
bore ending [4]. Although the flow inside the reed canal is not
well known at present (PIV velocity field measurements are
being prepared) it seems reasonable to suppose that the flow
is not separated from the walls (except on a short length just
after the reed input) but guided by the duct.

A hypothesis about this flow assumes that there is an in-
complete head loss, induced either by jet reattachment, which
leads to visco-thermal dissipation due to wall interaction, by
formation of turbulent flow or by further constrictions in the
duct [5]. In either case, under certain simplifying hypothe-
sis [6], the dissipation can be considered proportional to the
square velocity of the flow:

pr = pb +
1
2
ρΨ

q2

S2
ra

(3)

The strength of this dissipation factor can be controlled by
the coefficientΨ, which for now is empirical but expected to
become understandable and measurable after more extensive
measurements.

B. The bore

Assuming a linear character of acoustic propagation inside
the bore, it can be described by its input impedance (Z), which
relates the frequency components of the pressure (pr) to the
flow (q) at the beginning of the bore. The simulations are
carried out in the time domain, so the bore is described in
terms of incoming and outgoing pressure waves, which can be
obtained from the former variables (pr andq) and transformed
using the reflection function:

p− = r ∗ p+ (4)

An arbitrary bore profile raises several problems, mainly
due to changing of the conicity along the bore [7]. Though
there are several approaches to this problem (ex. [8]), the bore
is not the primary issue of this work. We will for now re-
strict ourselves to cylindrical bores, also because they provide
results of easier interpretation as the reed is concerned.

A simple model of a cylindrical bore is accomplished by a
Gaussian function centered at about (2Lbc ), the time of acous-
tic propagation from the reed to the bore ending and back to
the reed (see fig. 2), and the width of the Gaussian peak is a
measure of visco-thermal losses on the bore [9].

III. IMPLEMENTATION

For a cylindrical bore, the two partial wavesp+ andp− are
obtained by the formula:

pb = p+ + p− (5)
ρc

Sb
q = p+ − p− (6)

whereρ is the air density,c the speed of sound andSb the
bore section area. The first factor in equation (6) is the bore
characteristic impedance, also referred to asZ0.

From (5) and (6) we extract a new relation which, together
with equations (1-3) rearranged and discretized by an Euler
method, will constitute the set of equations to be solved for
each sound sample:

pb − Z0q − 2p− = 0 (7)

q2

(
1 + Ψ

α2l2rz
2

S2
ra

)
− 2

pm − pb
ρ

α2l2rz
2 = 0 (8)

pm − pb −Ψ
ρ

2
q2

S2
ra

+ z

(
ms

(∆t)2
+

rs
(∆t)

+ ks

)
+

ms

(∆t)2
(zt−2 − 2zt−1)− rs

(∆t)
zt−1 + ksz0 = 0 (9)

In this set,p− is calculated first, using the relation (4), and
is thus a parameter in equation (7). In the relation (4), we no-
tice that for any reflection functionr(t) = 0 for non-positive
t, due to causality. Therefore we only need to know the past
values ofp+, and consequently ofpb andq. All variables with
no index are taken at timet.

The set of equations does not have an analytical solution, so
we use a Newton-Raphson iterative method to solve it, with
the solution found at the former time as the initial guess.

In practical simulations, the model requires the estimation
of many parameters which cannot be measured directly on an
instrument (for instance,ms, ks or rs). We started with the pa-
rameters existing in the literature [10], [4] and adjusted them
in order to have realistic oscillatory regimes.

IV. EXPERIMENTAL PROCEEDING

A simple device is used to obtain measurements of reed
displacement and pressure at the beginning of the bore. It
substitutes the instrumentist, providing a more accurate and
continuous way of controlling the parameters applied to the
instrument.

The device consists of anartificial mouthwhich is a90o

angle tube, on which we created windows (covered with trans-
parent plastic), in order to allow the observation of the inside
of the tube from all sides (fig. 3). The embouchure of the
instrument is placed inside this tube with the reed facing the
windows. On the other side, the tube is connected to a reser-
voir which is fed with constant pressure compressed air. The
reservoir renders the flow uniform. The static pressure is mea-
sured by a digital manometer upstream of the instrument.
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FIG. 1: Flow inside clarinet and oboe embouchures

2Lbc

FIG. 2: Reflection function for the cylinder

FIG. 3: Artificial mouthused in experiments

The reed tip is illuminated by a stroboscope which is syn-
chronized to the sound radiated by the instrument. The in-
strument frequency has to be manually synchronized to the
camera’s refreshing rate.

The images are transferred to a computer in order to be pro-
cessed. Post processing consists in finding the border between
the reed and the slit. The fact that the reed is illuminated dur-
ing a strobe flash while the slit appears as a black region on
the pictures allows the use of automatic methods of recogniz-
ing the slit. Its area, largest and smallest axis are measured
for each picture. The largest axis, averaged over the whole
film corresponds to the constant slit length, measured in the
physical reed. This is used to find out real dimensions on the
picture.

Measurements were taken for two different oboe reeds, one

FIG. 4: Reed motion. Form left to right: almost closed, average
position and maximum width, just after opening.

plastic-made and one cane-made. For each of the reeds several
film clips were recorded, ones with the reed freely oscillating,
others using a clamping wire curled around a sponge, so as to
replace the instrumentist’s lips.

Direct observation confirms the former hypothesis that the
reed motion is symmetric (fig. 4). It is worth saying that non-
symmetrical motion can be achieved, but this does not corre-
spond to usual modes used in musical performance.

V. SIMULATION AND EXPERIMENTAL OBSERVATIONS

As a starting point, it is interesting to consider a simple
model which consists of making the mass and damping of
the reed equal to zero, an approximation which is frequently
made in clarinet models. Its interest is that there exists a single
pressure-flow curve to which the system belongs at any time
and which can be analytically described (fig. 5).

The exact portion of the curve that will be spanned by the
system can only be known by running the simulation. It is pos-
sible however, by playing with the physical parameters (such
as mouth pressure, impedance and reed stiffness) to change
the range of variation on the curve. In fact, the system will
have to oscillate around the decreasing slope of the curve, be-
cause only in this part does the reed supply the acoustic oscil-



4

q 
(m

 /s
)3

p   −p    (Pa)
m r

0
�

1 2
�

3
�

4
�

5
�

6
�

7
�

8
�

x 10
8

�

0
�

0.01
�

0.02
�

0.03
�

0.04
�

0.05
�

0.06
�

0.07
�

0.08
�

0.09
�

FIG. 5: Characteristic pressure vs flow curve for a clarinet-like in-
strument (line – theoretical curve, calculated analytically; circles –
simulation samples).
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FIG. 6: Characteristic pressure vs flow for an oboe-like instrument.

lations in the bore with energy.
By increasing the coefficientΨ (fig. 6), there are multiple

possible flows for the same pressure. Assumptions on switch-
ing between different solutions are that the system remains
on the same branch while it can, and changes to the nearest
branch as soon as it cannot. This fact implies that the flow,
and the reed opening have rather abrupt changes for a smooth
variation of the pressure (which is the case for the given reflec-
tion function). This is visible on the flow and reed coordinate
plots (fig. 7).

A similar observation can be made on measurements made
on real reeds (fig. 11), which show that reed opening and clos-
ing are substantially faster on double-reeds than on single-
reeds. For an example, our measurements can be compared
with those made by J. Gilbert [3].

A. Reed resonance

A real instrument of course has a non-zero mass and damp-
ing, and its behavior deviates from the previously plotted
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FIG. 7: Time evolution of the reed position (z) for low and highΨ.
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FIG. 8: Phase-space trajectory for a double-reed instrument with
reed mass and damping (circles). Analytical curve for zero mass
and damping (line).

curve as these parameters increase (fig. 8). For instance, mass
and damping have the effect of smoothing out abrupt varia-
tions of the reed position. The figure shows how the system
takes more time (more samples) to travel from open to closed
position.

Another consequence is that mass and elasticity together
constitute a harmonic oscillator with its own frequency. While
for playing frequencies close to the reed proper frequency
the final result is rather complicated, with beating and quasi-
periodic oscillation phenomena, for lower frequencies, the
reed oscillation shows out more distinctively after a reed open-
ing (fig 9), and gets fainter till the end of the opening time.
This effect is calledreed resonance.

Although this effect is quite visible on the time variation of
the reed position and flow, the effect over the pressure wave
is not perceptible on the graphs (fig. 9). However, recall that
these graphs show the variation of pressure at the beginning of
the bore, rather than the radiated sound, which is affected by
high-pass radiation filters. Even so, differences can be heard
while listening to the pressure wave.

Figure 10 (top) shows our measurements of the reed posi-
tion, taken from a free (unbitten) reed. Tight oscillations ap-
pear in each period, and are more pronounced than on figure
9. Their structure seems nevertheless more complex than that
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FIG. 10: Opening area measurements on a real unbitten and bitten
reed.

of a harmonic oscillator, indicating that probably the reed’s
one-dimensional model is inaccurate.

B. Effect of biting

Figure 10 depicts two reed area measures. The biting is
achieved through a rather crude replacement of the lips de-
scribed above. The material properties of the sponge are prob-
ably very different from those of the lips, but the graphs give
us some insight of the behavior of the reed.

Notice that the bottom graph is flattened at the top, the reed
not opening as much as without biting. The structure remains
nevertheless the same: a wider oscillation at the beginning and
fainter ones following the first. The average position remains
more or less the same.

The effect is not easy to simulate on the model, because
it is not clear which parameters must be changed in order to
achieve a similar result. A guess is to increase the stiffness
and the mass together, in order to maintain the reed resonance
frequency and the damping as well, but the flattening effect
is not achievable, probably because the lip requires a much
more complex model, which accounts for different rigidity at
different openings.
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FIG. 11: Opening area measurements on a real unbitten and bitten
reed.

C. Reed slit model

An important feature of the image analysis is that it gives
an idea of the slit geometry variation during a period, and not
only of a single coordinate. For instance it is possible validate
the model of linear area/width dependency and determine the
proportionality coefficient.

By linear regression (fig. 11) this coefficient is found to vary
between 5.3 and 5.9 mm, which means that theγ coefficient
should be between 0.8 and 0.9, supposing a linear correlation
between the two variables. In fact the relation is more non-
linear for increasing biting strengths.

D. Other effects

On the observations, the time the reed remains closed is less
than half a period for low frequencies, and usually does not
vary with the period length. In the simulations we have typ-
ical closing times of half a period, independent of frequency.
This is an effect of the bore profile, which is conical in the
observations and cylindrical on the simulations. In fact, in a
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conical bore the fraction of the closing time corresponds to
the ratio of the truncated length of the cone and its total length
[11], [4].

As also observed by Gokhshtein [12], the character of the
reed resonance (frequency and shape) is independent of the
total period length. A possible explanation is that this is a
consequence of the impulse response of the reed, which is
truncated earlier for shorter period times.

VI. CONCLUSION

A model based on a hypothesis of head-loss inside the reed
has been studied and simulated in the time domain. Results
of such simulations are compatible with experimental data,
showing that this hypothesis provides a possible explanation
to the differences between single and double reeds.

Simulations which take account of mass and damping are
coherent with our experimental measurements. At the same
time these observations appear to indicate that the behavior

of the reed is more complex and needs a multi-dimensional
model to be described.

Further measurements, such as a more complete study of
pressure and displacement time-variations and an extensive
description of the flow inside the reed are being prepared and
hopefully will allow us to propose a complete model describ-
ing the main features of the double-reed behavior.

Finally, with a complete model of the embouchure and the
current knowledge about the modeling of waveguides, we
hope to achieve an instrument model capable of reproducing
the sounds of double-reed instruments.
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d’instrument de musiquèa anche double: influence des
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méthodes et mod̀eles. PhD thesis, Université du Maine, 2001.
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