
HAL Id: hal-01161398
https://hal.science/hal-01161398

Submitted on 8 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using the SDIF Sound Description Interchange Format
for Audio Features

Juan Jose Burred, Carmine Emanuele Cella, Geoffroy Peeters, Axel Roebel,
Diemo Schwarz

To cite this version:
Juan Jose Burred, Carmine Emanuele Cella, Geoffroy Peeters, Axel Roebel, Diemo Schwarz. Using
the SDIF Sound Description Interchange Format for Audio Features. International Conference on
Music Information Retrieval (ISMIR), Sep 2008, NA, France. pp.1-1. �hal-01161398�

https://hal.science/hal-01161398
https://hal.archives-ouvertes.fr

ISMIR 2008 – Session 4a – Data Exchange, Archiving and Evaluation

USING THE SDIF SOUND DESCRIPTION INTERCHANGE FORMAT FOR
AUDIO FEATURES

Juan José Burred, Carmine Emanuele Cella, Geoffroy Peeters, Axel Röbel and Diemo Schwarz
IRCAM - CNRS STMS

{burred,cella,peeters,roebel,schwarz}@ircam.fr

ABSTRACT

We present a set of extensions to the Sound Description In-
terchange Format (SDIF) for the purpose of storage and/or
transmission of general audio descriptors. The aim is to al-
low portability and interoperability between the feature ex-
traction module of an audio information retrieval application
and the remaining modules, such as training, classification
or clustering. A set of techniques addressing the needs of
short-time features and temporal modeling over longer win-
dows are proposed, together with the mechanisms that allow
further extensions or adaptations by the user. The paper is
completed by an overview of the general aspects of SDIF
and its practical use by means of a set of existing program-
ming interfaces for, among others, C, C++ and Matlab.

1 INTRODUCTION

The Sound Description Interchange Format (SDIF) [1, 2]
is an established standard for the precise, well-defined and
extensible storage and interchange of a variety of sound de-
scriptions including representations of the signal for anal-
ysis/synthesis like spectral, sinusoidal, time-domain, or
higher-level models, audio descriptors like loudness or fun-
damental frequency, markers, labels, and statistical models.
SDIF consists of a basic data format framework based on
time-tagged frames containing matrices of binary numbers
or text, and an extensible set of standard type declarations
corresponding to different sound descriptions.

The SDIF standard was created in 1998 in collabora-
tion between Ircam–Centre Pompidou in Paris, France, CN-
MAT at the University of Berkeley, USA, and the Music
Technology Group (MTG) of the Universitat Pompeu Fabra,
Barcelona, Spain. It arose out of the need to be able to
store and exchange sound representation data between dif-
ferent analysis/synthesis programs, research teams, and in-
stitutions, and to enable anyone to interpret the information
in the files correctly, needing as little external information as
possible. With the previously widely used headerless ASCII
formats, this goal was seriously compromised, as well as
precision and space efficiency lost.

In the present contribution, we propose a set of exten-
sions to the SDIF description types and conventions and best
practices for the application of storing and/or transmitting a
wide range of audio descriptors, e.g. as generated by the fea-
ture 1 extraction stage of an audio pattern recognition sys-

1 We will use the terms feature and descriptor interchangeably.

tem. In the Audio or Music Information Retrieval fields, this
is of interest to assure interoperability between feature ex-
traction and further processing modules, such as feature se-
lection, training, clustering or classification, possibly being
developed independently from each other, or even by differ-
ent institutions. Such a need for standardization can arise in
the context of multi-partner evaluation, such as in the Music
Information Retrieval Evaluation eXchange (MIREX) [3].

SDIF is an open format, unhampered by licensing or in-
tellectual property restrictions, made by the research com-
munity for research and creation. There is a wide range
of software available for its use: Libraries in C, C++,
Java, Matlab, Perl, and Python, command-line and graph-
ical tools, and plugins for audio-processing systems such as
Max/MSP and PureData.

After an introduction to the basics of SDIF (section 2),
and a general overview of common different types of audio
descriptors (section 3), we will propose several format con-
ventions for storing general descriptor information (section
4). The standard’s type declarations are completely exten-
sible and modifiable by the user (section 5), which makes
the current proposal adaptable to special application needs.
Finally, in section 7, we will present a selection of helpful
tools distributed with the SDIF library, programming inter-
faces for reading and writing SDIF files, a number of appli-
cations and online resources.

2 OVERVIEW OF THE SDIF SPECIFICATION

SDIF is a binary meta-format based on streams, frames and
matrices. The matrix content representation can be chosen
to be text, integer, or floating point in different bit-widths.
Several matrices are grouped into a frame, which has a pre-
cise 64 bit floating point time tag in seconds relative to the
start of the file. Frames are always stored in increasing tem-
poral order and are assigned to a stream. Streams separate
different entities of the same type, such as different sound
files, channels, or different analyses or descriptors, thus al-
lowing to unite a database of several source sound files, plus
various stages of analysis and descriptor data, in one single
SDIF file. 2 For example, one could choose to store two
channels of audio, their STFT representation, fundamental
frequency and sinusoidal partial representation, markers, la-
bels, and harmonicity audio descriptors in one file.

2 This was formerly achieved by separate files with different file exten-
sions, grouped in the same directory, with the risk of loss of single files,
and a certain implicitness of their relationships.

427

ISMIR 2008 – Session 4a – Data Exchange, Archiving and Evaluation

Frame and matrix types are identified by 4-byte ASCII
signatures, inspired by the IFF format. Each frame starts
with a header containing the frame signature, the number
of matrices it contains, an integer identifying the stream it
belongs to, and the time tag. Each matrix’ header contains
its signature, its content data type, and its number of rows
and columns. Matrices are padded to 8 byte boundaries to
achieve 64 bit word alignment for fast access using memory
mapped files.

Special header-frames can store global textual meta-data
in so-called Name–Value Tables (NVTs), together with re-
lationships of different streams (see section 6). However,
global information that is needed to interpret the data, for
instance the sampling rate, is stored in information matri-
ces, making SDIF files streamable.

There are a number of standard description types that
specify the columns of matrices, and which matrices can
occur in which frame type. Examples include 1FQ0 to store
fundamental frequencies and 1TRC to store partial tracks
resulting from sinusoidal analysis. By convention, the sig-
natures of standard frame and matrix signatures start with a
version number, mostly 1. It is always possible to declare
new experimental description types, or to extend existing
types by new matrices for a frame, or new columns for a ma-
trix. New experimental types have signatures starting with
X. SDIF is designed such that programs can always ignore
additional data they don’t know how to interpret.

3 OVERVIEW OF AUDIO DESCRIPTORS

Audio descriptors (also named audio features or audio at-
tributes) are numerical values describing the contents of
an audio signal according to various points of view, e.g.
temporal, spectral or perceptual characteristics. They are
used nowadays in many areas such as for the development
of query-by-example (search-by-similarity), automatic in-
dexing, segmentation or identification applications. These
features are extracted from the audio signal using signal
processing algorithms. Several taxonomies can be used to
classify them, for example according to the type of con-
tent they can be applied to (single musical notes, percus-
sion, sound effects, generic audio, etc.), the underlying sig-
nal model they rely on (source-filter, sinusoidal harmonic
models, etc.), their abstractness, i.e. what the audio feature
represents (spectral envelope, temporal envelope, etc.), their
steadiness or variability, i.e., the fact that they represent a
value extracted from the signal at a given time, or a param-
eter from a model of the signal behavior along time (mean,
standard deviation, derivative or Markov model of a param-
eter), or the time extent of the description provided by them:
some descriptors apply to only part of the object (e.g., de-
scription of the attack of the sound) whereas others apply
to the whole signal (e.g., loudness). On the computer side,
an audio feature is represented by a numerical value or a
vector of numerical values when several audio features can
be linked together (such as the coefficients of the MFCC, or
various definitions of the spectral centroid).

Each of such numerical values describes a specific prop-
erty of the signal around a specific time (the time of the
segment corresponding to the analysis window). Most au-
dio features are first computed on a small-time scale (often
called short-term analysis) which for most of them corre-
spond to the length of the analysis window used for FFT
analysis (usually 40 ms to 80 ms). Other features are com-
puted on a longer-time scale due to their semantics (the log-
attack-time, the roughness or the fluctuation strength are as-
sociated to a whole musical note) or due to computational
requirements (the estimation of a vibrato or tremolo at a fre-
quency of 6 Hz necessitates a window larger than 80 ms).
In this case the numerical value needs to be associated ex-
actly to the segment used to compute it. Finally, it has be-
come frequent to model the behavior of an audio feature
over time. Using long-term analysis (often with window
lengths of 500 ms or larger), it is common to compute the
mean, variance or derivative values of the feature over the
sliding window. This type of description is often named
temporal modeling, and the corresponding large frames are
sometimes called texture windows or macroframes. In this
case, the segment over which the temporal model is com-
puted does not need to have a specific semantic (e.g., “every
200 ms” has no meaning by itself), although it can have (for
example for beat-synchronous analysis).

In the proposed SDIF extensions, we address these spe-
cific requirements concerning definition of different time
horizons, multidimensionality and addition of semantic in-
formation. It is out of the scope of this article to present
detailed mathematical definitions of the descriptors. A large
set of them can be found in [4].

4 EXTENDED TYPES FOR GENERALIZED AUDIO
DESCRIPTORS

A defining aspect of SDIF is its flexibility regarding data
types. Using the data declaration syntax introduced later
in section 5, the user is able to define or redefine the
frame/matrix grouping rules and to add or modify type dec-
larations at will. Throughout the paper, we will present dif-
ferent possibilities for different applications in the context
of descriptor extraction. At the same time, however, we are
proposing a ready-to-use set of type declarations designed
according to what we consider appropriate to most audio
content analysis and retrieval applications. The proposed
type declarations, together with related documentation and
several example SDIF files can be accessed online 3 .

In both short-time and temporal modeling cases, the val-
ues of a given descriptor at a given time are stored in a sepa-
rate matrix. For example, spectral centroid values are stored
in matrices of signature 1SCN and for zero-crossing values
the matrix signature is 1ZCR. In analogy with the standard
matrix types (e.g., with sinusoidal modeling), the number
of rows of the matrix must correspond to the dimensionality
of the descriptor, i.e., with the number of frequency bands
(such as with spectral flatness) or with the number of coef-
ficients (such as with MFCCs or autocorrelation features).

3 http://sdif.sourceforge.net/descriptor-types

428

ISMIR 2008 – Session 4a – Data Exchange, Archiving and Evaluation

The columns are intended to store the values for different
definitions or implementations of the same descriptor. For
example, the first column of the spectral centroid could con-
tain the values for a centroid defined on linear frequency and
amplitude scales, and the second the values using logarith-
mic scalings. We will thus use dimensions to denote rows
and variations to denote columns.

Both the number of rows and of columns are not fixed
beforehand by the type declaration. In most cases, the num-
ber of rows will depend on a user-defined feature extraction
parameter, such as number of frequency bands or cepstral
coefficients. It is also most likely that the user will just store
a single variation for each descriptor. In some training ex-
periments, however, it can be interesting to store different
variations at the same time and let an automatic feature se-
lection algorithm select the most informative one.

Even if not strictly necessary for a clustering or statisti-
cal training algorithm, the feature extraction program should
store additional information alongside the descriptor val-
ues, such as bandwidths, thresholds or labels describing the
contents of the columns. This data will be included in in-
formation matrices, whose signatures will be equal to the
descriptor matrix signatures, with the first character 1 re-
placed by I. Entries on information matrices are always
stored column-wise. The next subsections will detail how
to store such matrices.

To accommodate the different descriptor time-spans
mentioned above (short-, mid-, long-term and temporal
modeling) we propose two different schemes for SDIF stor-
age. In fact, we simplify such categorization by only con-
sidering, on the one hand, the descriptors themselves (which
are directly based on the signal) and, on the other hand,
temporal modelings (which are based on descriptors), which
will respectively be addressed in the next two subsections.
We deliberately avoid a categorical distinction between the
length of the time spans, since the only difference from the
SDIF point of view is the definition of the time bound-
aries. Also, we will avoid the terminology “low-level”
or “high-level” feature because of the lack of consensus
about its meaning. By convention, an SDIF file containing
only audio descriptors should end with the double extension
.descr.sdif.

4.1 Format for Descriptors

We propose the following procedure to store descriptors that
are directly based on the signal, independently of their time
span. Each data matrix corresponding to a given analysis
window of a given descriptor is contained within a frame of
type 1DSC, a descriptor frame. In order to be able to per-
form a one-to-one mapping between streams and descrip-
tors, each descriptor frame must contain only a single de-
scriptor data matrix. The time tag on each frame corre-
sponds to the center of the analysis window. The optional
information matrices must be stored at the beginning of
the corresponding descriptor stream, and are valid until a
new information matrix of the same type appears on the
same stream. Figure 1 represents this approach schemati-
cally for the case of a file storing spectral centroid (1SCN)

and perceptual tristimulus (1PTR) data. In this example,
the spectral centroid is a unidimensional descriptor with a
single variation, and two different variations of the three-
dimensional tristimulus have been stored, each one defined
with a different amplitude scaling.

The SDIF reading routines search first by frames, and
then by matrices. Thus, if the performance in accessing indi-
vidual descriptors is critical, an alternative approach would
be to declare a pair of frame type and matrix type with the
same signature for each descriptor. Its disadvantage how-
ever is that it requires to double the amount of type declara-
tions.

4.2 Format for Temporal Modeling of Descriptors

There are three main reasons for considering temporal mod-
eling of descriptors as a special case that requires dedicated
storing conventions. First, they are derived features of typi-
cally the same dimensionality than their shorter-term coun-
terparts they are based on, and thus they can reuse their ma-
trix type declarations. This results in each temporal model
being associated to a frame type, containing matrices of the
types already declared for the descriptors. For example, a
texture window of the weighted variance of the spectral cen-
troid will correspond to a frame of type 1WVR containing a
matrix of type 1SCN. An indicative list of types of temporal
modeling is: mean, variance, standard deviation, weighted
mean, weighted standard deviation, amplitude modulation.

Second, it is possible to assume that their time-span will
be relatively long-term (in the range of seconds), and thus
performance when accessing them will rarely be critical. If
stored together with their short-term descriptors, they will
predictably constitute a very small percentage of the file
size. This allows more freedom in choosing the most appro-
priate way of frame and matrix grouping, depending on the
application. This can be done either in the one-matrix-per-
frame way, as before, or using compound frames, i.e. group-
ing several matrices corresponding to different descriptors
under the same frame. In the first case, individual assign-
ment to streams, and different window sizes between dif-
ferent descriptors will be possible. In the compound case,
visual inspection of SDIF files (e.g., after ASCII conversion
with the sdiftotext tool) will be clearer. To leave both possi-
bilities open, the provided type declaration lists all descrip-
tor matrices as optional members of each temporal modeling
frame. If visual inspection is not important, we recommend
using the one-matrix-per-frame alternative.

Finally, the third reason is that the segment the tempo-
ral modeling works on is not necessarily of constant size
and overlap. For example, one can define a sequence of
log-attack time features resulting from a note-wise segmen-
tation of a melodic line. Thus, a mechanism must be pro-
vided to indicate the segment on which the descriptor evo-
lution is modeled. This mechanism makes use of the stan-
dard frame type 1MRK that represents a marker at the time
of the frame, containing matrices 1BEG and/or 1END with
a unique identifier of a segment. Now, the temporal model-
ing frame will also contain a matrix with the identifier of the
segment whose descriptor evolution it models.

429

ISMIR 2008 – Session 4a – Data Exchange, Archiving and Evaluation

0.03111DSC

TimeStream# matr.Sign.

503.2

1141SCN

cols.# rowsTypeSign.

0.03211DSC

TimeStream# matr.Sign.

0.0010.002

0.3510.619

0.6490.38

2341PTR

cols.# rowsTypeSign.

0.06111DSC

TimeStream# matr.Sign.

503.2

1141SCN

cols.# rowsTypeSign.

0.06211DSC

TimeStream# matr.Sign.

0.0020.005

0.2950.625

0.7040.374

2341PTR

cols.# rowsTypeSign.

Figure 1. SDIF storage example for four consecutive frames of a short-time spectral centroid (1SCN) and a short-time percep-
tual tristimulus (1PTR).

0.5121WMN

TimeStream# matr.Sign.

432.3

1141SCN

cols.# rowsTypeSign.

1221MDA

TimeStream# matr.Sign.

0.0010.002

0.0320.024

0.0230.012

2341PTR

cols.# rowsTypeSign.

171

214IWMN

cols.# rowsTypeSign.

2

114IMDA

cols.# rowsTypeSign.

1121WMN

TimeStream# matr.Sign.

461.54

1141SCN

cols.# rowsTypeSign.

3.5221MDA

TimeStream# matr.Sign.

0.0020.001

0.0670.049

0.0370.023

2341PTR

cols.# rowsTypeSign.

171

214IWMN

cols.# rowsTypeSign.

3

114IMDA

cols.# rowsTypeSign.

Figure 2. SDIF storage example for four consecutive temporal modeling segments: weighted mean (1WMN) of spectral centroid
and modulation amplitude (1MDA) of perceptual tristimulus.

Each temporal modeling frame type has an associated in-
formation matrix type, e.g. IWVR for the weighted variance
frame type 1WVR. Then, each temporal modeling frame con-
tains one information matrix indicating the duration, in sec-
onds, of the window as its first element. For regularly spaced
texture windows, the time tag of the frames corresponds to
the middle of the temporal modeling segment. For irregular
segments given by markers, the temporal modeling frame
is written at the start time of the segment. Figure 2 shows
an example of this approach, using single-matrix grouping.
It shows the storage for two consecutive texture windows
containing the weighted mean (1WMN) of the spectral cen-
troid, and the amplitude modulation (1MDA) of the percep-
tual tristimulus. Like with any other matrix, the meaning
of the columns is contained in the type declaration. As in
the plain descriptors case, it is possible to store descriptor-
related information matrices at the beginning of the corre-
sponding streams. It should be noted that some temporal
modelings, such as log-attack time or temporal increase, are
almost always based on a very specific descriptor, in this
case the energy envelope. It would be however possible to
attach them to no matter which shorter-time feature (for in-
stance, the temporal increase of the fundamental frequency
could be an informative “sweep descriptor”).

5 USER-DEFINED TYPES

SDIF allows to define new description types by declaring
frame and matrix signatures, and matrix columns, or to ex-
tend existing types by new matrices, or new columns. The
declaration of extended types is included in a special type
declaration frame of signature 1TYP. Each SDIF file must
include a 1TYP frame declaring the non-standard types, and
is therefore self-contained. The standard types must not be
declared in such a frame, since they are already recognized
by the library. The following is an example of the type dec-
laration for some existing types:

1TYP
{
1MTD 1SCN {SpectralCentroid}
1MTD 1ZCR {ZeroCrossingRate}
1MTD IWMN {WindowLength}
1FTD 1WMN

{
1SCN SpectralCentroidWeightedMean;
1ZCR SignalZeroCrossingRateWeightedMean;
1FQ0 FundamentalFrequencyWeightedMean;
IWMN WeightedMeanInfo;

}
}

Each line starting with 1MTD is a matrix type declaration,
containing the new matrix signature and, between curly

430

ISMIR 2008 – Session 4a – Data Exchange, Archiving and Evaluation

brackets, a list of the declared column names, separated by
commas. The lines starting with 1FTD are frame type decla-
rations; after the frame signature (1WMN in the example), be-
tween the curly brackets, there is the list of the matrices that
can appear inside that frame with their role, terminated by a
semicolon. A matrix type must be declared before the frame
type containing it. As a side note, we point out that even for
standard types (like 1FQ0 in the example), the association
with a non-standard frame must be created. All the descrip-
tor types proposed here contain only one declared column.
This does not hinder the user to store as many additional
columns as needed.

6 DECLARATION OF STREAM RELATIONSHIPS

In the previous section we have seen that the proposed SDIF
representation of audio descriptors will distribute the data
over several streams of SDIF frames. For instance, we could
have a stream of temporal modeling frames 1WMN, model-
ing segments given by a stream of 1MRK frames, based on
various descriptors in different streams, that were extracted
from the audio data in a stream of 1TDS files.

While the relationships between these streams are clear
in our context of use, we would like them to be expressed
explicitly, in a machine-readable format, in order to be ex-
ploited by tools, visualisers, and other applications. The
explicitness of the relationships and meanings of streams
becomes even more important when several source sounds,
channels, or analyses are included in the same SDIF file.

At the beginning of the SDIF standard, there has been an
attempt [5] to formalise the relationships between streams
in an XML based language, which has not been followed by
concrete implementations. This is possibly due to the com-
paratively simple SDIF files that were used at that time, pos-
ing no real need for an explicit representation, and, what’s
more, to the problem of adding a dependency on an external
library to parse XML to all SDIF tools.

We propose here a new, simple approach how to define
relationships, meaning, and content of streams in a tabular
text format, not unlike the existing Name–Value Tables. We
will start with expressing only those relationships that are
indeed needed for the applications described in this article,
but we strive to keep the format open enough for other rela-
tionships to be added in the future.

The format associates one entity by a relationship to a list
of entities. The possible entities are listed in table 1, the list
of defined relationships in table 2. For stream IDs and frame
and matrix signatures, the notation of entities follows the
SDIF-selection syntax [2] to ease understanding and pars-
ing, all other entities are labels, starting with a letter. We
propose to store this table in a 2IDS frame with text matrix.

7 SDIF USAGE INFORMATION

7.1 SDIF Tools

In order to easily manipulate the produced SDIF files, the
library provides some command-line tools together with the

Entity Example Description
stream id #23 Stream number 23
: frame / matrix :1WMN/1SCN stream contains

weighted mean of
spectral centroid

identifier left-channel Label

Table 1. List of entities in the proposed stream relationship
declaration.

Relationship Description
contains left stream contains frame, matrix types

given right
group left label groups labels or streams to the

right
segments left stream contains segmentation infor-

mation for right entity
derives left entity is derived (by analysis or tem-

poral modeling) from right entity

Table 2. List of relationships between two entities.

source code. Basically, there are tools to display, to extract
and to convert the stored data; the most important are:
• querysdif: prints out a summary of the information stored
in the file, e.g. the number and the types of stored frames
and matrices,
• sdifextract: extracts selected data from a file; the output
can be stored in many formats like SDIF itself, multi-bpf
(text lines of frame time and all selected columns), etc.,
• sdiftotext, tosdif: convert data between SDIF and plain
text, preserving frame-matrix relationships. These also ex-
ist as droplets for Macintosh, onto which one can drop a file,
generating the complementary text or SDIF file.

7.2 Programming Interfaces

This section will describe the existing possibilities to ma-
nipulate SDIF data using the SDIF libraries that are pub-
licly available on the SourceForge software repository (see
location below). There exist a C-library (denoted just as
the SDIF library) and a C++ library (called Easdif). Eas-
dif incorporates the complete interface of the SDIF library.
Additionally Easdif provides a high level programming in-
terface to SDIF files, frames, and matrices including itera-
tors over SDIF files. These iterators allow easy and efficient
navigation within the SDIF file using an internal cache of
the meta data (frame and matrix headers). The SDIF and
Easdif libraries are designed to work on all major platforms
(Linux, Mac OS X and Windows), and thanks to the use
of the cmake 4 project generator they can be compiled with
most common compilers (gcc, MSVC, Intel, . . .).

The Easdif library cannot only be used in C++ applica-
tions, it comes as well with a number of bindings for other
applications and languages. A recent achievement is the ad-

4 http://www.cmake.org

431

ISMIR 2008 – Session 4a – Data Exchange, Archiving and Evaluation

dition of sources for Matlab and Octave bindings (mex) that
allow access to data stored in SDIF files for these two pro-
graming environments. The Matlab/Octave interface makes
use of the frame and matrix header cache of Easdif to allow
efficient random access to SDIF frames and matrices.

Additionally, the Easdif library includes support for the
SWIG 5 wrapper generator and interface descriptions for
bindings for python, perl and java. Starting from the ex-
isting interface descriptions the addition of other scripting
languages that are supported by SWIG should be easy.

7.3 Applications using SDIF

Many applications developed nowadays integrate a general-
purpose SDIF reader/writer. Here is a partial list:

•AudioSculpt 6 : tool to analyse and modify sounds through
a visual approach,
• ASAnnotation 7 : sound analysis, visualisation and anno-
tation, based on AudioSculpt,
• CLAM 8 : C++ library for music information retrieval,
• Csound 9 : language for sound manipulation and analysis,
• Diphone Studio 10 : tool for sonic morphing,
• FTM 11 for Max/MSP, jMax, PureData: realtime visual
programming environment for sound analysis/synthesis,
• Loris 12 : sound modeling and processing package,
•OpenMusic 13 : visual programming language for computer-
aided composition,
• Open Sound World 14 : programming environment to
process sound in real-time,
• SDIF-Edit 15 : SDIF editor and visualisation tool,
• SPEAR 16 : sinudoidal analysis/resynthesis.

Moreover, in the developer tools included with the lat-
est version of the Mac OS X operating system (version
10.5, Leopard), SDIF support has been included for the Au-
dioUnit called AdditiveSynth.

7.4 Availability and Online Resources

SDIF is an open source project hosted on the SourceForge
repository. The following resources are available:

• SDIF Homepage. (http://sdif.sourceforge.net)
Includes the format specification and main documents, and
pointers to all other resources.
• SDIF Download. (http://sourceforge.net/projects/sdif)

5 http://www.swig.org
6 http://forumnet.ircam.fr/691.html
7 http://www.ircam.fr/anasyn/ASAnnotation
8 http://clam.iua.upf.edu
9 http://www.csounds.com

10 http://forumnet.ircam.fr/703.html
11 http://ftm.ircam.fr
12 http://www.cerlsoundgroup.org/Loris/
13 http://recherche.ircam.fr/equipes/repmus/OpenMusic/
14 http://osw.sourceforge.net
15 http://recherche.ircam.fr/equipes/repmus/bresson/sdifedit/

sdifedit.html
16 http://www.klingbeil.com/spear/

Includes the sources and several binaries for the SDIF and
Easdif libraries. For developers, CVS access is possible.
• SDIF Wiki. (http://sdif.wiki.sourceforge.net)
is intended for the documentation of application-specific
usages, the proposal of extensions, and additional user-
oriented documentation.
• SDIF mailing lists. There is one mailing list for users
(http://listes.ircam.fr/wws/info/sdif) and one for developers
(https://lists.sourceforge.net/lists/listinfo/sdif-devel).

8 CONCLUSION

In the context of the growing needs for standardization
within the fields of audio-based content analysis and re-
trieval, we have proposed the use of the well-established
and open SDIF format for storing, transmitting and sharing
general audio features. We made use of SDIF’s extension
capabilities to declare a set of extended types addressing the
needs of general short-term and temporal modeling descrip-
tors. We are hoping to initiate a discussion among interested
researchers, e.g. via the wiki and the mailing lists, to further
assess the general needs, and eventually update the type pro-
posals. Concerning future work, we are studying the use of
SDIF for other audio-related pattern recognition data, such
as feature transformation data and statistical models.

9 ACKNOWLEDGMENTS

This work was supported by the French National Agency of
Research (ANR) within the RIAM project Sample Orches-
trator.

10 REFERENCES

[1] M. Wright, A. Chaudhary, A. Freed, S. Khoury and D.
Wessel, “Audio Applications of the Sound Description
Interchange Format Standard”, Proc. of the 107th Con-
vention of the Audio Engineering Society (AES), New
York, USA, 1999.

[2] D. Schwarz and M. Wright, “Extensions and Applica-
tions of the SDIF Sound Description Interchange For-
mat”, Proc. of the Int. Computer Music Conference
(ICMC), Berlin, Germany, 2000.

[3] J. S. Downie, “The Music Information Retrieval Evalua-
tion eXchange (MIREX)”, D-Lib Magazine, Volume 12,
Number 12, 2006.

[4] G. Peeters, “A Large Set of Audio Features for
Sound Description (Similarity and Classification) in the
CUIDADO Project”, CUIDADO I.S.T. Project Report,
2004.

[5] M. Wright, A. Chaudhary, A. Freed, S. Khoury, A.
Momeni, D. Schwarz, D. Wessel, “An XML-based
SDIF Stream Relationships Language”, Proc. of the Int.
Computer Music Conference (ICMC), Berlin, Germany,
2000.

432

