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Abstract

A model of a trumpet-like instrument is described by a nonlinear neutral
system controlled by the mouth pressure. The output is the pressure at the end
of the pipe. A nonlinear state observer of this system is built. Local asymptotic
stability of the error estimation is proved using a Lyapunov-based analysis and
illustrated by simulations.
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1 Introduction

The control of virtual musical instruments is as difficult as that of real instruments.
Inverse problem techniques can help to capture skilled musicians’gestures, by recov-
ering parameters and inputs from a target sound [1]. This paper solves a part of the
global problem, building an asymptotically stable observer of the instrument state.

2 Simple model and neutral state-space representation

The trumpet-like instrument considered here couples an ODE (a valve including the
mechanics of the lips) to a PDE (acoustic pipe ended with a real passive impedance)
through a static nonlinear function (Bernoulli relation on the jet). Solving the
PDE, the overall system can be described by the nonlinear neutral state space rep-
resentation i(t) = f(x(t),z3(t — 7),d3(t — 7),v(t — T)), with input v = [pm, P’
output y = [0,0,1 + Nz, (A €] — 1,1[), state z(t) = [£(t) — &, & pT(t)]T, where
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T, Pms € (/&), pT denote respectively the delay proportional to the length of the
pipe, the mouth pressure, the distance between lips (/at equilibrium) and the in-
going pressure at the entrance of the pipe. Moreover, fi(z,y,z,v) = [0,1,0]z,
fa(x,y, 2,v) = —w?x1 — axs + Boxs + ABoy + Bmuvt, and, if 21 + & >0, f3(z,y, 2,v) =

2 —x3—X _ _ :
[v2—2)\z+%§zy)} [1+M(§13+£‘52} l—l—)\z, and if z1+& <0, f3(z,y,2,v) = Az
where 8y, B, @, w, A, u are positive coefficients depending on the lips and the pipe

characteristics.

3 Observer, local robustness, and simulation results

An extended Kalman filter type observer is Z(t) = f(Z(), z3(t—7), T3(t—r),v(t— )-
A1 (y(t) —5(t)) — A2 (y(t—7) — J(t—7)) where the 3x1 gain matrices A1, Ay are tuned
so that the linearized error equation é(t) = A(t)e(t)+ B(t) es(t —7) + H(t) és(t — 1)
is asymptotically stable where e = 2 — Z and A(X,Y,Z,V) = g—)f((X,KZ, V) +
M[0,0,1+ A, B(X,Y,Z,V) = 25(X,Y,Z,V) + Ay (1 + A) and H(X,Y,2,V) =
9P(X,Y,Z,V) are evaluated at (X,Y, Z,V) = (Z(t),Z3(t — 1), T3(t — 7),0(t — 3)).

The tuning of Aj, As and the proof rely on the four following key points: Ag
can be tuned such that B = 0; |[H(t)|| < |A| < 1; let x > 0, then A; can be chosen

0 1 0
such that A(t) takes the form A = ( —w? —a | 0 ), ensuring that e, ey are
Azr Az ‘ -X

decoupled from e3; Ik > 0, n > 0 such that, for every solution of the error equation,
() +3(0) + 30) + [, é52(s)ds < re ™ ((0) +3(0) + e3(0) + [, €5°(s)ds)
(see [2] for a similar proof). Simulation results are given in Fig. 1.
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Figure 1: Simulations of the system (-) and of the observer (--) from the measured
output y (-) with a = 1505}, x = 160s~!, 7 = 2/340s, p,, = 1.5e4Pa (Heaviside
shape), w = 5355 !, a deviation on initial conditions (0) = [le — 3, le — 1,0.2 p,,]*
and additional gaussian noise on the measured output with variance ¢ = 0.01p,,.

References

[1] T. Hélie, C. Vergez, J. Lévine, X. Rodet, Inversion of a physical model of a trumpet.
IEEE CDC. Phoenix, USA, 1999. p 2593-2598.

[2] J.-M. Coron, B. d’Andréa-Novel, G. Bastin, A strict Lyapunov function for boundary
control of hyperbolic systems of conservation laws. IEEE Trans. Auto. Ctrl., 2007. p 2-11.



