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ABSTRACT

This article is concerned with the F0 tracking in monodic instrument solo recordings. Due to reverberation,
the observed signal is rather polyphonic and single-F0 tracking techniques often give unpromising results.
The proposed method is based on multiple-F0 estimation and makes use of the a priori knowledge that the
observed spectrum is generated by a single monodic instrument. The predominant F0 is tracked first and
the secondary F0 tracks are then established. The proposed method is tested on reverberant recordings and
show great improvements compared to single-F0 estimator.

1. INTRODUCTION

Many single-F0(fundamental frequency) estimators
have been developed through the years and quite a
few have been reported robust. However, when it
comes to analyzing monodic instrument solo record-
ings, most of which are reverberant, the robustness
of most of the single-F0 estimators are not guaran-
teed. This comes from the fact that reverberation
extends the note duration and makes the observed
spectrum polyphonic. However, single-F0 estimator
assumes that there is only one F0 present in the ob-
served signal. If the algorithm does not make use of
instrument models, single-F0 estimator tends to fa-
vor a subharmonic which explains both the current
note and the reverberation of the preceding notes.

Several studies have tried to cope with the rever-
beration issue in monodic instrument solo record-
ings. In [1], instrument model priors and duration
priors have been included in a Bayesian inference
framework. The performance for transcribing solos
is promising but requires parameter tuning on prior
distributions. In [2] the authors adapt a double-F0
estimator (an extension of YIN [3]) to the task of
F0 tracking for monodic instrument recordings and
it handles better reverberant sounds compared to
single-F0 estimation. This encourages us to treat
this problem as a multiple-F0 tracking task. Under
the assumption that there is single monodic instru-
ments playing, the observed short-time spectrum
can be modeled by a predominant harmonic source
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plus the reverberant parts of the preceding notes and
background noise. Therefore, we propose to first de-
code the predominant F0 track from a set of hypo-
thetical F0 combinations and then the reverberant
parts can thus be tracked.

This paper is organized as follows. First, an
overview of the proposed method is introduced. In
section 2, a frame-based multiple-F0 estimation is
presented. For each analysis frame, multiple-F0 es-
timation provides a list of hypothetical F0 combina-
tions for the later tracking stage which is explained
in section 3. Lastly, testing examples are shown and
conclusions are drawn.

2. SYSTEM OVERVIEW

The proposed F0 tracking system is mainly com-
posed of three stages (Fig. 1). For each analysis
frame, multiple-F0 estimation provides the list of
the best-ranked hypothetical F0 combinations. F0
tracking can thus be considered as decoding the op-
timal path through the trellis structure form by the
hypothetical F0 combinations across the frames. As
the example shown in Fig. 2, multiple-F0 estimation
proposes at each frame a pre-fixed number of candi-
date combinations for each hypothetical number of
F0s (denoted as M). Each hypothetical combination
is denoted as {F0i

M,c} for the cth top-ranked candi-
date combination at time i. We propose to decode
first the predominant F0 track based on individual
F0 probability which is inferred from the multiple-
F0 combinatorial properties. Then, the secondary
F0s can be tracked by extending the predominant
F0 tracks. In this article, we consider the secondary
F0s be resulted only from the reverberation.

Multiple
F0
estimation

Predominant
F0
decoding

Secondary
F0
tracking

Fig. 1: Overview of the F0 tracking system

3. MULTIPLE F0 ESTIMATION

In [4], we have proposed a frame-based multiple-
F0 estimation algorithm based on a generative poly-
phonic signal model. The inference procedure is sim-
ilar to the Bayesian model proposed in [5]. However,
to prevent the huge computational requirements of
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Fig. 2: Decoding the optimal multiple-F0 path

numerical likelihood maximization, a more prag-
matic approach is proposed to construct and eval-
uate hypothetical sources, which is guided by three
physical principles for nearly-harmonic sounds:

1. Spectral match with low inharmonicity

2. Spectral smoothness

3. Synchronous amplitude evolution within a sin-
gle source

These principles are formulated as four criteria: har-
monicity HAR, mean bandwidth MBW and centroid
SPC of Hypothetical Partial Sequences (HPS), and
the standard deviation of mean time of hypotheti-
cal partials SYNC. The four criteria together evalu-
ate the plausibility of each F0 combination, which is
proportional to the likelihood p(Oi|{F0i

M,c}) where

Oi denotes the observed spectrum at instant i. An
overview of the proposed multiple-F0 estimation is
shown in Fig. 3. The process is listed step by step
in the following.

i. Hidden partial extraction:
Extracting hidden partials is essential to in-
crease the accuracy of polyphonic signal analy-
sis since the resolution is necessarily limited. To
search for the potential spectral collision possi-
bly contains hidden partials, we evaluate the
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Fig. 3: Multiple-F0 estimation

shapes of the observed peaks and their spec-
tral properties using four descriptors [6]. This
allows selecting the possibly overlapped par-
tials which are then processed to extract hidden
peaks [7].

ii. Noise component estimation:
It is important to identify target components to
be explained by the generative nearly-harmonic
model and disregard the unwanted components.
In [8], we have developed an iterative algo-
rithm to estimate the noise level adapted to the
observed spectrum (see the example shown in
Fig. 3), by which the noise peaks are classified.
While harmonic matching is performed in the
later stage, matches to noisy peaks are disre-
garded.

iii. Single-F0 candidate selection:
A harmonic matching technique is used to pro-
vide the single-F0 candidate list.

iv. Hypothetical Partial Sequence construction:
Constructing HPSs utilizes Principle 2 and
the knowledge of spectral locations where
partial overlaps may occur according to the
multiple-F0 combination under investigation.
We have developed a method for reassigning
overlapped partials [4], by which partials in
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Fig. 4: Noise level estimation

a HPS are classified as “effective” and “non-
effective”. The non-effective partials don’t have
specified amplitudes and are disregarded.

v. Scoring multiple-F0 combinations:
At this stage, a score function [7] is used to iter-
atively evaluate the plausibility of the number
of F0s starting from one. This iterative search
is stopped once the score improvement falls be-
low a threshold. The idea is simple: when
one source more than the true source number
is added in the model to explain the observed
spectrum, the score improvement should be lim-
ited.

The score function is defined as the linear com-
bination of four score criteria:

D = p1 ·HAR+p2 ·MBW+p3 ·SPC+p4 ·SYNC
(1)

where {pj}
4
j=1 are the weighting parameters for

the four criteria. Here we briefly summarize the
score criteria below:

HAR is an indication of harmonicity and to-
tally explained energy. To evaluate the smooth-
ness of the spectral envelope of a hypothetical
source, we use the mean bandwidth and the cen-
troid of a HPS. Due to partial overlapping,
the “non-effective” partials don’t provide spe-
cific spectral amplitudes. To evaluate MBW, we
remove the “non-effective” partials. To evaluate
SPC, we reconstruct the “non-effective” partial
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amplitudes by interpolation. To evaluate the
synchronicity of the temporal evolution of the
hypothetical partials, we rely solely on the “ef-
fective” partials.

For each F0 hypothesis we define effective
weighting as the sum of linear amplitudes of “ef-
fective” partials. Then the individual properties
of the last three criteria are weighted by the ef-
fective weighting and then summed to define the
combinatorial properties.

Notice that HAR favors energy explanation of
the observed spectrum, while MBW, SPC and
SYNC work together as constraints to the hy-
pothetical spectral models. Therefore, the cri-
teria perform in a complementary way and the
weighting parameters are optimized by an evo-
lutionary algorithm to balance the relative con-
tribution of each criterion. To refine precise F0
values, we apply a linear regression of effective
partial frequencies. An experimental setup sim-
ilar to [9] has been carried out, which shows
competitive performance [4].

vi. Iterative increase the number of F0s:
We propose an iterative search to infer the plau-
sible hypothetical number of F0s. The true
number of F0s is denoted as N , while the in-
ferred hypothesis is denoted as SM . Starting
with S1, the system iteratively evaluates the
score improvements of all possible hypotheses
{S1, . . . , SM , SM+1}, where SM+1 is the last hy-
pothesis. SM+1 provides a score improvement
(w.r.t. the score of SM ) under a threshold δ,
which leads to the termination of the iterative
evaluation. Then, the hypothesis SM is consid-
ered as the most plausible number of F0s in the
current frame. Therefore, the number of F0 is
correctly inferred if SM = SN .

In order to obtain δ, we investigate the score im-
provement of the correct estimates evaluated on
our artificially mixed polyphonic database [4].
The score improvements of iterative F0 search
are shown in Fig. 5 for two-note, three-note and
four-note mixtures. While SM = N + 1, we ob-
serve that the score improvements are close to
zero. This means that an additional harmonic
source does not significantly improve the like-
lihood of the underlying model. Based on the

observed score improvements, we model them
from SM to SM+1 as Gaussian distributions.
This serves as a mechnism to stop the iterative
search and meanwhile defines the probability of
the most probable state. In the current imple-
mentation, the threshold is set to include 85%
of the correct estimates from S4 to S5 in the
four-note mixtures. This might result in some
spurious F0s when N < 4 but guarantee the
inclusion of the correct F0 combinations. The
top-five ranked hypothetical F0 combinations
from M = 1 to M = 4 are kept for the later
tracking stage.

4. TRACKING MULTIPLE-F0 TRAJECTORIES

After evaluating the plausibility of the most prob-
able F0 combinations {F0i

M,c}s, we start decoding
the optimal path for the trellis structure, guided by
two principles: local likelihood and temporal conti-
nuity. However, it is difficult to define the transition
probability between two hypothetical F0 combina-
tions with different Ms. Therefore, we propose to
decode the predominant F0 tracks first and the sec-
ondary ones, which are assumed to be mostly rever-
berant parts, can thus be tracked by evaluating their
combinatorial probability with the predominant F0s.

4.1. Predominant F0 tracking

For solo recordings of monodic instruments, the
predominant F0s clearly relate to the monophonic
melody line being played. As long as the reverber-
ation of preceding notes is less dominant than the
notes being played, taking the most significant F0
as the predominant F0 is generally accepted.

To track predominant F0s, we rely on the indi-
vidual scores of F0 candidates in {F0i

M,c}s where
M = 1, · · · , SM , c = 1, · · · , 5. The individual score
is defined similarly to eq.(1) with the combinatorial
criteria replaced by the individual criteria, that is,
for each single-F0 candidate in one combination, the
missing information of “non-effective” partials is dis-
regarded. For each hypothetical number of F0s, the
individual score of a single F0 candidate is weighted
by the combinatorial probability (derived from the
relative score in the top-five ranked combinations)
to define the average individual probability. There-
fore, an F0 candidate appearing in the combinations
with higher score is considered more important. The
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Fig. 5: Score improvement observations for different number of F0s. x-axis represents the wave file number and

y-axis represents the score improvement.

individual probability is further averaged over differ-
ent hypothetical number of F0s. In such a way, the
plausibility of each F0 candidate among the most
probable combinations can be derived.

Given the individual probability as observations, the
best state sequence of predominant F0s is going to be
inferred. We propose a two-stage tracking method.

I. Forward connection between frames
The first stage makes the connection among the
F0 candidates between consecutive frames. For
each F0 candidate, the connection is allowed for
a frequency range of one half tone. For every
“pair” of frames, the connection gives the high-
est product of individual probability is kept for
the next stage.

II. Track construction
From the connected single F0s, a track can
be defined. However, there are often several
“holes” in-between tracks to be taken care of.
These holes might be resulted from note on-
sets, where the observed spectrum is disturbed.
This is done by linear prediction similar to [10].
To reconstruct the “holes” in-between tracks, a
backward/forward linear prediction tracking is
applied on the neighboring two tracks. We start
by backward linear prediction to find F0 can-
didates until no match is found. Then forward
linear prediction is performed to reconstruct the
rest of the missing predominant F0s.

4.2. Secondary F0 tracking

Once the predominant F0 track is decoded, the sec-

ondary F0s can be tracked by prolonging the pre-
dominant F0s. To track the reverberant parts of the
predominant F0 tracks, we search the combination
containing the current predominant F0 and the pre-
vious predominant F0s. As long as the “effective
weighting” of a secondary F0 is larger than 0.01, the
reverberant tracks are considered as effective.

5. TESTING EXAMPLES

To demonstrate the proposed method, we have
tested two solo recordings: bassoon and violin. For
the bassoon solos, we compare our method with
the state-of-art single-F0 estimator “YIN”. The F0
search range is set from 50Hz to 2000Hz. As shown
in Fig. 6, “YIN” produces subharmonic errors while
the reverberant parts of the preceding notes have
competitive significance. This shows the complexity
of F0 tracking for monodic solo recordings, which
can be barely handled by a single-F0 estimator.

In the second example, a violin solo, our proposed
method gives promising results for the fast arpeggios
of which the reverberant parts are well tracked, too.

6. CONCLUSIONS

We have presented a multiple-F0 tracking algorithm
for monodic instrument solo recordings. We propose
to decode the predominant F0 track and then the
secondary F0s, based on the combinatorial proper-
ties of hypothetical F0 combination. Testing exam-
ples have shown that a multiple F0 estimation is nec-
essary for automatic transcription of solo recordings.
There are several issues to be addressed. If the rever-
berant parts of the preceding notes are stronger than
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Fig. 6: Comparison of predominant F0 estimation
using one Mozart’s bassoon solo

the following notes (for example, a strongly bowed
note followed by left hand pizzicati), our multiple-F0
tracker might favor the reverberation that is more
dominant in energy. We are currently improving
the secondary F0 tracking to detect the missing F0
tracks.
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