
HAL Id: hal-01161388
https://hal.science/hal-01161388

Submitted on 8 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

NAVIGATING THE ORACLE: A HEURISTIC
APPROACH

Gérard Assayag, Georges Bloch

To cite this version:
Gérard Assayag, Georges Bloch. NAVIGATING THE ORACLE: A HEURISTIC APPROACH. In-
ternational Computer Music Conference ’07, Aug 2007, Copenhagen, Denmark. pp.405-412. �hal-
01161388�

https://hal.science/hal-01161388
https://hal.archives-ouvertes.fr

NAVIGATING THE ORACLE: A HEURISTIC APPROACH

Gérard Assayag Georges Bloch
IRCAM – CNRS UMR 9912,

Paris, France,
assayag@ircam.fr

Université de Strasbourg,
Strasbourg, France,

gbloch@umb.u-strasbg.fr

ABSTRACT

We have presented in several papers the musical
potentialities of a data structure called the Factor’s
Oracle (FO) that we have experimented in many
situations involving style modeling, musical memory and
anticipation models, real-time improvized interaction and
performance analysis. We recall briefly the construction
and properties of this structure and how we use it in
music pattern analysis and generation. Then we describe
a new heuristic for navigating the FO in order to
significantly ameliorate the musical quality of the output.
This heuristic method leads us to a powerful formal
structure, derived from the FO, called the Suffix Link
Tree (SLT).

1. FACTOR ORACLES

1.1. Oracle Musical Applications

The Factor Oracle structure [1, 16] has been intensively
investigated during the past few years as an efficient tool
for music pattern analysis and reconstruction. Providing
a computation friendly set of algorithms and
representations, it has generated numerous fruitful
research and application works in computer music, in
association with other techniques inspired by statistical
sequence modeling [12] and representations for data
compression. In an offline approach, such researches
have been conducted in : style modeling [6, 8, 11], style
simulation [10, 11], improvisation and performance
modeling [9], musical memory and anticipation
modeling [13, 14], composition [2, 3]. These researches
owe a lot to Shlomo Dubnov’s early intuition of the
benefits brought by sequence models and compression
schemes in style modeling problems. As for the on-line,
real-time interaction approach, two main systems have
been built : Omax [4], by Assayag, Bloch and
Chemillier, an OpenMusic/Max based application that
builds co-improvisations with human performers using
the Midi, audio and video media ; and MiMi [15] by A.
François and E. Chew, a multimodal interface for co-
improvisation with the computer that gives a visual feed-
back to the performer, helping him to anticipate the
computer’s reactions. Omax has been used as a virtual
partner by a lot of professional musicians, in
experimental sessions as well as public performances at
Ircam and at popular summer jazz festivals.

Recently, we have gotten back to the theory of Factor
Oracles in order to set up better generative heuristics
than the ones at hand. This paper will focus on these
heuristics, showing how a careful understanding of the
oracle structure and behaviour may lead to more
motivated musical recombination of learned material. In
order to get an idea of the power of Omax oracle
generation, the reader can check the web site at :

htttp://www.ircam.fr/equipes/repmus/OMax

1.2. Oracle Basics

The Factor Oracle concept comes from research on string
patterns indexation. Such research has applications in
massive indexation of sequential content databases,
pattern discovery in macromolecular chains, and other
domains where data are organized sequentially.
Generally stated, the problem is to efficiently turn a
string of symbols S into a structure that makes it easy to
check if a substring s (called a factor) belongs to S, and
to discover repeated factors (patterns) in S. The
relationship between patterns may be complex, because
these are generally subpatterns of other patterns;
therefore the formal techniques and representations for
extracting them, describing their relationships, and
navigating in their structure are not obvious. However,
these techniques are extremely useful in music research,
as music, at a certain level of description, is sequential
and symbolic and the pattern level organization of
redundancy and variation is central to its understanding.

Among all available representations (e.g. suffix trees,
suffix automata, compression schemes), FO’s represent
an excellent compromise.
1. they compute incrementally and are linear in number

of states and transitions
2. they are homogeneous, i.e. all transitions entering a

given state are labeled by the same symbol, thus
transitions do not have to be labeled, which saves a lot
of space

3. they interconnect repeated factors into a convenient
structure called SLT (suffix link tree)

4. their construction algorithm is simple to implement,
maintain and modify.

We will not detail the construction algorithm,
see [1, 16], but just recall the properties of FO’s. From a
stream of symbols s = s1s2 .. sn .., the FO algorithm builds
a linear automaton with (by convention left-to-right)
ordered states S0, S1, S2 .. Sn. Symbol si is mapped to
state Si and S0 is an initial state (source). As said above,

transitions in the FO are implicitly labeled by the symbol
mapped to their target state. Forward (or factor)
transitions connect all pairs of states (Si-1, Si), and some
pairs (Si , Sj) with i < j-1. Starting from the source and
following forward transitions one can build factors of s,
or one can check if a string s’ is a factor of s. We also
consider some construction arrows named suffix links,
used internally by the FO algorithm for optimization
purposes, which, however, have to be kept for musical
applications. These backwards pointing arrows connect
pairs of states (Si , Sj) where j < i. A suffix link connects
Si to Sj iff j is the leftmost position where a longest
repeated suffix of s[1..i] is recognized. In that case, the
recognized suffix of s[1..i] – call it u – is itself present at
the position s[j-|u|+1, j]. Thus suffix links connect
repeated patterns of s.

Fig 1 The Factor Oracle for string abbbaab. Suffix links
are in dotted lines.

Fig. 1 shows the FO built from the string s=abbbaab.
By following forward transitions, starting at the source,
one can generate factors, such as bbb or aab. Repeated
factors such as ab are connected through suffix links.

However, there is a problem with FO’s. As can be
checked on fig. 1, the « false positive » factor aba, which
is not present in s, can be generated as well. This is
because the FO automaton does not exactly model the
language of all factors of a string. They rather model a
language that contains it. In other terms, if s’ is a factor
of s, it will be recognized as such. On the other hand, if
s’ is recognized, it is probably a factor of s.

Fig 2 interconnection of repeated factors by suffix links

Fig 2 shows how maximum length repeated factors
are interconnected by suffix links. The thickness of the
lines represents the length of the repeated factor. This
length is computed at no additional cost by the oracle
algorithm, and we will see later that it provides a very
important clue in the navigation. The color of the lines
(gray or black) separates two disjoint substructures in the
set of suffix links, each of which forms a tree. The
overall suffix links structure is a forest of disjoint trees,
whose roots are the smallest and leftmost patterns
appearing in the trees (see fig. 3). A fundamental
property of these Suffix Link Trees (SLT) is that the

pattern at each node is a suffix of the patterns associated
to to its descendants (property 0). This way, the SLT
capture all the redundancy organization inside the
sequence.

Factor links also capture redundancy information,
because of the following oracle property: let u a factor of
s appearing at position i (position of its last symbol).
There will be a factor link from i to a forward state j
labeled by symbol a iff (property 1):
1. u is the sub-word recognized by a minimal factor link

path starting at the source 0 and ending in i.
2. u is present at position j-1, forming the motif ua at

position j.
3. the motif ua at position j is the first occurrence of ua

in the portion s[i+1, |s|]
So a factor link connects two occurences of a pattern,

albeit with some restrictions.

Fig. 3 suffix links form a forest of trees

1.3. Navigating the FO

We have seen that FO’s efficiently compute a structure
that describes the redundancy organization of a
sequence. In order to apply this to music, first of all, the
musical stream must be turned into a sequence of atomic
units. Previous works show how this can be achieved on
arbitrarily complex polyphonic structures [11]. A
classification scheme must be provided in order to
identify two polyphonic units and reduce them to the
same symbol. This is achieved through diverse chord and
texture classification schemes [7]. Then the sequence is
oraclized (in real-time in the case of interactive
applications). Then the oracle is navigated in order to
generate new sequences.

We will show the navigation basic principle in an
example. Let a,b,c be symbols and u,v, x, y motives,
s = xuayvaubxvcuv. A possible navigation would be,
starting at the beginning : xvauaubxuayvcubx.

Each time a motif w is output by the generation, and
this motif appears elsewhere in the learned sequence,
there is a possible choice to jump to the last symbol of
the repeating motif and start again from this location.
Such a musical transition is smooth because the location
where we’re coming from and the location where we
jump share a common suffix w. w is called a context, and
the process context-switching. In the previous example,
the contexts used for switching are in bold.

Of course the transition will be musically valuable
only with a significant context length, and if the
classification scheme –telling us that context w at
position i and context w at position j are the same
(although, in the actual music sequence, there could be

superficial differences) – is accurate. We will tell more
about this in the following sections.

Context switching can be achieved by the means of
factor links or suffix links. In the case of factor links,
property 1 tells us that two positions connected by a
factor link share a common context. So, as our purpose is
not factor recognition but rather generation, this property
can be exploited even though FO is not an exact factor
automaton. In the case of suffix links, the SLT structure
is precisely a navigation tool inside the contextual
organization of patterns. In addition, suffix links give
information about context length, and they connect all
possible contexts into an exhaustive structure revealing a
huge recombination potential.

2. FACTOR ORACLE AS A GENERATING
DEVICE : AN HEURISTIC APPROACH

As a difference with most applications using FO’s, we
use them as generating device, so we are interested in
specific properties of this representation and are looking
for navigation heuristics that make sense in a musical
context. The generation process actually edits a new
sequence out of the original one. The use of the term
“editing” is correct since the new sequence is a stream of
the old sequence in which connecting jumps are made in
context-coherent locations. It allows the creation of a
completely new sequence while keeping the stylistic
surface features of the original one as shown in [5].

Recent examination of the factor oracle has resulted in
quite an improvement of the oracle as a generating
device. Several enhancements are just a consequence of a
careful analysis of the way the oracle is constructed: for
generation applications, context-coherence is mandatory,
and it cannot be ensured by factor links. The other
observations are somehow less general and depend on
the problem at hand, that is, the generation of musical
improvisation.

2.1. Not using Factor Links

As stated above, the factor oracle classifies the repetitive
patterns in a given stream of data. It does it in two ways:
through forward arrows, called “factor links”, that
generate factors (with false positives), and connect the
occurrence of a pattern where it is first recognized with
its first repetition in the future; an through backward
arrows, called “suffix links”, that form a complex tree
structure interconnecting repeated patterns and giving
information about context length. The initial naive
navigation strategy was to follow the factor links with a
probability p, and follow suffix links with probability 1-
p, with p > 1-p. In the first case, the process was
replicating the original in segments whose length would
statistically depend on p. From times to times, through a
suffix link jump, it would generate a context-based
recombination. Listening tests have shown that the
quality of the generation, although globally convincing,
would in some places dramatically drop, due to some
awkward recombination. Careful analysis showed two
reasons to explain this problem: suffix recombination

would sometimes fail because of a small context length
and rhythmical inconsistencies (e.g. a fast figure,
expected to continue in a similar way, would collapse by
recombining with an unexpected long note); unwanted
recombination would sometimes be created by factor link
oriented generation.

2.2. The Problem with Factor Links: an Example

In the example shown in fig. 4 – an oracle on the string
AAFFBCFCDGGEEEBEEDGGEAFFBA – the problem
can easily be seen. The patterns AFFB and DGGE are
repeated, and a reasonable generation system would
assimilate the point at index 25 to the point at index 5.
Therefore, when generating a new sequence, when one
arrives at index 25, it may be desirable to allow the
possibility to suffix-jump from 25 to 5 considering that
the B of 25 is contextually very similar to the B in 5,
with the favorable context of 4 elements (AFFB).
However, the choice of a factor link at 5, in order to
pursue the sequence after the B, gives us three solutions:
1. The obvious one, going on to index 6, therefore

getting AFFBC
2. Continuing from where we come from (25=5 to 26),

getting AFFBA, but, in that case, we are not
generating anything new, and we end up canceling the
jump

3. Jumping to 16, a very bad solution: we get AFFBEE,
which makes us jump to the unknown with a single
symbol context: B.

This problem is acknowledged in the theory of factor
oracles [17]. It is related to the fact that the language
modeled by FO’s is not exactly the language of all
factors of a sequence, and to property 1, stating that a
factor link relates two patterns on behalf of their
common context u, but only when the first occurrence of
u corresponds to a minimal length factor path starting at
the source. This is exactly the case here: at position 5, the
minimum factor-path corresponds to the recognition of
‘B’, through the factor link (0, 5), so the factor link (5,
16) accounts for the very short context ‘B’ and not for
the more interesting context ‘AFFB’, thus the wrong
generation ‘AFFBE’.

Fig. 4 An oracle showing context-inconsistency with
factor links. Lines indicate suffix links, context length,
and factor links.

For that reason, we keep up to the first solution: after
a suffix-jump to position i, we go to the position
immediately on the right, i+1. In this case, we jump from

location 25 to location 6, generating … GEAFFBC.
Although the motif GEAFFBC was never played in the
original, it has a strong markovian justification [10] with
a context of length 4. For this same reason, we will avoid
factor links altogether, and alternate between sequential
reading of the oracle (..i, i+1, i+2,..) and suffix jumps
from location j to location i, followed immediately by a
sequential reading of i+1.

2.3. How to jump forward without any Factor Link?

However, one senses immediately a problem: if the
generation always goes backwards, it will end up being
stuck at the beginning of the sequence. This is the reason
why we use “reverse suffix link”, that is, we are also
exploring the arrows that arrive to the current generation
location.

By construction, there is, at most, one single suffix
link out of each state. However, several suffix links can
point to the same state. In our above example, the point
13 has two suffix links arriving to it: one coming from
14, with length = 2 (length of the common context), and
one coming from 17, also with length = 2. By
construction (property 0), reverse suffix links are always
better than suffix links leaving the same state (that is,
with a greater context length). So, given the use of these
reverse suffix links, not only can one equate location 25
to 5, but also 5 to 25, which seems logical, and an
infinite circulation inside the oracle is now possible.

2.4. Avoiding systematic Connections to the first
Occurrence

A suffix link always connects a pattern to a location
where this pattern has been recognized for the first time.
Practically, it means that all identical patterns in the
sequence are connected to the leftmost prototype, but
they are not connected to one another. There is the risk
of monotony, because all these patterns will context-
switch to the same leftmost prototype. This implies the
following context switching strategy : starting at the edit
point (the current location of the generation). We
examine:
1. The suffix link leaving the editing point (in the

example links 4)
2. The reverse suffix links leaving the editing point.
3. The reverse suffix links leaving the target of the suffix

link
4. The suffix link leaving the target of the suffix link, as

well as the reverse suffix links leaving it
5. Iteration of (4) down to state 0 or until some

optimization criteria are met.
This is the only way of navigating through all the

possible occurrences of the same pattern. This
examination results in a collection of switch candidates,
in the form of triplets (i, j, n) with i the edit point, j the
switching target, n the context length. The choice is
made in this collection by filtering upon a minimal
context length, and a probability distribution favoring
long contexts but leaving a chance for smaller ones.

2.5. Continuity Factor

When generating a new sequence, it is interesting to
know how much of the original sequence is kept. Will
the computed sequence closely resemble the original
one? Or, on the contrary, do we want many jumps and
editing points in order to get a very surprising sequence
compared to the original?

Therefore, one must be able to choose how much
continuity from the original sequence is desired: this is
called the continuity factor. In theory, it is a very simple
parameter: it represents the number of events that are
played continuously before looking for a new edit. In a
musical example, we could decide to try to edit every 16
notes (or polyphonic-slices, in case of a polyphonic
system). In that case, one would hear 16 notes of the
original sequence before the system connects (or tries to
connect) to another region of the sequence. So the
editing points would happen after 16 events.

A very similar factor could be statistically built. One
could decide, instead of waiting for 16 events, that for
each event there is 1 chance over 16 to jump. Although it
may seem very similar, this is not a choice we have
taken. There is a good reason for it: when we start a
sequence on a choosen point – e.g. a neat phrase
boundary - with a high continuity factor, we want the
improvisation to replicate a significant length of the
original phrase before jumping elsewhere. This would’nt
be ensured by the probabilistic approach.

2.6. Optimizing the Search for Editing Points: the best
ones, not only the best one

In any case, it is interesting to find a “good” editing
point, that is a point with a “good” switching context (up
to now, a good context is a context of near-maximal
length). A choice too strict for the continuity can be
taxing, if one falls one step short of a very good editing
point; in this case it would be better to have a continuity
factor a little bit longer, and in other cases a bit shorter.

But there is the other side of the coin: if we just
choose excellent editing points, there is the danger of a
constant looping between the two or three excellent
editing points in the original sequence (excellent
meaning with a very similar context). There is a trade-off
to be found, between a very repetitive generated
sequence and bad editing.

As for finding good editing points, the solution is to
define an “editing region” around a theoretical continuity
point. With a continuity value of N, the research is made
between N +/- N/5 (with a maximum of 10 before and
after). Therefore, for a continuity of 20, the system
searches for editing points between the 16th and the 24th
step after the last edit. All the switch candidates for all
the editing point are inter-sorted with regard to their
context length, and a probability distribution favoring
context length is applied, in order to choose one
candidate. Due to the filtering out of candidates with a
context length smaller than a given threshold, the
candidate list can be empty. In that case we reinitiate a

continuity sequence, with the heuristic that it is better to
replicate than choose a bad edition.

Why not to take the best solution? Because, if we do
so, the process ends up being deterministic with the same
looping path into the sequence being visited again and
again, and we will miss maximal or near-maximal
recombination points located out of this path. For the
same reason, if the candidate list contains only one
solution, we will decide to take it or not depending on a
predetermined probability (e.g. 0.5).

2.7. Repetition and Taboo

Loops are a very important problem, especially in the
case of optimized edits (but also without them).
Therefore we set a “taboo list” that precludes any former
editing point to come back before a certain number of
editions steps have occurred. We actually have two
strategies for taboos.

We can have a taboo list of a given length N (for
example, N=8), consisting in a circular buffer containing
the last editing targets. Any edit falling on these targets
will be forbidden. This is the easiest way.

However, as seen above, the oracle could “cheat”
around these points: frequently, the context length
increases when one approaches a very good solution: in
the example given fig. 5, we can observe how the
repetition of “evierge” creates a good editing zone.
Therefore we run the risk of a false loop.

Fig. 5 An oracle subjected to loop problems

The process will first edit from 26, going to 8. If the
continuity factor is around 18, it will find again 26, 25,
24 and 23 as very good editing points. Since 26 is taboo,
it will chose, for example 24 and jump to 7; later it will
chose 25 (26 and 24 being taboo), then 23. After a while,
the first edit will be popped out of the taboo list and the
whole process will loop. There are two solutions to this
problem:
1. When editing, check that the distance at which the

jump is performed does not bring us back
immediately into the same edit region

2. When feeding the taboo list, push not only the current
edit target, but also some of its neighbourhood
determined by the pattern of increasing context length
values.

2.8. Edit Quality Factor

Up to now, the only edit quality parameter used is the
context length. It makes sense, because the classification
function that identifies two polyphonic units as identical
symbols uses all the relevant musical parameters
(pitches, durations, dynamics). However, because of the
categorizing nature of this classification, quantization

must occur, especially in the domain of rhythm. The
classification function has a local scope: during the
construction of the oracle, it “sees” only two distant units
at a time and decides if they are the same. It has no
global view on patterns, that is, it cannot decide that,
although two patterns are not identical in all their
components, they can be globally identified modulo
some acceptable transformation. This is particularly
taxing for the rhythm because:
1. two patterns, identified as the same one, can in reality

differ significantly, because of an accumulation of
quantification error, leading to perceivable rhythmic
gaps when switching on these patterns

2. two patterns with the same pitch content and very
similar rhythmic motion are not identified as the same
one thus no editing will occur, thus we are loosing
valuable recombination possibilities

Listening tests have shown that these two problems
are perceptively much more prominent in the rhythm
domain than any other. Therefore musical parameters
have been separated in order to distribute the notion of
edit quality over two distinct phases of the process.
During the learning process, only pitches are used: they
contribute to the construction of the oracle, which is
actually a pitch oracle. The quality associated with
pitches is the context length as computed and stored into
the oracle. The rhythm quality is evaluated at generation
time, when the list of edit candidates is collected, by
computing and comparing the average rhythmical
density of the two occurrences of the context pattern for
each edit candidate. The candidates which do not show
an acceptable density ratio are filtered out of the
candidate list (as well as candidates with a too small
context length). This strategy has brought the best
musical results we have ever experimented since we use
FO’s.

Fig. 6 two rhythmical contexts that should be identified

Fig. 6 shows two rhythmical contexts that are
identified by our new quality strategy: as in “real”
improvisation, it is the global rhythm structure that is
taken into account. Now, phrases giving the same
rhythmical feeling than the original are generated, that
would never have been created if the classification
function had merged the pitch and duration parameters.

3. FORMALIZATION OF THE NAVIGATION
STRATEGY

3.1. Suffix Link Trees under the Hood

Being given:
• a sequence of symbols: seq
• an oracle – oracle(seq) – constructed on this

sequence,

the set of suffix-links in oracle(seq) constitute a forest
(collection of trees). Each tree looks as in fig. 7.

Fig. 7 a suffix link tree

In a suffix link tree (SLT), each child node is
connected to its parent through a suffix link. Each node
Ni corresponds to a unique position i in the original
sequence seq and in oracle(seq) (the reference to i is not
indicated in the picture). For the sake of convenience, we
will use i to designate both the node and the reference.

The label attached to each parent-child edge is defined
by the function rsl(child), that is the length of the context
associated to the suffix link (repeated suffix length).

The Suffix Link Tree (called SLT to remember it:
Sure, Lisp is Tedious), valued by the function rsl, is
associated to a structure of strict partial order between
the edges: the edges from a node to its children are all
superior to the edge connecting the node to its parent.
But there is no particular relation between children; in
particular, several edges can share the same label.

A path (a sequence of connected nodes) leading from
the root to a leaf is called a suffix-path with the following
property : call R(i) the context associated to the suffix-
link S(i)=j, i and j being nodes and j being the parent of i,
if the Suffix-Path from the root to a leaf is (k1, k2, ….,
kn), with k1=root and kn=leaf, then R(kr) is a suffix of
R(kr+q) for all 1 ≤ r ≤ n-1 , 1 ≤ q ≤ n-r. This relation is
the support of the partial order relation.

While using the oracle as a generating device, the
usual situation wit the SLT is:
• we are situated on a node i (position i in the sequence

seq)
• we are looking for all the contexts in seq, i.e. all the

motives of seq that are a suffix of seq [1…i]. We are
looking for contexts of length superior to a given
threshold s.

For the time being, we do not consider the quality
function unrelated to the oracle (e.g. rhythmic quality).
In order to reach all these motives without examining too
many positions in the oracle, we need a strategy of
navigation inside the SLT. For the sake of convenience,
the children from a given parent are sorted left to right
according to their ascending edge value.

Let:
• s be the threshold for the context length.
• L= |R(i)| be the length of the context

associated to suffix-link (i, S(i))
The upper triangle in fig. 8 represents one generation

of children below the node S(i) (consequently, i belongs
to it). The trapezes in the bottom represent all

generations down to the leaves after the first generation.
For now, we will admit that L > s. The other case will be
discussed below.

Fig. 8 distribution of context length in a SLT

We break up the direct children of S(i) in three
groups: from left to right, there are edges of values x < s
(grayed out), edges of values y with s ≤ y < L, and finally
those with edges of value z ≥ L. Identically, the next
generations are organized in three groups, with edge
values expressed in relation to the edge values in the first
generation : x’ > x, y’ > y and z’ > z (property 0 and
strict partial order on the edge values).

Every candidate node j in these sub-trees descends
from the root S(i) and thus shares a common suffix with
it. The length K of this suffix is given by the last edge
encountered when ascending from this node too the root.
j will also have a common suffix with i (if two nodes
have a common suffix with an ancestor, they do share a
common suffix that is the minimum of both suffixes). j
will share with i a suffix of length R= min (K, L). We
can see that R will take, for j standing in each of the
regions below i, the values R=x, R=y and R=L. There is
no need to explore the sub-trees in gray (R is inferior to
the threshold), whereas the other two regions have
valuable candidates, with a quality R ≥ s.

If we have a starting value L < s, we easily notice that
any candidate has a value R < s: there is no solution. If
L=s, the central triangle collapses, and we are left with
the right one only and solutions R=L=s.

But there is more to do in order to find more edit
candidates. We have to take the suffix-path up, starting
from S(i): S2(i), …, Sn(i) – that is the grandparent of i,
grand-grandparent, and so on –, up to the ancestor Sn(i)
such that the edge leading to it has a value smaller than
the threshold s (afterwards there is no solution anymore).
At each generation, the same algorithm must be applied
as we did for i and S(i) , as shown in fig. 9. Again, the
grayed parts are not to be explored. L’= |R(Sn-1(i))| is the
length of the common suffix between Sn-1(i) and its
parent Sn(i). x’denotes the values of edges that respects
s ≤ x’ < L’. The length of the context for the candidates

will be either x’ or L’, depending on the region of the
tree they belong to.

Fig. 9 recurrence over suffix links in a SLT

3.2. The Case of Maximal Suffixes

Given the sequence seq = abaababaaba, the
corresponding rsl are:

a b a a b a b a a b a
0 0 1 1 2 3 2 3 4 5 6

The rsl function has a saw tooth like shape, according
to the increasing or shrinking context. In order to
minimize the number of vertices in the SLT, we could
notice that in the repeated factor baaba (rsl = 6), the last
element encodes the maximal repetition; the lesser ones
(rsl = 5, 4, 3, 2) can easily be deduced from it; therefore
a given value of rsl =n is either inferior or equal to the
preceding one or is preceded by a series of decreasing
values n-k,…, n-1. The target of the suffix link starting at
n-p is just shifted by p units to the left with regard to the
target of the suffix link starting at n. Consequently, it
would seem practical to construct the SLT by just
considering the positions corresponding to the maximal
suffixes (just before a drop in context length). These
positions are characterized by rsl (i) ≥ rsl (i+1). The size
of the trees could be therefore considerably reduced.

Suppose we evaluate the possible edit candidates at
position i. By navigating on the tree we find a candidate j
with a context of length R. We know that the possible
candidates for edit point i-1 include the point j-1 with a
context of length R-1.

3.3. Algorithm:

Notations:
• L(i) = |R(i)| length of context attained by suffix-link

pointing from i.
• s = minimum threshold for context length
• children(i) yields the list of children k sorted in

descending order of L(k).
Details:
• StoreSolution (i j L) stores the candidates obtained by

jumping from location i to location j with context

length L. The candidate list is incrementally sorted by
context length and rhythm quality and it has a fixed
length (e. g. 6). So a new candidate is inserted in the
list only if pushes a worst solution out.

• SLTCannotImprove (i j L) is true if the candidate list
is full and if the context length L for the new
candidate is smaller than the minimum context length
already registered in the list.

Algorithm SLTSearch: given a state i, compute a list
of candidates j such that a context switch (i, j) is
acceptable with regard to context length and rhythm
quality.

Def SLTSearch (i)
For k in children(i)
while L(k) > s
 do
 SLTSearchSubTree (i, k, L(k))
 end
For ii = i then j
For j = father (i) then father (j)
while j != 0 and L(ii) >= s
do
 SLTConsiderSolution (i j L(ii))
 For k in children (j), k != ii
 while min(L(K), L(ii)) >= s
 SLTSearchSubTree(i,k, min(L(k), L(ii)))
end

Def SLTSearchSubTree (i j L)
SLTConsiderSolution (i j L)
For k in children (j)
do
 SLTSearchSubTree (i k L)
end

Def SLTConsiderSolution (i j L)
When SLTCannotImprove (i j L)
 SLTStopSearch()
When RhythmQualityOK (i j L)
 StoreSolution (i j L)

4. CONCLUSION

This exploration of Factor Oracles expressivity made us
encounter the typical offsetting surprises whoever takes
an analysis device backwards in the hope of transforming
it into a generative tool might expect. An analysis,
chosen for its computer-friendly behavior displays inner
devices – namely, the SLT – that allow it to become an
efficient context-driven generative device. However, this
transformation heavily relies on heuristic choices. Quite
important among those, is the desire to be able to reach
any relevant part of the Suffix Link Trees, thus to look
for optimization in SLT navigation. A related choice is
the anti-loop strategy, inducing the creation of a taboo
list and a gathering of best solutions into a sorted list
where the system will choose with regard to a probability
distribution favoring the highly ranked ones (but not
excluding the other ones). A continuity factor seems
crucial in a generative system that, basically, recombines
an existing sequence. However, our choice of “real” vs.
“probabilistic” continuity is mostly guided by musical
considerations. Finally, the separation / hierarchization
of (musical) parameters makes a big difference, as well

as the distribution of these parameters among the
learning and the generating processes.

5. ACKNOWLEDGMENT

We wish to thank all the great musicians who have
experimented with Omax, the real time interactive
environment based on FO designed by G. Assayag, G.
Bloch and M. Chemillier (aka the Omax Brother): David
Borgo, Mike Garson, Jean-Brice Godet, Philippe Leclerc
(in memoriam), Bernard Lubat, Guerino Mazzola,
François Nicolas, Hélène Schwartz, Dennis Thurmond.
They gave invaluable feedback and expertise on the art
of improvisation. We also wish to send a friendly
farewell to Vittorio Cafagna, who invented the term
Omax Brother, wherever he be now.

6. FO APPLICATIONS AND SOUNDS

http://www.ircam.fr/equipes/repmus/OMax

7. REFERENCES

[1] Allauzen C., Crochemore M., Raffinot M.,
Factor oracle: a new structure for pattern
matching, in Proceedings of SOFSEM'99,
Theory and Practice of Informatics, J. Pavelka,
G. Tel and M. Bartosek ed., Milovy, Czech
Republic, Lecture Notes in Computer Science
pp. 291--306, Springer-Verlag, Berlin, 1999.

[2] Assayag, G., Bloch, G., Chemillier, M., OMax-
Ofon, Sound and Music Computing (SMC)
2006, Marseille, 2006

[3] Assayag G., Bloch, G., Chemillier, M.,
 Improvisation et réinjection stylistique,
Rencontres musicales pluridisciplinaires,
GRAME, Lyon, 2006.
http://www.grame.fr/RMPD/RMPD2006/

[4] Assayag, G., Bloch, G., Chemillier, M., Cont,
A., Dubnov, S., Omax Brothers: a Dynamic
Topology of Agents for Improvization Learning,
Workshop on Audio and Music Computing for
Multimedia, ACM Multimedia 2006, Santa
Barbara, 2006

[5] Assayag, G., Dubnov, S., Using Factor Oracles
for Machine Improvization, G. Assayag, V.
Cafagna, M. Chemillier (eds.), Formal Systems
and Music special issue, Soft Computing 8, pp.
1432-7643, September 2004.

[6] Assayag, G., Dubnov, S., Delerue, O., Guessing
the Composer’s Mind: Applying Universal
Prediction to Musical Style, Proc. Int’l
Computer Music Conf., Int’l Computer Music
Assoc., pp. 496-499, 1999.

[7] Bloch, G., Chabot X., Dannenberg, R., A
Workstation in Live Performance: Composed
Improvization, Proceedings of International
Computer Music Conference, The Hague,
Netherlands, 1986.

[8] Dubnov, S., Assayag, G., El-Yaniv, R.
Universal Classification Applied to Musical
Sequences, Proc. Int’l Computer Music Conf.,
Int’l Computer Music Assoc., 1998, pp. 332-
340.

[9] Dubnov, S. Assayag, G., Improvization
Planning and Jam Session Design using
concepts of Sequence Variation and Flow
Experience, Proceedings of Sound and Music
Computing ’05, Salerno, Italy, 2005.

[10] Dubnov, S., Assayag, G., Universal Prediction
Applied to Stylistic Music Generation in
Mathematics and Music, A Diderot
Mathematical Forum, Assayag, G.; Feichtinger,
H.G.; Rodrigues, J.F. (Eds.), pp.147-160,
Springer-Verlag, Berlin, 2002.

[11] Dubnov, S., Assayag, G., Lartillot, O.,
Bejerano, G., Using Machine-Learning Methods
for Musical Style Modeling, IEEE Computer,
Vol. 10, n° 38, p.73-80, October 2003.

[12] Conklin, D. Music Generation from Statistical
Models , Proceedings of the AISB 2003
Symposium on Artificial Intelligence and
Creativity in the Arts and Sciences,
Aberystwyth, Wales, 30– 35, 2003.

[13] Cont, A., Dubnov, S., Assayag, G., A
framework for Anticipatory Machine
Improvisation and Style Imitation, Proceedings
of the Third Workshop on Anticipatory
Behavior in Adaptive Learning Systems
(ABiALS 2006), Butz M.V., Sigaud O., Pezzulo
G., Baldassarre G. (eds.) 2006.

[14] Cont, A., Dubnov, S., Assayag, G.,
Anticipatory Model of Musical Style Imitation
using Collaborative and Competitive
Reinforcement Learning, in Lecture Notes in
Computer Science, Anticipatory Behavior in
Adaptive Learning Systems: From Brains to
Individual and Social Behavior. Springer
Verlag, to appear 2007.

[15] Francois, A.R.J, Chew, E., Thurmond D., MIMI
- A Musical Improvisation System That Provides
Visual Feedback to the Performer , technical
report 07-889 PDF, University of Southern
California Computer Sciences Dpt,
http://www.cs.usc.edu/Research/ReportsList.ht
m#2006, 2006

[16] Lefebvre, A., Lecroq, T., Computing repeated
factors with a factor oracle. In L. Brankovic
and J. Ryan, editors, Proceedings of the 11th
Australasian Workshop On Combinatorial
Algorithms, pages 145–158, Hunter Valley,
Australia, 2000.

[17] Mancheron, Alban; Moan, Christophe,
Combinatorial Caracterization of the Language
recognized by Factor and Suffix Oracle,
International Journal of Foundations of
Computer Science, World Scientific 16 (6),
1179--1191, (2005)

