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1 INTRODUCTION

Wind instruments have similar basic principles of
functioning: the player blows through a valve (one
reed, two reeds, or two lips) into the instrument.
The acoustic response of the instrument can be seen
as a feedback which influences the valve behavior.
The production of a sound corresponds to the auto-
oscillation of this system. However, in spite of these
common features, each class of instruments has its own
particularities.

The present paper deals with the simulation of
sound production mechanisms (physical modeling) by
oboe-like instruments (such as the oboe, bassoon, ...).
Starting from the instrument the closest to the oboe,
the clarinet (see section 2), two main differences be-
tween oboe-like instruments and clarinet-like instru-
ments are analysed, both from an aero-dynamical and
an acoustical point of view. These two differences are
the shape of the bore, which is conical in the case of
the oboe and cylindrical in the case of the clarinet, and
the mouthpiece, made of a single reed for the clarinet
and of a double reed stapled to a narrow pipe (called
a pipeneck) for the oboe. In the following, these two
physical differences will be invastigated, in order to
understand how they influence the sound production
of an oboe. The acoustical effects of the conical bore
are well known and have been widely studied in the
litterature. However, even if the theory is well es-
tablished, previous studies have shown that numerical
solutions are difficult to be kept stable. In order to
cope with this problem, the conical bore is replaced
by a quasi-equivalent system, made of two cylindrical
pipes, connected perpendicularly to the double reed
and to the pipeneck (see section 3).

There is little litterature concerning the effects of the
pipeneck, but it seems obvious that its influence on

aero-dynamical phenomena should be taken into ac-
count. Previous studies [1] have suggested that a non-
zero static pressure applies on the reed. This pressure
progressively decreases along the pipeneck because of
visco-thermal and/or turbulent losses. A simple phys-
ical model is proposed. Properties of the nonlinear
relation between the volume-flow between the reeds
and the pressure difference between the mouth and
the begining of the bore are studied and compared to
the clarinet case (see section 4.3). Three qualitatively
different behaviors of the model have been found to
be possible (according to the parameter’s), including
hysteresis for two of them. Analytical predictions are
confirmed by numerical simulations.

2 BASIC MODEL OF SINGLE-REED
INSTRUMENTS

In this section, the physics of the clarinet is briefly
reviewed. Basic models of single-reed (clarinet-
like) instruments have been proposed in [2] and
[3] for example. The reed may be modelled as a
mass/spring/dashpot oscillator, but due to its high
resonance frequency (~ 10*Hz) compared to the first
resonance frequencies of the instrument, the reed be-
havior is stiffness-dominated (inertia and damping can
be neglected). Assuming that the reed is driven by the
pressure difference across the reed, the reed dynamics
is modelled by:

ks(z = 20) = (Pm — D) (1)

where 2z (2g) is the reed position (at rest), ks is the
reed surface stiffness, p,,, and p are the excess of pres-
sure in the mouth and in the mouthpiece. As pointed
out by Hirschberg [1], in clarinet-like instruments, the
volume flow control by the reed oscillation is due to
turbulent dissipation. Actually a jet is formed in the
mouthpiece after the separation of the flow at the end
of the reed channel. Moreover, since the mouthpiece
section is much larger than the reed channel section,
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Figure 1: Cut of a clarinet mouthpiece.
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Figure 2: Volume flow calculated according to equa-
tion (3) with @ = 1, 20 = le 3m, I, = 1.6e 2m,
ks = 1.6e"Pa.m~! and p,,, = 8¢>Pa.

all the kinetic energy can be assumed to be dissipated
by turbulence with no pressure recovery. Then apply-
ing the Bernoulli theorem between the mouth and the
reed channel leads to:

(]:OlerV pzo(pm - D) (2)

where ¢ is the volume flow through the reed, [, is
the reed effective width, pg is the air density. Pres-
sure p is then the acoustic pressure imposed by the
response of the bore (assumed linear) to incoming air
flow q: p = g * ¢, where g is the impulse response of
the instrument (close to the one of a cylindrical pipe).
Parameter « is a critical value: it is a semi-empirical
vena-contracta factor which may take into account a
possible contraction of the jet at the input of the reed
channel. Tt can be found throughout the literature
a = 0.6 according to Wilson and Beavers experiments
([2]) and @ = 1 (i.e. no vena contracta) for Gilbert
experiments [4].

Combining equations (1) and (2), the volume
flow can be expressed as a well known function of the
pressure difference across the reed (p,, — p):

q=az(zO—kis<pm—p)) j—o(pm—p) 3)

See figure 2 for a graphical illustration of equation (3).
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Figure 4: Two cylindrical bores instead a conical.

3 SIMULATION OF THE CONICAL
BORE WITH TWO CYLINDRICAL
BORES

An oboe bore shape is close to a cone, whereas a clar-
inet bore can be seen as cylindrical. These bore shapes
have different effects on the sound production.

When trying to simulate the equations of the conical
bore, a lot of numerical problems have been encoun-
tered, especially when trying to keep the oscillations
stable.

In order to cope with this problem, a method has been
developed, based on the work of Dalmont and Kergo-
mard [5]. The idea is to replace the conical bore with
two cylindrical bores of same section perpendicular to
the reed, with the length of the first bore equal to
the one of the conical bore, and the length of the sec-
ond bore equal to the one of the truncated part of the
conical bore (see figure 4).

3.1 Analytical analysis

To study the response of such a system, the input
impedance Z;, = fl’: is studied. This variable pro-
vides a complete description of the propagation of the
acoustic waves inside the device. This is exactly the
same information as contained in the impulse response
(linear acoustics hypothesis).

The theoretical frequency of the nt? resonance of the
input impedance of a conical bore is f,, = 2nﬁ, with
L, the length of the cone (see figure 3), while it is
fn = (2n + 1)47; in the case of a cylindrical pipe of
length Lo [6].

At the connecting point, the hypothesis of the
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Figure 5: Comparison between the theoretical input
impedance of the conical bore and of the two cylindri-
cal bores.

continuity of the pressure and the flow can be written
as: P1 = P2 = Preed (4)
Q1 + 92 = Qreed (5)

Assuming that the waves are plane in a cylindrical
bore, and spherical in a conical bore, these two equa-
tions lead to, neglecting the losses due to the internal
frictions and to the external radiation:

c 1
Zi = % 1 1 (6)
tan(kL1) + tan(kL2)

with k = @ the wave number, S the bore section.

3.2 Discussion

The theoretical input impedance of a conical bore is:

Poc 1
Zin="g T 1T — (7)
S kL1 + tan(kLz2)
The error made is the substitution of tan(kL,) by kL, .
This error is always small, except for values of kL,
around the odd multiples of % (i.e. the value of f close
to the odd multiples of 5%, which is ten times the the-

)

oretical fundamental re?sghance frequency of the coni-
cal bore, see [7], if Ly = 10 % Ly).

It can be noticed in figure 5 two main differences: first
of all, there is a huge attenuation of the resonances of
the two cylindrical bores around the n'”* resonance,
compared to those of the input impedance of coni-
cal bore, with n the multiples of the entire part of
ﬁ and ﬁ (in the case of figure 5, this res-
onance is missing). The other difference is that the
resonance frequencies are no longer fn, = 2ngr— but
fn= an. Fortunately L is always small com-
pared to Ly [8].

Analytical studies (see [7] and [6]) have shown that
taking into account the internal losses and the reflec-
tion at the bell’s end has the effect of low-pass filtering.
Then, the two input impedances are close, and the be-
havior of the waves inside the device can be supposed
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Figure 6: Comparaison between the theoretical input
impedance of the conical bore and of the two cylindri-
cal bores, taking into account the losses.
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Figure 7: Waveforms obtained when simulating a sin-
gle pipe connected to a single reed (upper part), and
two pipes a single reed (lower part)

to be a good approximation of the one of the conical

bore (see figure 6).
3.3 Numerical simulation

In order to test the stability of our method and to
judge the influence of the bore conicity on the sound
emitted, the sound of two cylindrical bores put on a
single reed (i.e. saxophone-like instrument) have been
simulated.
The method used was based on digital waveguide mod-
eling techniques [9]. A simple model was used, the two
bores being modeled by two delay lines, without any
filtering modeling the losses. The reed is viewed as an
exciting non linear mechanism providing energy to the
system. At each step of the algorithm, the pressure
and the flow are computed according to the previous
steps.
The figures 7 and 8 show the results of two simula-
tions: the upper part of both figures are the wave-
forms and the spectra of a single cylindrical tube
(L1 = 30cm) connected to a single reed. The lower
part is the simulation of two pipes (L; = 30cm,
Ly, = 3c¢m) connected to a single reed.

These simulations show resonance frequencies con-
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Figure 8: Spectra of the waveforms obtained when
simulating a single pipe connected on a single reed
(upper part), ans two pipes a single reed (lower part)

sistent with theory (the theoretical fundamental res-
onance frequency is 515 Hz) for the spectrum of the
sound, which means that this method is worthwhile
for simulating the behavior of a conical bore. The
waveform is quite different from the one obtained for
a cylindrical pipe, and so is the sound produced. How-
ever, without any losses simulated, the sound remains
“metallic” and unrealistic.

4 EFFECT OF A PIPENECK
DOWNSTREAM OF THE REED

The most obvious difference between single and dou-
ble reed instruments is probably the number of reeds.
However, since in double reed instruments both reeds
are the same and have a symmetrical behavior, a sin-
gle mass model is commonly used [10], like in single
reed instruments models. Another difference is that
double reeds are stapled to a narrow pipe (a pipe-
neck). This puts the flow model described in section
2 questionnable.

4.1 Simple model for the pipeneck

In fact, as seen in section 2 in the case of a clarinet,
the air jet formed at the reed is supposed to dissipate
all its kinetic energy by turbulence in the mouthpiece
with no pressure recovery. This hypothesis stands be-
cause the bore entrance is much larger than the slit
made by the reed opening. On the contrary, in the
case of an oboe, the diameter of the pipeneck progres-
sively increases between the reed slit and the input of
the bore. The previous hypothesis cannot be applied.

In their article [1], Wijnand and Hirschberg ex-
plain that placing a pipeneck between the mouthpiece
and the bore of the instrument probably causes an ad-
ditional pressure drop between the mouthpiece pres-
sure p and the pressure at the input of the pipe p,. In

a quasi-stationary flow model, this additional pressure
drop (p — pp) can be expressed by a discharge-losses-
coefficient C3. We propose to express p — p, as a
function of the air velocity at the input of the neck:

1 q?
P—pp = 5000(1@ (8)

where S, is the cross section of the neck and C, takes
into account visco-thermal and/or turbulent losses.

Relations (1), (2) and (3) are still valid, and
we are now focusing our attention on the relation ¢ =
F(pm — pp)- In fact, the instrument is now supposed
to impose the pressure p,. According to equation (3),
it is first necessary to find pp, —p = G(Pm —pp). After
combining equations (1), (2) and (8), it is easily found
that (p,, — p) is solution of:

(pm — p)® — 220ks(pm — p)* +
+k2 (25 + D)(pm — p) — k2D(pm —pp) =0 (9)

with D 2 %~

Obviously, it is possible to solve numerically
equation (9). This will be done in section 4.3. How-
ever, it is far more interesting to obtain properties of
the solution according to to the model’s parameter

values.

4.2 Analytical results

The following results have been obtained analytically
and will be published in a forthcoming paper. For lack
of space, demonstrations are omitted here.

According to the model’s parameter values,
three qualitatively different behaviors have been
found:

352
Type 1: when 0 < Cy < —"5,
o212z

(pm — p) is a monotonous increasing function of (p,, —
pp). The behaviour is qualitatively similar to the one
of the clarinet (coresponding to Cy = 0)

2 2

Type 2: when %{‘23 <Ci< %Q"Zg,
(pm — p) is a multi-valued function of (p, — pp) on a
certain range of (pm —pp). This is responsible for hys-
teresis (the presence of hysteretic behavior has been
highlighted by Mahu ([11]) using numerical simula-
tions, but without specifying necessary conditions on
C4). Moreover, the reed displacement has two possi-
ble discontinuities and the reed always jumps between
two-opened reed positions.

Type 3: when %ﬁ < (Cy,
conclusions are the same as for type 2, excepted that
the reed jumps from an opened-reed to a closed-reed
position or from a small opened-reed to a larger open-
reed position. These behaviors are illustrated in sec-
tion 4.3.
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Figure 9: Comparison between the analytical formula for ¢ without pipeneck (eq. 3) (dash-dotted line) and simulation
results (noted o) for different values of the discharge losses coefficient Cy.



4.3 Numerical simulations

Numerical values for parameters are those of figure 2
(except p,, = 1.6e*Pa), plus Sn = 7.85e""m?. Since
we are interested in studying the effect of the pipeneck,
we only consider a cylindrical tube for the instrument
(length I; = 0.72m). This tube is characterized by
a simple reflexion function (a delay plus a low-pass
filter).

Equations (1), (2), (9) and the acoustical cou-
pling are solved through an iterative process. Ac-
cording to the analytical results (section 4.2), tran-
sitions between type 1, type 2, and type 3 occur re-
spectively for Cy = 7.2e73 and Cyq = 9.6e~3. In figure
9, three simulations are performed for Cy = 3e~?,
Cyq = 8¢ 2 and Cq = le 2. They confirm that three
types of qualitatively different behaviors are possible.
On panel type 2, it is shown that the reed may jump
between two opened-reed positions, whereas in panel
type 8, the reed jumps from an opened-reed position
to a closed-reed position when it closes.

5 CONCLUSION

In this paper two major differences between clarinet-
like instruments and oboe-like instruments have been
studied: a conical shape and the presence of a pipe-
neck downstream of the double reed.

First of all, the well known effects of the con-
ical bore have been investigated. Whereas the input
impedance of a cylindrical bore shows resonance at
all the odd multiples of the fundamental resonance
frequency, the input impedance of a conical bore has
its maxima at the even multiples of the fundamental
(which means all the multiples of another fundamen-
tal frequency two times larger than for a cylindrical
pipe). A method which simulates this behavior has
been studied. It consists in simulating two cylindri-
cal bores connected perpendicular to the reed. Nu-
merical simulation have shown the consistency of the
algorithm with the theory

Concerning the effect of the pipeneck, a model
has been proposed, leading to a nonlinear relation be-
tween air pressure close to the reed and air pressure
at the begining of the bore (i.e. end of the pipeneck).
This relation is parametered by the discharge losses
coefficient associated with the pipeneck. Three quali-
tatively different behaviors have been highlighted, two
of them being hysteresic. Analytical conditions to ob-
tain each of the three different behaviors are given in
the present paper.

Experiments are being carried out to check the
validity of the model, and the magnitude order of
Cy in oboe-like instruments. Indeed, nothing guar-
antees that type 2 and type 3 behaviors will be ob-
served. However, preliminary stroboscopic visualisa-
tions of double-reed oscillations (made by R. Caussé)
confirm that the reed may “jump” during its cycle be-
tween two positions. The present model will be used

in sound synthesis applications. Sound examples will
be presented at the conference.
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