
HAL Id: hal-01161369
https://hal.science/hal-01161369

Submitted on 8 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Evolutionary Approach to Computer-Aided
Orchestration

Grégoire Carpentier, Damien Tardieu, Gérard Assayag, Xavier Rodet,
Emmanuel Saint-James

To cite this version:
Grégoire Carpentier, Damien Tardieu, Gérard Assayag, Xavier Rodet, Emmanuel Saint-James. An
Evolutionary Approach to Computer-Aided Orchestration. EvoMUSART, Apr 2007, Valence, Spain.
pp.488-497. �hal-01161369�

https://hal.science/hal-01161369
https://hal.archives-ouvertes.fr


An Evolutionary Approach
to Computer-Aided Orchestration

Grégoire Carpentier1, Damien Tardieu1, Gérard Assayag1, Xavier Rodet1, and
Emmanuel Saint-James2

1 IRCAM-CNRS, UMR-STMS 9912, 1 place Igor Stravinsky, F-75004 Paris, France
2 LIP6-CNRS, 8 rue du Capitaine Scott, F-75015 Paris, France

Abstract. In this paper we introduce an hybrid evolutionary algorithm
for computer-aided orchestration. Our current approach to orchestration
consists in replicating a target sound with a set of instruments sound
samples. We show how the orchestration problem can be viewed as a
multi-objective 0/1 knapsack problem, with additional constraints and a
case-specific criteria formulation. Our search method hybridizes genetic
search and local search, for both of which we define ad-hoc genetic and
neighborhood operators. A simple modelling of sound combinations is
used to create two new mutation operators for genetic search, while a
preliminary clustering procedure allows for the computation of sound
mixtures neighborhoods for the local search phase. We also show in which
way user interaction might be introduced in the orchestration procedure
itself, and how to lead the search according to the users choices.

1 Introduction

In the last decades Computer-Aided Composition (CAC) software have pro-
voked a growing interest among contemporary music composers and have be-
come a core element in the development of their works. Originally, motivation
for the design of such tools was to provide composers with the ability to eas-
ily manipulate musical symbolic objects, such as notes, chords, melodies, poly-
phonies. . . Simultaneously, another main branch in computer music research con-
centrated its efforts on sound analysis, sound synthesis, and sound processing,
leading to a finer comprehension of many aspects of the wide sound phenomenon,
and among them, the timbre of musical instruments.

In the meantime, contemporary composers have slowly started - since the
beginning of the 1970s - to move away from purely combinatorial aspects of
musical structures, and have drawn their attention to the spectral properties of
sound. This turning point in western orchestral music set up a new aesthetic
direction that has been carried on by later and today’s composers. Simultane-
ously, the parallel evolution of CAC made these pioneers and their successors
dream of a composition tool that could cope with rich timbre information to
help them in their orchestration tasks. Unfortunately, such a tool required that
techniques from various fields of music research achieved a certain degree of



maturity. Today, the tremendous knowledge inherited from the analysis of in-
strumental sounds, the breakthrough in timbre research, the accessibility of large
sound databases and the computer performance allow for the bridging of the gap
between traditional CAC systems and the current potential of sound analysis and
manipulation.

In a previous paper [1] we had presented a new tool for computer-aided
orchestration, with which composers can specify a target sound and replicate it
with a given, pre-determined orchestra. The development of this tool was driven
by the wish to consider globally the complex mechanism of timbre perception
and to allow the discovery of large, non-trivial solutions. Unfortunately, the NP-
hardness of the problem discouraged us to expect orchestrations involving more
than two or three instruments. In the present paper we introduce an hybrid,
genetic/local-search algorithm designed to face the huge combinatorial problem
arising in our orchestration procedure. This algorithm is mainly inspired by
Jaszkiewicz’s MOGLS [2], and has been significantly adapted to our specific
case. The paper is organized as follows. Section 2 reports on previous work in
the field of computer-aided orchestration. Section 3 recalls the main paradigms
of our system and show why the orchestration procedure can be considered as a
multi-objective knapsack problem. Our orchestration algorithm itself as well as
specific genetic and neighborhood operators are then presented in Sect. 4. Last,
conclusions and future work are discussed in Sect. 5.

2 Previous Works in Computer Orchestration

Computer-aided orchestration is a relatively new topic of interest in the com-
puter music domain, and the literature in this field is somehow poor. In our
precedent paper we had reviewed the three previous works that aim at designing
orchestration tools. We briefly recall them here, for more details see [1].

Rose and Hetrik [3] propose a Singular Value Decomposition (SVD) -based al-
gorithm that allows either the analysis of a given orchestration or the proposition
of new orchestrations that approach a target sound. Another method proposed
by Psenicka [4] addresses this problem by performing the search on instruments,
not directly on sounds. In a Lisp-written program called SPORCH (SPectral OR-
CHestration), the author uses an iterative matching on spectral peaks to find
a combination of instruments that best fit the target sound. The third system
is proposed by Hummel [5]. The principle is similar to Psenicka’s, except that
it works on spectral envelopes rather than on spectral peaks. The program first
computes the target’s spectral envelope, then iteratively finds the best approxi-
mation.

All these methods present the significant advantage of requiring relatively
low computation times. However, as they all rely on spectrum decomposition
techniques (invoking either SVD or matching-pursuit methods), they implicitly
consider a sound target replication procedure as filling a LIFO stack in which
“bigger” elements are introduced first. Roughly speaking, these methods can
been seen as kind of greedy algorithms which are known to achieve only ap-



proximations of the best solutions in most problems. On the other hand, they
fail in considering the timbre perception as a complex, multidimensional mech-
anism, as the optimization process is driven by a unique objective function. Our
orchestration system and algorithm were designed to overtake these limitations.

3 Orchestration Viewed as a Multi-Objective Knapsack
Problem

3.1 Overview of our Orchestration System

The general framework of our orchestration system is shown on Fig. 1. As pre-
sented in [1], one of the core concepts of our tool is the target object. This target
is a set of audio and symbolic features that describe different aspect of the sound
to be “reproduced” with an orchestra. These features may come either from the
analysis of a pre-recorded sound, or from a compositional process.

The number of features is not fixed yet and will in all probability increase
as research goes on. Currently we use little and static spectral data as audio
description, and a set of pitches as symbolic features. This might seem somehow
poor, however our purpose is not to build an exhaustive sound description, but
rather to design a general framework which can be easily extended by adding
new features when needed.

The target being defined, an orchestration engine uses an instrumental knowl-
edge database (features database) created by the analysis and structuring of
large sound sample databases, to suggest instruments notes combinations (or-
chestration proposals) that “realize” the target. More precisely, the procedure
searches for combinations whose features best match the target’s features. The
orchestration proposals may afterwards be edited, transformed, or simulated.

3.2 The Multi-Objective Knapsack Approach

Let E be the set of all sounds potentially produced by any individual instrument
in a given orchestra, P (E) the power set of E, T a target object, and S(T ) the
set of elements of P (E) that “sound” as close to the target as possible. Starting
from an initial point K0 of P (E), our goal is modify K0’s elements in order
to converge into S(T ). In other words, the elements of K0 may be (at will)
removed, substituted, or completed by other elements, provided that the total
number of elements does not exceed the orchestra’s size. As stated, the problem
is extremely close to the Binary Knapsack Problem (KP-0/1), well known in
operational research. The KP-0/1 is usually formulated as follows:

(KP-0/1)






max z(x) =
∑n

i=1 pixi

s.t. xi ∈ {0; 1}∑n
i=1 wixi ≤ C

(1)

where n is the size of the items set, wi is the weight of item i, pi the profit
generated by inserting item i in the knapsack, and C is the total capacity of the



AbstractionSound

Target

ORCHESTRATION
ENGINE

Orchestration
proposals

Transformations,
navigation

Simulation

(sampler)

Feature-extraction
module

Target construction
interface

DB
(features)

DB
(sounds)

Fig. 1. General architecture of our orchestration tool.

knapsack. In our orchestration context, the items are the sounds of the database,
all the weights wi are all equal to one and the capacity is the size of the orchestra.
The definition of the profits is less straightforward and will be discussed in the
next section.

As previously said, the target object is a set of features, and each feature is
to be seen as a specific dimension of timbre. As we aim at capturing the timbre
perception mechanism globally, all dimensions have to be considered jointly in
the objective function. Unfortunately we cannot predict the relative contribution
of each dimension, because we do not know a priori which target’s characteristics
the composer would like to reproduce, and most of the times neither does he
(she).

The multi-objective approach is therefore mandatory. In multi-objective op-
timization the final output is not a unique solution but a set of efficient solutions,
also called Pareto-optimal solutions. A solution is said Pareto-optimal when no
other solution achieves better values on every criteria. For more details see for
instance [2]. Formally, the Multi-Objective Knapsack Problem (MOKP-0/1) is
stated as follows:

(MOKP-0/1)






max zk(x) =
∑n

i=1 pk
i xi

k = 1, ..., K
s.t. xi ∈ {0; 1}∑n

i=1 wixi ≤ C

(2)

where pk
i is the profit of item i relative to the dimension (or criterion) k.



3.3 Constraints and Limitations

The MOKP-0/1 formulated in Eq. 2 cannot be applied directly to the orches-
tration problem. First, it is virtually impossible to define the profits without
knowing in advance all the elements in the combination. In other words, the
profits are correlated; they are not anymore a function of a single index i, but
of all indices 1, ..., n. For instance, let x be an instrument sound sample, and K1

and K2 two sound mixtures defined as K1 = {x} and K2 = {x, x}. Its is straigt-
forward that K1 and K2 have the same spectral features, as adding x to K1 just
increase its loudness. Figure 2 show how this problem can be overcome. Criteria
are jointly computed each time a sound combination is created or changed. First,
an aggregation method computes the combination features from the individual
sounds’ features. Then a set of distance functions compute the relative distances
(along each timbre dimension) between the combination and the target. Distance
are relative for homogeneity reasons. With such a formulation, the orchestration
problem turns into a goal attainment problem, because we wish to minimize the
distances to the target along each timbre direction, with an ideal value of zero
for each criteria (when the goal is attained).

The other problem is related to orchestra’s limitations. Re-using notations
introduced in Sect. 3.2, a lot of elements of P (E) are not physically playable by
the orchestra, simply because a combination with two trombone sounds requires
at least two trombone players, which is not necessary the case. We therefore in-
troduce additional constraints for discarding non-feasible solutions. Let J be the
number of different instruments in the orchestra and Ij(i) a binary function, tak-
ing the value 1 if sound i is played by instrument j, 0 otherwise. The formulation
of the Multi-Objective Orchestration Problem (MOOP) is now possible:

(MOOP)






min zk(x) = Dk(T, x1, ..., xn)
k = 1, ..., K
s.t. xi ∈ {0; 1} (a)∑n

i=1 xi ≤ N (b)
∀j ∈ {1, J},

∑n
i=1 xiIj(i) ≤ Nj (c)

(3)

where N is the size of the orchestra, Nj the total number of instruments of
type j, and Dk(T, x1, ..., xn) the distance function between the target and a
combination along dimension k.

Fig. 2. Soundset criteria computation flowchart.



4 An Hybrid, MOGLS-Inspired Algorithm

The operational research literature counts many efficient exact methods (such
as Branch-and-Bound or dynamic programming) for solving the knapsack prob-
lem, either uni- or bi-objective. For a complete review of these methods see [6].
However it is generally admitted that exact methods fail when the number of
objectives is greater than two. Moreover, Branch-and-Bound techniques require
the knowledge of items profits for the calculation of bounds, and are therfore in-
applicable to the problem formulated in Eq. 3. Consequently, the use of heuristics
methods is mandatory in our case.

Jaszkiewicz has proposed in [2] an efficient hybrid algorithm (called MOGLS)
for multi-objective optimization, and has proved in [7] the superiority of MOGLS
upon other methods for the MOKP-0/1. Basically, MOGLS is an evolutionary
method that alternates genetic search and local search over the iterations, ex-
ploiting the fact that genetic and local search heuristics have different and com-
plementary effects on populations of solutions. Here again, some preliminary
concepts and operators need to be introduced before presenting our MOGLS-
inspired algorithm in Sect. 4.5.

4.1 Preprocessing

Two preprocessing operations are performed before the orchestration procedure
itself. First, the target is analyzed with a multi-f0 extraction method in order
to discard a large set of candidates, as explained in [1]. Assume for instance the
target’s partial set can be explained by two pitches, C3 and Eb4. The candidate
selection procedure will here keep only database sounds whose pitch belongs
to C3 or Eb4 harmonic series, i.e. C3, C4, G4, C5, E5. . . and Eb4, Eb5, Bb5,
Eb6, G6. . . respectively. We call “pools” these harmonic groups and “state” the
harmonic rank in a given group. With such a terminology, a G4-pitched sound
will belong to the C3 pool with state 3. Thanks to this concept we define ad-hoc
genetic operators in section 4.3. After the multi-f0 extraction procedure a new
database is created by filtering items by pitch and by instrument. The database
items are sorted by increasing pitches, and within each pitch group, by increasing
spectral centroid.

In a second step, the database items are clustered to form groups of sounds
close to each other. The criterion used in the categorization phase is a euclidean
distance on sounds contributions to the target’s most important partials (for
more details see [1]). In other words, this spectral distance is target-specific. We
call “domain” of a given sound the set of all sounds belonging to the same cluster.
This notion will be exploited in the local search procedure (see Sect. 4.4).

4.2 Modeling Sound Combinations

Sound combinations are modeled by a “soundset” object, containing two main
slots: “elements” and “features”. The elements field is made out of four vectors:
the items indices in the sound database, the pools and states indices, and the



instrument group vector. This last information is used to handle orchestra’s
limitations (constraint (c) in Eq. 3). The pools vector is modified only when
sounds are added or removed of the set (see Sect. 4.3).

Each time a sound combination is created or modified, features and criteria
are computed as shown in Fig. 2. Then, a masking test procedure is invoked to
“clean” the set by removing all non-perceptible components.

As suggested in [7] and [2] the combinations fitness is computed as a weighted
aggregation of criteria with a weighted Tchebycheff function:

F (T, x1, ..., xn) = max
k

λkDk(T, x1, ..., xn) (4)

where (λk)1≤k≤K are the aggregation weights, randomly drawn on each iteration.

4.3 Genetic Operators

We use the conventional binary string representation for the genetic encoding,
and the crossover operator is the classic 1-point crossover. Mutation, however,
is defined differently than the traditional bit-flip. In fact, we use three different
kinds of mutations:

1. Horizontal shift: The sound is replaced by another one with same pool and
state, but the instrument, the playing style and the dynamics may differ.
The substitute sound is chosen to have a spectral centroid value as close as
possible to the original.

2. Vertical Shift: The sound is replaced by another one with same instrument
and pool, but the state may differ. The probability of an up shift is lower
than the probability of a down shift.

3. Addition or Deletion.

An illustration of all genetic operators is show on Fig. 3.

4.4 Adaptive Search for Local Exploration

Local search is used to search for better solution within the neighborhood of
sound mixtures. The method is inspired by adaptive local search introduced by
Codognet and al. [8]. Here again the objective function is a weighted Tchebycheff
distance with random weights. The variables are the combination’s items and
the domains are their associated classes as built during the clustering phase (see
Sect. 4.1). As we cannot define a marginal cost function for each sound in the set,
the currently selected variable is the non-taboo item with the highest loudness
value.

4.5 Orchestration Algorithm

MOGLS for MOOP Our MOGLS-like orchestration method uses a popula-
tion of solutions, each of them modeling a sound combination as explained in



Fig. 3. Genetic operators for an orchestration algorithm.

Sect. 4.2. At each iteration, a set of weights is drawn randomly and fitness is
computed. Then, individuals are chosen to fill the mating pool with a binary-
tournament selection method. Genetic operators then apply and offsprings are
inserted in the population if the corresponding mixtures are playable by the or-
chestra. Afterwards, a new set of weights is drawn and another set of N best
individuals are selected on the basis of the new fitness values for local-search
improvement. As recommended by Ishibushi and al. in [9], The genetic part and
the local search part have been kept separated. Furthermore, the mating pool
size and the number of local search iterations have been chosen to allow equal
computations times to both phases, as also suggested by the authors in [9].

User Interaction As explained in [1], user interaction was thought as a fun-
damental paradigm in the design of our system. Interaction is introduced in the
orchestration algorithm itself in the following way: When the algorithm reaches
the maximum number of iterations, the user is asked to choose the solution of
the Pareto set he (she) finds the closest of the target. New aggregation weights
are then computed in ordered to rank the chosen solution first on the fitness
scale. These weights reflect the user preferences and are calculated as in Eq. 5:

λk =
D−1

k (T, x1, ..., xn)
∑

k D−1
k (T, x1, ..., xn)

(5)

We then explore the direction of the search space implicitly suggested by the
user’s choice. The algorithm remains the same, but the weights have know fixed
values, as calculated with Eq. 5. The overall orchestration procedure schema
comes hereafter.



Orchestration Procedure
1. Build a target object and perform mutli-f0 analysis on target.
2. Build new sound database, by filtering on pools and instruments.
3. Sort items and compute sound clusters.
4. Build initial combinations population.
5. Until a stopping criterion is met, do:

– Draw random weights and compute fitness with Eq. 4.
– Fill mating pool with a binary tournament selection scheme.
– Apply crossover and mutation operators.
– Draw new random weights and re-compute fitness.
– Select N best individuals and improve them with local search.

6. Ask the user to choose one best solution in the current Pareto set.
7. Compute the user’s weights with Eq. 5.
8. Goto step 5 with the new fixed weights. Repeat procedure at will.

4.6 Results

Evaluation methods are difficult to design in our case because there is no mea-
sure of performance adapted to the orchestration problem. Traditionally perfor-
mances of multi-objective optimization methods are based on the size, shape,
density, or homogeneity of the Pareto set, or the distance between the theoretic
Pareto set and its approximation, when the former is known. In the orchestration
problem the theoretic Pareto is only known when the target is exactly playable by
the orchestra, for instance a mixture of the instrument database sounds. In that
specific case the theoretic Pareto set is reduced to the target itself. Otherwise,
Pareto sets obtained by our algorithm are difficult to score. In all probability
the evaluation procedure will mostly depend on composers expectations.

Early experiments with our system however gave encouraging results. Exam-
ples of pre-recorded sound target orchestrations are available on the following
web page:
http://recherche.ircam.fr/equipes/analyse-synthese/dtardieu/exemple orchestration.html

5 Conclusions and Future Work

In this paper we have exposed how an orchestration task could be viewed as a
variant of the Multi-Objective Knapsack Problem (MOKP-0/1). A refinement
of criteria computation and a set of extra constraints have been introduced to
define the Multi-Objective Orchestration Problem (MOOP). An evolutionary
algorithm inspired of Jaszkiewiecz’s MOGLS have then been proposed to ad-
dress the MOOP. This algorithm is a hybrid method where genetic search and
local search alternate. We have also explained how user interaction could be
introduced in the search procedure itself, and how the user’s choice among the
current solutions could help in guessing its preferences.

Future research will focus on the design of evaluation measures and pro-
cedures for our method. Alternative approaches to MOGLS for multi-objective
search might then be tested. In the meantime, Gaussian Mixture Models (GMM)



-based instruments models trained on large instruments sample databases should
help on one hand in increasing the power of generalization of our system, on the
other hand in defining appropriate combinations neighborhoods. This should
significantly ease both genetic and local search procedures.

6 Acknowledgments

Once again the authors would like to deeply thank the composers Yan Maresz
and Joshua Fineberg for their involvement in the project. Their everyday support
is always a great source of motivation for future development and research.

References

1. Carpentier, G., Tardieu, D., Assayag, G., Rodex, X. and Saint-James,E.: Imita-
tive and Generative Orchestrations Using Pre-analyzed Sound Databases. Proc.
of Sound and Music Computing conference, Marseille, France (2006) 115–122
http://mediatheque.ircam.fr/articles/textes/Carpentier06a/

2. Jaszkiewicz, A.: Genetic Local Search for Multi-Objective Combinatorial Optimiza-
tion. European Journal of Operational Research (2002)

3. Rose, F. and Hetrick, J.: Spectral Analysis as a Ressource for Contemporary Or-
chestration Technique. Proc. of Conference on Interdisciplinary Musicology (2005)

4. Psenicka, D.: SPORCH: An Algorithm for Orchestration Based on Spectral Analyses
of Recorded Sounds. Proc. of International Computer Music Conference (2003)

5. Hummel, T.: Simulation of Human Voice Timbre by Orchestration of Acoustic Music
Instruments. Proc. of International Computer Music Conference (2005)

6. Martello, S. and Toth, P.: Knapsack problems : Algorithms and computer imple-
mentations. John Wiley & Sons, Chichester (1990)

7. Jaszkiewicz, A.: Comparison of local search-based metaheuristics on the multiple
objective knapsack problem. Foundations of Computing and Design Sciences 26
(2001) 99–120

8. Codognet, P., Diaz, D., and Truchet C.: The Adaptive Search Method for Con-
straint Solving and its Application to Musical CSPs. 1st International Workshop on
Heuristics (2002)

9. Ishibuchi, H., Yoshida, T., and Murata., T.: Balance between Genetic Search and Lo-
cal Search in Hybrid Evolutionary MultiCriterion Optimization Algorithms (2002)


