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(Received 5 February 2002; revised 9 August 2002; accepted 16 August 2002

This work investigates aperiodicities that occur in the sustained portion of a sound of musical
instrument played by a human player, due to synchronous versus asynchronous deviations of the
partial phases. By using an additive sinusoidal analysis, phases of individual partials are precisely
extracted and their correlation statistics and coupling effects are analyzed. It is shown that various
musical instruments exhibit different phase coupling characteristics. The effect of phase coupling is
compared to analysis by means of higher order statistics and it is shown that both methods are
closely mathematically related. Following a detailed analysis of phase coupling for various musical
instruments it is suggested that phase coupling is an important characteristic of a sustained portion
of sound of individual musical instruments, and possibly even of instrumental families. Interesting
differences in phase deviations where found for the flute, trumpet and cello. For the cello, the effect
of vibrato is examined by comparing the analysis of a closed string sound played with a natural
vibrato to analysis of an open string sound that contains no vibrato. Following, a possible model for
phase deviations in the cello is presented and a simulation of phase fluctuations for this model is
performed. ©2003 Acoustical Society of AmericdDOI: 10.1121/1.1518981

PACS numbers: 43.60.Cg, 43.75.De, 43.79EHF]

I. INTRODUCTION pitch and amplitude variability. The dependence on the play-
ing method is analyzed in detail for the cello, where naturally
Acoustical musical instruments, which are considered tglayed sound on a closed string with vibrato is compared to
produce a well-defined pitch, emit waveforms that are neveg naturally played open string cello sound that has no vi-
exactly periodic. These aperiodicities, which occur in theprato.
sustained portion of musical instrument, supposedly origi-  In earlier works(Dubnovet al, 1998, 1997, 1995 we
nate in some not-well-known fundamental mechanism ohave shown that the particular aspect of phase synchronous
their sound production that depends both on the manner Gfersus asynchronous phase fluctuations is strongly related to
playing the instrument and the instrument specific physicahonlinear properties of the time series model of the signal.
properties. These properties are measured by higher order statistics
Among the many mechanisms of possible deviation§HOS) or polyspectra(Mendel, 1991; Nikias and Mendel,
from periodicity (Beauchamp, 1974; Mcintyret al, 1981, 1993 and were shown to be important for characterization of
Schumacher, 1992; Rodet, 1993, 1995; Vettori, 1995; Weinmusical instruments in the sustained portion of the sound.
reich, 1997; Vergez and Rodet, 200@e analyze two con- It should be noted that statistical properties of a signal
trasting conditions which appear to be important for susdue to phase variations can not be easily revealed by stan-
tained portion of sound in musical instruments: synchronougiard spectral analysis methods due to the fact that second-
phase deviations of proportional magnittitieat preserve the order statistics and the power spectrum are “phase blind,”
relative phase relations between the partials and thus do npk., they are not sensitive to phase variations. In the current
change the shape of the waveform except for compressing @jork we employ sinusoidal analysis in order to estimate pre-
stretching in time, versus independent or phase asynchronoggsely the phase behavior of each partial in sustained portion
deviations that change the shape of the signal due to theéf musical instruments. We analyze the relative phase fluc-
changing phase relations between the different frequencyuations among different partials using a measure called qua-
components. By using a sinusoidal analysis, phases of indratic phase couplingQPQ. The precise definition of QPC
vidual partials are precisely extracted and their correlatiowill be given in the next sectiohThe QPC analysis is com-
statistics and coupling effects are analyzed. It is shown thgsared and mathematically related to higher order statistical
various musical instruments exhibit different phase couplinganalysis that is applied directly to the signal.
characteristics. In the paper we first consider the problem of detection of
One must note that in this work we analyze sounds a§)PC and define a detector function that receives values in
played by a human player, with all the attendant vibrato andhe rangd0, 1], with value one indicating perfect phase cou-
pling and value zero indicating that partials have completely
3Electronic mail: dubnov@bgumail.bgu.ac.il uncoupled phases. We show that phase coupling is a major
YElectronic mail: rod@ircam.fr property of musical instruments with a clearly distinct be-
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havior for the case of brass versus string instruments. Spe Synchronous Phase Modulation
cifically, we extend the earlier HOS reseal&ubnovet al., ' ' ' ' ' ' ' ' ' '
1997 by introducing a discrete bispectral measure that is
shown to be equivalent to the phase coupling detector unde
some mild shift invariance assumptions.

Finally, a detailed analysis of cello instrument is given, = A
comparing the QPC for naturally played sound on a closed _, |
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string that includes vibrato with a sound of an open string 00 200 300 400 500 600 700 800 900 1000
Time (sample number)

with no vibrato. For the case of the cello, and possibly string

instruments in general, we suggest a source-filter model tha e
can generate some phase fluctuations. Simulations with thi:_ s k. Wk
model create a signal with uncoherent phase deviations tha% 2l
look like the fluctuations that were observed in the original 2

it

. : [
signal. g

Il. PHASE SYNCHRONOUS VERSUS B R T R T I S
ASYNCHRONOUS APERIODICITIES Frequency (H2)

The additive sinusoidal modéRodet, 1997: Serra and FI(;. 1. Synthetic signal that was proqluced py applying synchr'onous modu-
lation to phases of the harmonic partials. This type of modulation preserves

Smith, 1989 of an almost perfectly periodic signal is math- the shape of the waveform, except for period to period time stretching or
ematically expressed by shortening, i.e., the period between successive peaks is modulated. In fre-
guency this amounts to spread in bandwidth of the partials.

L
X(t)= . E ) A(t)ea, 1) create the separate phase noise signals of the eight harmon-

ics, with phase noise at harmorke=[1,...,8], being ¢,(n)
=k¢,(n). In the asynchronous case, eight independent
noises were created for the eight partials. In order to match
the noise variance in the synchronous and asynchronous
() =1 -wq-t+ ¢ (1), (2)  cases, the standard deviation of the noise in the asynchro-
nous case at partidd was set to bek times the standard
deviation of the noise at partial 1. One additional free param-
eter is the standard deviation of the phase noise in the first
§artial. In the simulation presented beldkigs. 1 and 2we
used the value of 0.6 for standard deviation of the first par-
tial.

with the phased|(t) defined as

where wg is the fundamental frequency aid, ¢, are the
amplitudes and phases of thé sinusoidal componeripar-
tial).

Among the many possible mechanisms of deviation
from periodicity that may occur in the sustained portion of a

pitched sound, we analyze two extreme cases: . _
Figures 1 and 2 demonstrate the signal waveform and

(1) application of a synchronous and proportional randommagnitude spectra in the case of synchronous and asynchro-
modulation to the phases of each partial, suchpe$)  nous phase deviations, respectively. The top figarshows
=I-¢4(t), and

(2) application of random and asynchronous phase modula Asynchronous Phase Modulation
tions to each partial. - ; - ' : ' - ' ' '

A. Synthetic example

In order to demonstrate the effect of synchronous versusg
asynchronous deviations we constructed a synthetic signez
consisting of a sum of eight equal-amplitude cosine func-
tions at harmonic frequencies, with fundamental frequency - e e e 50 190
of 220 Hz. The signal was generated at 8000-Hz sampling Time (sample number)
rate. 60

For the purpose of generating the phase noise, an initia
random vector was created using a random Gaussian noisg
generator, producing a signal at a sampling rate of 160 Hzg ,,
Then a phase noise signal at the signal sampling rate Wa:;f»
generated by resampling of the original random vector at & °
rate that is 50 times higher than the original random vector, _,
thus creating a random phase noise signal at 8000-Hz sar  °  °® 100 O ey L X e e

pling rate. I .
Next, two sets of phase noise signals were created, fdf'G: 2 Synthetic signal that was produced by applying asynchronous
dulation to phases of the harmonic partials. This type of modulation does

. I
t_he synchronogs and aSynChrC_mOUS_ cases, respectively. In tﬁ& preserve the shape of the waveform. In frequency this causes a relatively
first case, a single-phase noise sigi@al(n) was used to smaller spread in bandwidth of the partials.

agnitude
o N o o o
\
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the time domain signal and the bottom fige represents havior means that the respective phages ¢, ¢, obey the

the Fourier analysis of a segment of 1024 samples of théollowing relation ¢;+ ¢— ¢, =0, i.e., that any deviations
signal, with a rectangular analysis window. In the synchro-that occurs forp; and ¢, sum up to occur identically iwp, ,

nous case, the small variation of the signal period, althoughip to a constant additive factor of the initial phase of each
not altering the basic waveform, significantly spread thepartial. In the case when phase coupling does not occur, a
spectral peaks of the higher partials, effectively turning pardifference in phase deviations occurs between the phases.
tials higher than 3 or 4 into noise. For the asynchronous casghis phase coupling difference signal can be either bounded
we observe that the original, pulselike shape of the wavetand possibly periodic or increase by accumulating over
form is significantly distorted, giving a visual impression of time, so that it eventually passes through all valug®irem]
pulses submerged in a high level of noise. This noise effeatange.

can be seen also in the signal's spectrum. One should note We introduce a measurk(j,k) that evaluates the effect
that the spectral peaks for the asynchronous case remain sigk stochastic phase deviations that occur between pajtials
nificantly pronounced above noise level. andk,

defl N

F
B. Additive sinusoidal analysis procedure da(j ’k):N_ e (@j(M+ ()= (m) 3
1

The additive sinusoidal model represents the audio sig- Fn=

nal as a sum of sinusoidpartialg with time-varying ampli-  whereNg is the number of frames available from sinusoidal

tudes and frequencies. Mathematical expression of thianalysis. The integral of the exponent of the phase coupling
model was given earlier in Eq$l) and (2) in Sec. Il. For difference has the following property: in the case of a perfect
review of sinusoidal modeling for musical signals see Rodetoupling, the argument in the exponent is identically O and
(1997. The signal parameters are estimated in the followingds(j,k) equals 1. In the case when the phase coupling dif-
manner: ference oscillates in a limited range, the resultohgj,k)

(1) Window audio signal segment. The windowed se men}.Ni” converge to some value between 1 and 0. If the error
9 9 : 9 spreads” over the whol€g0, 27| range, the value ofl;

WI|| be termed in the following “analysis frame,” or approaches 0.
simply a frame.

(2) Estimate instantaneous pit¢this can be done using a
variety of methods Since a precise pitch is crucial for
quality modeling, an extra pitch refinement step is per- In this section two statistical measures of phase devia-
formed. tions among partials of a sinusoidal model are considered—

(3) Searching for peaks of the local periodogram, i.e., peaksorrelation and coupling. In order to be able to calculate
in amplitudes of the short-time Fourier transform correlation between phases, a careful unwrapping of the
(STFT). phases must me done. One should note that unwrapping is

(4) Amplitudes and the instantaneous frequencies are estirot necessary for phase coupling analysis, since the phase
mated at the precise frequency of the spectral peaks. ldifferences that appear in the exponent are not sensitive to
our analysis we use a quadratic interpolation of threqumps of 27. The unwrapping is performed in the following
points around each spectral extrema in order to detemanner:
mine the precise peak location.

(5) Advance the signal segment to the following frame and
repeat previous analysis steps. It is referred in the fol-
lowing as the “analysis time step.” tial

(6) Finally, a nearest-neighbor matching in time is per- . . . .
formed, in order to relate different partials in succession(") A difference signal between the measured Instanta-
neous frequency and theoretical instantaneous fre-

f analysis frames. : . e
of analysis frames quency(estimated as & times multiplication of the

D. Phase correlation and phase-coupling analysis

(i) Phase derivative of th&th partial’s phase is calcu-
lated and divided by 2. The resulting signal is an
estimate of an instantaneous frequency ofktiepar-

The analysis in the paper was performed using a 20-ms__ fundamental frequengyis calculated. _ _
analysis window with analysis time step of 4 ms. For the(iiil) Points of 27 jumps are detected by rounding the dif-
purpose of phase correlation and phase-coupling analysis, ference signal to a nearest integer. The piecewise con-
only the sustained portion of the analysis was retained. There ~ Stant signal is then integrated and multiplied by
were some cases where “death” or “birth” of harmonics was _ create a “phase correction” signal. .
observed. In such a case, the instances with almost zero paf¥) ~ The “phase correction” signal is added to the original
tial amplitudes were removed from the analysis since the phase to create the unwrapped phase.

hase in such a case was meaningless. . .
P 9 This procedure results in unwrapped phase values that rep-

resent phase fluctuations around an ideal theoretical value
that is derived from the fundamental frequency. This step

Taking the phases of a signal derived from sinusoidaklso eliminates phase deviations due to effects such as vi-
analysis we look at the instantaneous harmonicity amongrato or slight pitch changes. This unwrapped phase is used
different groups of partials. For a triplet of harmonically re- to calculate the phase correlation. The QPC measure is cal-
lated partialg, k, andl=j+k, a “synchronous” phase be- culated according to Eq3).

C. Statistical analysis of a sinusoidal model

350 J. Acoust. Soc. Am., Vol. 113, No. 1, January 2003 S. Dubnov and X. Rodet: Investigation of phase coupling



Flute/Adkitive Phase Canelation Flute Additive Phase Coupling
0.9
0.8

0.7

06

3

Partial Number
8

8

40 50 60 40 50
Partial Number Partial Number

Trumpet Additive Phase Correlation Trumpet Additive Phase Coupling

e AR L
R aimrnee

0.9

o
Ill-"

0.8

Ir. u
LB i

0.7

u,gy:g.

Partial Number
8

30 40
Partial Number Partial Number

FIG. 3. Flute(top) and trumpetbottom) correlation and QPC analysis. Phase correlation is plotted on the left side, QPC on the right side. The axes correspond
to partial numbers, each point on the graph representing the value of correlation or QPC analysis between the two partials. The color scale is white
corresponding to 1, which represents high correlation/coupling, and black corresponding to 0, no correlation or coupling. One should not@R&o that
analysis is meaningful only at the lower left triangular part of the figure, since there exists no partial beyond Nyquist frequency. The righbtmgdbe s
ignored(it is colored black

In order to examine the difference between phase correpartials occur in an almost exact instantaneous correspon-
lation and coupling, we calculated the matrix of pairwisedence with each othéras demonstrated in Fig. 4. This
correlations among the phases and compared them to tlwauses the QPC in the trumpet to remain high. In the flute
two-dimensional matrix of quadratic phase coupli@PO. signal pairwise correlations occur to a large extent, but the
Figure 3 presents the phase correlation and QPC for flute anshase deviations are mostly uncoupled. This lack of instan-
trumpet sounds. As can be readily seen from Fig. 3, the twéaneous phase coupling in the flute signal causes the QPC
instruments exhibit a very different correlation and QPC be-estimate to converge to zero. The behavior of the QPC esti-
havior. In the trumpet signal we observe a common behaviomate as function of time for the trumpet and the flute signals
of the phase correlation and phase-coupling measure. Thae shown in Fig. 5.
flute exhibits a very little QPC but still a rather significant
correlation. This figure demonstrates the difference between
the two analy_sis methods: QPC requires a precise instan_tzﬁ—l_ RELATION TO HIGHER ORDER STATISTICAL
neous canceling of the relative phase deviations among tripgnaLysIs
lets of partials, while the correlation coefficient depends on
normalized inner product between phase functions. Higher order statisticalHOS) analysis investigates the

The differences between correlation and QPC behaviobehavior of higher order cumulants of stochastic signals. For
of the two instruments can be further understood by considthird-order analysis we consider triple correlations of the sig-
ering the behavior of QPC estimates as a function of time. Imal, which equals the third-order cumulant assuming a zero
the trumpet signal, the phase deviations among the differemhean signal,
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Trumpet phases 6, 8 , 14 Trumpet phase difference 6 , 8 , 14
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FIG. 4. Phase behavior of partials 6,8,14 of the trumpet. Phases of the partials appear on the left, phase triplet difference appears @edhexight

def We can express this signal as a sum of complex exponentials

c3(n,m)={x(t)x(t+n)x(t+m)}), (4)  with unit amplitude
where( ) means an ensemble average or time average for 1 L
ergodic signals. Transforming the third-order cumulant into  &(t)= = 2 el
frequency domain gives the bispectrum 21=-T 120

def * > . with 6,=—6_,, where§, is defined in Eq(2).
Bx(w1,w3) = Ca(n,mye”eanteam (5 In the Appendix we prove that, under not too severe
n=—o m=—x

assumptions, a discrete version Bf(w,,w,) can be de-

Note that bispectrum is calculated by applying a 2Dfined, which approximately equals ti{j,k). Assuming that
Fourier transform to the third-order cumulant function. It canthe frequency resolution of the Fourier analysidliswe get
be shown, moreover, th&, is equivalently expressed as an the following lemma:

average over the Fourier transfoié{w) of x(t). (This re- Lemma:  For pseudo-periodic signal  X(t)
sult is known as the 2D version of the Parseval theogrem. = %ElL:,L#Oe' %0 with 6,(t)=lwet+ ¢ (t), the discrete
bispectrum obeys
By(@1,w5) ={X(@)X(w)X* (w1+ wy)). (6)
Let us consider now a sinusoidal sigkathat has equal (27, Z—Wk — da(j k) )
amplitudes for all partials. We shall term this signal “white.” Tl s
Trumpet decay of QPC(6,8) 1 . 'Flute decaylof QPC(G’B). ;
1.001 T T T T T T T T
0.9 .
1 E 08 4
07 4
0.998 b
0.6 _
50995 . §°~5 ]
% c0.4 1
0.997 .
03 4
0.2 4
0.996- 4
01 E
0995, 130 280 a(l)o 4:30 560 6(.)0 7¢I)o 84.:)0 900 co 160 260 380 41.)0 5<‘)o 600
Time (analysis frame number) Time (analysis frame number)

FIG. 5. QPC of the trumpefleft) and flute(right) partials for triplet(6,8,19. The graphs show the decay of QPC as a function of fiamalysis frame
numbey.
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FIG. 6. Bispectrum of a cello original signébp) and the bispectrum of the

residual Cello soundbottor). See text for more details. FIG. 7. Bispectrum of a trumpet original signap) and the bispectrum of

the trumpet residual souni@ottom). See text for more details.

suffer from numerical problems, due to nearly zero ampli-
tudes of the FFT bins that do not fall on the partials.

The bispectral analysis of the cello and trumpet residual
A. Comparison to bispectral analysis signals are given in Figs. 6 and 7, respectively. The strong

sis to bispectral methods of detection of QPC, all amplitudegffécts the bispectral analysis. Notice that cello residual has
of the partials must be made approximately equal. This NIy a few peaks. The analysis is performed on a 2000-
required in order to remove the effect of the spectral enveSample-long signal segment, sampled at frequency of 22 050
lope, which contains information about the amplitudes of 12, 1-€, @ 90 ms segment. The method of analysis employed

harmonics, on the bispectrum. The estimation of the spectrdf & So-called “direct” Bispectrum Estir_’natign method that
envelope was done using linear prediction analy&BC) uses the FFTthis is in contrast to “indirect” method that
analysis(Markel and Gray, 1976 using filter of order 16. uses third order cumulant matyixn the direct method, the

The process of equalizing the partial amplitudes was done bg;riginal frame of analysis is subdivided into eight segments

passing the original signal through an inverse LPC filter.W_ith 50% overlap. Analysis resolution is 108FT sizg. In

Having performed the equalization step, we remove an initiaI:'_gs'fG_ind 7 the axg_s correspon(lj_ o ?ormahzed ffrezqzugggy,
segment of the signal that contains the transient behavior Ith =1 corresponding to sampling frequency o

the filter and look at the HOS properties of the remaining Z \llyhen ccl)mparmg bﬁpel((:jtral tan;lysfls”to _add(;[_|;f/e phase
inversely filtered result, or the so-calleglsidualor “white” coupling analysis, one should note the folowing dilierences

signal. We chose to do a LPC equalization due to its simplic!n the analysis plots.

ity, and also due to the fact that other methods such as thg¢) = While phase coupling analysis is performed on a full
bicoherence estimator, which divide FFT bins by their abso- CD-bandwidth signal, i.e., signal with sampling fre-
lute values for eliminating the amplitude dependence, often guency of 44100 Hz, the bispectral analysis is per-

for phase deviationp,(t) being a white random process.
Proof: See the Appendix.
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FIG. 8. Cello phase correlation and QPC analysis.

formed on a subsampled signal at 22 050 Hz. The reaapplied to the final sound, we cannot separate the bow-
son for using a lower bandwidth in the bispectral excitation properties from the effect of the body resonances.
analysis stems from practical considerations ofMoreover, we would like to examine the difference between
memory and time requirements of the bispectral esti-natural vibrato sound and open-string sound that has no vi-
mation algorithm. Moreover, since most of higher or- brato. Accordingly, we analyzed two different cello sounds: a
der statistical information appears at lower frequen-closed-string C4 pitch sound that contained natural vibrato
cies, there is no need to consider the high frequenciesand an open-string A3 sound that had no vibrato.

(i)  Bispectral analysis is done on a shorter segment com-  Applying phase analysis to string instruments reveals a
pared to additive phase coupling analysis. In the adparticularly interesting phenomenon. Repeating the same
ditive analysis the QPC estimate is averaged over &nalysis as done previously for the flute and trumpet, one
large segment that contains several hundred analysiggs out(see Fig. 8 that cello played with vibrato exhibits
frames_, with frame step of 4 ms. This amounts to anyery little phase coupling among higher partials.
analysis segment of an order of magnitude of few ~cqnsidering the phase behavior of the various partials of
seconds. In order to compare this to the shorter avergg cgjio, it seems that the phase deviations have a random
aging times of the bispectral analysis, one can evalupgnayior. A closer look at specific triplets of partials reveals
ate the decay of the QPC as function of time in the, .y a1y quite a smooth phase behavior, at least for the lower
a_ppropnate graph_s in the previous secti¢B8 ms in _partials. The phase deviations are periodic, with a period
blspectr'al analysis corresponds to 22.5 anaIySI%orresponding approximately to the vibrato rate. This lack of

(i) fltzg]?:slglu(tgigr?:of bispectral analysis is approximaterCOUp”ng is diﬁgren-t from the random phase deviaFions of the

flute and possibly is caused by a different acoustical mecha-

43 Hz. This resolution allows one to clearly see the . . .
) nism. In Fig. 9 the phases, phase differences, and phase cou-
separate peaks that correspond to the harmonics. This. : . :
ing analysis for two triplets of cello partials are shown.

is in contrast to the phase-coupling graph where thé® . . .
P pling grap Comparing these results to analysis of an open-string

values of the axes correspond to partial numbers. - . .
Thus, the partial numbers correspond, in frequency, t(§:ello sound(Fig. 10 reveals another interesting phenom-

sampling of the bi-frequency plane at a resolution thatt"o": An open-string sound has a_significantly h.igher QPC,
correspond to fundamental frequency. showing strongly c_oupled harmonics up to .partlal number
60. Moreover, looking at the phase behavibrg. 11), one

It is interesting and important to note the similarity be- Sees that the deviations of the phases among the different
tween the bispectral analysis and the QPC analysis of Fig. partials have similar trajectories, giving high phase correla-
Apparently, although the QPC method and the bispectralions as well. These results suggest that the phase coupling
method are different, they discover similar phenomena.  and phase correlation in the cello are closely linked to the
vibrato.

In order to understand the origin of the very asynchro-
nous behavior of the phases in string instruméWwsinreich,
1997; Schumacher, 1992; Mcintye¢ al., 1981; Beauchamp,

Cello produces its sound through a nonlinear bow-1974; Rodet, 1993, 1995ve have tried to model the peri-
excitation process that excites a complex resonance bodydic temporal variations of the phases of the cello using a
with many closely spaced resonances. Since our analysis gource-filter model. The bow-excitation and the resonance

IV. THE MYSTERY OF THE CELLO: MODELING OF
ASYNCHRONOUS PERIODIC PHASE DEVIATIONS
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body effect are approximately modeled by a harmonic excidamental frequency fy(t) that simulates a vibrato,
tation that passes through a bank of closely spaced resoneensequently filtering it by a linear filter that represents an
tors. In this model the origin of the uncoupled phase behavinstrument body resonance. If the instruments’ body reso-

ior could be created as a result of an interaction between gances, at the frequencies of the partials, are comprised of

time-varying excitation signal and the resonator body. ACyery close and narrow peaks, two situations might occur:
cordingly, we model it by a slowly varying frequency exci-

tation signal, i.e., a harmonic signal with time-varying fun- (1) Relative phase shifts, up te, could exist between dif-
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FIG. 10. Cello A3 open string phase correlation and QPC analysis.

ferent partials, due to differences in phase response of 1

the body resonance at their corresponding frequencies. H(z)= 1-2Rcod0)z T+ Rz 2’ 8
(2) Alarge phase deviation would occur for a single partial

with a varying frequency, when it passes through a narSo that¢ corresponds to the center frequency of the resonator

row peak of a body filter resonance. andR is determined according to the desired bandvfi&h
with the relation between bandwidth aril being R~1

The first case could be simulated by having harmoni-—B/2. Inspecting the phase response of a resonator shows an
cally related, time-varying partials, that move on the oppo-abrupt phase change when going through the center peak
site slopes of very narrow resonatgidcAdams and Rodet, frequency.
1988. For the second case, a single time-varying sinusoid When a time-varying harmonic sinusoidal excitation
might excite almost simultaneously a pair of very closely(harmonic excitation with simulated vibratpasses through
spaced and narrow filters. This causes two peaks in the spea-bank of such filters, nonsynchronous phase deviations oc-
trum to be present for a single partil when the excitation cur between the different sinusoidal components as each
occurs between the two resonances. In terms of phase, G@mponent passes through a different set of filteree must
jump would occur again in the middle region, i.e., whennote also that the rate of frequency sweep in every partial is
moving away from one and approaching the other resonancélifferent and proportional to the partial number, i.e., higher
it reaches a point where a phase difference is nearly 2  frequencies move faster and “pass” on their way through

We expected, at least for the second case, that this effefore resonator filtejs Figure 13 demonstrates the phases
would be visible in the spectrum as well. Figure 12 present@nd the QPC of the simulated signal for partials [aid)
a high resolution analysis of a cello sound around its fifthobtained by sinusoidal analysis. As can be seen from the
partial. The sound was recorded with a close microphone t§gure, this behavior is very much reminiscent of the real
eliminate room effectyStudio Online, IRCAM. Surpris- cello behavior. Although the simulation does not constitute a
ingly enough, we find that instead of having one peak, we proof” that the actual cello resonance behaves in this man-
have two very close peaks with their average frequency lyindt€!. both the analysis and listening impression seem to sup-
at the expected harmonic. The additive analysis in such Rort this assumption.
case would capture this as a single partial with a widely
varying phase.

B. Discussion

A. Modeling of the phase deviation In our analysis we were dealing with sounds of instru-
Simulation of this phenomena was done using a perments that were played by a human plagdicGill Univer-
fectly harmonic excitation, whose fundamental frequencysity Master Samplgs thus containing vibrato and pitch
variation was obtained from analysis of the fundamental frevariations that are typical to human playing, even when play-
guency of an original cello signal. The body resonances werag a single note. In the flute there was a significant vibrato,
simulated using a bank of closely spacéD Hz and while in the trumpet there was almost no vibrato. The two
narrow-band (BW-=10 Hz) filters. A single resonator filter instruments where analyzed at the same pi@#. For cello
can be designed as a filter having two poles in conjugateve have investigated two cases, a natural playing closed-
location in theZ plane, located at radiuR and angled, with  string note(C4) that contained a vibrato and an open-string
corresponding transfer function note (A3) that contained no vibrato. Our findings in all cases
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FIG. 11. Cello A3 open string: the phases, phases differences, and QPC for two triplets of partials numbers 2,4,6 and 8,6,14. The graphs inrtime left colu
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are consistent with what might be expected from physicatesonance frequency. This generates higher partials by non-
considerations. In the flute vibrato is produced by variationdinear variation of lip opening and the flow velocity. In the

in blowing pressure. The production of harmonics is influ-cello, vibrato is produced by varying the length of the string,
enced partly by jet-propagation and largely by variations inwhich interacts also with the nonlinear bow-excitation pro-
the exact intersection plane of the embouchure edge and tleess. Our findings for the flute and the trumpet seem to be
jet (Fletcher and Rossing, 1995In the trumpet, blowing consistent with these physical interpretations. Moreover, for
pressure is nearly steady and the primary excitation is causebe cello we see a clear distinction between open-string and
by motion of the lips at a frequency dependent on the naturatlose-string with vibrato sounds. The lower QPC in the vi-
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FIG. 12. The occurrence of double spectral peaks instead of a single parti
in a cello signal recorded with a close microphone to eliminate room effects:.

Comparative study of the phase fluctuations was per-
formed for several instruments. The results suggest that
phase coupling, which is basically a nonlinear phenomenon,
is a significant feature that distinctly characterizes for in-
stance cello and flute versus trumpet sound.

Finally, a model for the mechanism that might cause the
phase uncoupling effect in vibrato sounds of string instru-
ments was suggested. A simulation of this phenomena was
presented and the findings are shown to be in support of this
model.

ACKNOWLEDGMENTS

We would like to thank Neville Fletcher for pointing out
the relation between our analysis and the physics of musical
instruments. We also thank the reviewers for the many most
useful and important comments.

APPENDIX: PROOF OF THE RELATIONS BETWEEN
ADDITIVE PHASE COUPLING AND HIGHER
RDER STATISTICS

The top graph shows the signal and the segment analyzed. Bottom graph

shows the window Fourier transform of the corresponding signal segment

(0.49-0.58 5

We want now to establish the relationship between
B(vq,v,) andds(i, k) in general, which is formulated also in
terms ofcg(n,m) for n andm+0.

brato sound could be related to the phase asynchronous ef- The definition ofB(vy,v;) is
fect due the closely spaced resonances of the cello body,
occurring in a signal with varying fundamental frequency, as
our simulation experiment suggests.

o o

def
B(vi,vp)= >, > Cg(n,m)e jrntrem,

n=—o m=—®

V. CONCLUSION andcs(n,m) is defined as

In this paper we have investigated the nature of a peri-
odicities that occur in the sustained portion of harmonic in-
strumental sounds. Specifically, we focused on phenomena
of phase deviations that occur in different partials of thefor zero mearx and independent dfdue to third-order sta-
sound. tionarity. We taket=0 for simplicity of the derivations

def
c3(n,m)=(x(t)x(t+n)x(t+m))

Decay of QPC (2,4) of the simulation

phases 2,4 and 6 of the simulation
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FIG. 13. Phases 2,4,6 and QPC decay of the simulation signal.
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The right-hand term is called now a “lagged3, which
contains the lag arguments

de
ds(k,l;n,m)=

In such a case, we hawg(n,m) as a function ofds,
N

>
N,#0

f
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ca(n,m)= glookntimg (K 1:n,m).
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tions, resulting in small and uncorrelated phase difference signal.
4Bandwidth is determined as the width of magnitude response at half-power
points relative to the peak value.
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