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ABSTRACT 

We describe a multi-agent architecture for an improvization 
oriented musician-machine interaction system that learns in real 
time from human performers. The improvization kernel  is based 
on sequence modeling and statistical learning. The working 
system involves a hybrid architecture using two popular 
composition/perfomance environments, Max and OpenMusic, that 
are put  to work and communicate together, each one handling the 
process at a different time/memory scale. The system is capable of  
processing real-time audio/video as well as MIDI. After 
discussing the general cognitive background of improvization 
practices, the statistical modeling tools and the concurrent agent 
architecture are presented. Finally, a prospective Reinforcement 
Learning scheme for enhancing the system’s realism  is described. 

Categories and Subject Descriptors 
J.5 [Computer Applications]: Art and Humanities – performing 
arts (e.g. music). 

General Terms 
Algorithms, Design, Experimentation, Human Factors. 

Keywords 
Improvization, machine learning, variable memory markov 
systems, concurrent agents, sequence modeling, style modeling, 
statistical learning, computer music, man machine interaction. 
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1. INTRODUCTION 
Machine improvization and related style learning problems 

usually consider building representations of time-based media 
data, such as music or dance, either by explicit coding of rules or 
applying machine learning methods. Stylistic machines for dance 
emulation try to capture movement by training statistical models 
from a sequence of motion-capture sequences [6]. Stylistic 
learning of musical style use statistical models of melodies or 
polyphonies to recreate variants of musical examples [8]. These 
and additional research indicate that emulation of particular 
behaviors is possible and that credible behavior could be produced 
by a computer for a specific domain.  

In the field of music improvization with computers there has 
been recently notable advances in statistical music modeling that 
allows capturing stylistic musical surface rules in a manner that 
allows musically meaningful interaction between humans and 
computers. We have experimented with several of these models 
during the past years, and more recently implemented OMax, an 
environment which benefits both from the power of (Lisp based) 
OpenMusic [4] for modeling and high level programming, and 
MaxMSP [15] for performance and real time processing. This 
environment allows for interaction with one or more human 
player, on-the-fly stylistic learning, virtual improvization 
generation, metrical and harmonic alignment, stylistic model 
archiving and hybridation. It operates on two distinct time scales : 
the Max one, which is close to real time and involves fast 
decision/reaction, and the OpenMusic one, which has a deeper 
analysis/prediction span over the past and the future. These two 
conceptions of time interact and synchronize over communication 
channels through which musical data as well as  control signals 
circulate in both directions. A decisive advantage we have found 
in this hybrid environment experience is its double-folded 
extendability. In the OM domain, it is easy, even while the system 
is running, to change the body of a lisp function and test 
incremental changes. Furthermore, it is easy to enrich the 
generation by connecting the system to a wide variety of 
compositional algorithms available in this environment. Same 
thing in the Max domain,  with a comprehensive collection of 



real-time generation and processing modules. We think of this 
setup more as an indefinitely modulable and extendible 
experimental environment for testing new ideas about interaction, 
than as a fixed application.  

 

2. INTERACTION, IMPROVIZATION AND 
LEARNING 

The aim of the early interactive computer pieces, as theorized 
in the late seventies by Joel Chadabe, was of course to create a 
consistent musical style, adaptive to the performer. However, 
when this kind of piece was transported to a real improvization 
setup, the goal changed to "composed improvization" [5]. And the 
consistency had to be as much a consistency of style per se as a 
consistency with the style of the improvizer. One had to recognize 
the performer throughout the system. The first software to achieve 
this stricter kind of consistency is probably M  by Chadabe and 
Zicarelli  [24]. This early macintosh MIDI-based environment  
would “listen” to a musician’s performance and build on the fly a 
markov chain representation of the MIDI stream, then walks 
through this representation in order to send a musical feed-back 

The interesting thing about M was its ability to send back a 
stylistically consistent mirror image of the performer to the 
performer, which would, as an answer to this feed-back, change 
his way of playing accordingly. We call this process stylistic 
reinjection, and a similar idea has been explored by François 
Pachet under the name of “reflexive interaction” [25][26]. 

Another  interesting case is the GenJam system by John A. 
Biles. GenJam implements a genetic algorithm that grows a 
population of  musical phrase-like units  in a highly supervised 
mode. The well fitted phrases are played in an interactive manner 
as a response to the musician in a traditional jazz “trading fours” 
dialog. 

Other remarkable environments such as  the Voyager system 
by George Lewis [18], the Ramses system by Steve Coleman, or  
the experiments carried on by David Wessel using Don Buchla 
digital instruments and sophisticated parameter mapping 
programmed in Max deserve great attention [20], but are outside 
the scope of this paper as they do not use machine learning 
schemes, and should be considered more related to algorithmic 
music generation. 

We will focus here on the question of providing a virtual 
musical partner that learns all its knowledge from the musicians 
it’s playing with, in a non supervised mode, and that is fitted to a 
real-time audio context. 

The musical hypothesis behind stylistic reinjection is that an 
improvizing performer is informed continually by several sources, 
some of them involved in a complex feed-back loop (see Figure 
1). The performer listens to his partners. He also listens to himself 
while he’s playing, and the instantaneaous judgement he bears 
upon what he is doing interferes with the initial planning in a way 
that could change the plan itself  and open up new directions. 
Sound images of  his present performance and of  those by other 
performers are memorized, thus drifting back from present  to the 
past. From the long term memory they also act as inspiring 
sources of material that will eventually be recombined to form 
new improvized patterns. We believe that musical patterns are not 
stored in memory as literal chains, but rather as compressed 
models, that may, upon reactivation develop into similar but not 
identical sequences : this is one of the major issues behind the 
balance of recurrence and innovation that makes an interesting 
improvization. The idea behind stylistic reinjection is to reify, 

using the computer as an external memory, this process of  
reinjecting musical figures from the past in a recombined fashion, 
providing an always similar but always innovative reconstruction 
of the past. To that extent, the virtual partner will look familiar as 
well as challenging. 

 

 
Figure 1.  Stylistic Reinjection 

3. STATISTICAL MODELING 
Statistical modeling of musical sequences has been the 

subject of experimentation since the very beginning of musical 
informatics  [8]. The idea behind context models we use, is that 
events in a musical piece can be predicted from the sequence of 
preceding events. The operational property of such models is to 
provide the conditional probability distribution over an alphabet 
given a preceding sequence called a context. This distribution will 
be used for generating new sequences or for computing the 
probability of a given one. First experiments in context based 
modeling made intensive use of Markov chains, based on an idea 
that dates back to Shannon : complex sequences do not have an 
obvious underlying source, however, they exhibit a property 
called short memory property by Ron et al [27]; there exists a 
certain memory lengh L such that the conditional probability 
distribution on the next symbol does not change significantly if 
we condition it on contexts longer than L. In the case of Markov 
chains, L is the order. However, the size of Markov chains is 
O(|Σ|L), so only low order models have been actually 
implemented.  

To cope with the model order problem, in earlier works [3, 
10-13] we have proposed a method for building musical style 
analyzers and generators based on several algorithms for 
prediction of discrete sequences using Variable Markov Models 
(VMM). The class of these algorithms is large and we focused 
mainly on two variants of predictors - universal prediction based 
on Incremental Parsing (IP) and prediction based on Probabilistic 
Suffix Trees (PST).  

From these early experiences we have drawn a series of 
prescriptions for an interactive music learning and generating 
method. In the following, we consider a learning algorithm, that 
builds the statistical model from musical samples, and a 
generation algorithm, that walks through the model and generates 
a musical stream by predicting at each step the next musical unit 
from the already generated sequence. These prescription could be 
summed up as : 

• learning  must be incremental and fast in order to be 
compatible with  real-time interaction, and be able to 



switch instantly to generation (real-time alternation of 
learning and generating can be seen as  « machine 
improvization » where the machine « reacts » to other  
musicians playing). 

• The generation of each musical unit must be bounded in 
time for compatibility with a real time scheduler. 

• In order to cope with the variety of musical sources, it is 
interesting to be able to maintain several models and 
switch between them at generation time. 

• Assuming the parametric complexity of music (multi-
dimensionality and multi-scale structures) multi-
attribute models must be searched, or at least a 
mechanism must be provided for handling polyphony. 

We have chosen for OMax a model named factor oracle (FO) that 
conforms with points 1, 2 and 4. It is described in detail [1]  and 
its application to music data is described in  [2]. An example is 
given in Figure 2. 

 
Figure 2. A factor oracle for the string ABABABABAABB. 

 
FO’s capture all sub-phrases (factors) in a sequence of  

symbols, transformed into a linear chain of states by an efficient 
incremental algorithm. Through this transformation, the sequence 
structure is “learned” in the FO. The states are linked by two kind 
of arrows. Forward arrrows are called factor links. By following 
these at generation time, it is possible to generate factors of the 
original sequence, i.e. literally repeat learned subsequences. 
Backward arrows are called suffix links. By following these, it is 
possible to switch to another subsequence sharing a common 
suffix with the current position. Such a recombination, is really a 
context based generation, the context being the common suffix. 
Although the probability model has not yet been defined, FO’s are 
conjectured to be VMM’s. 

Basically a FO is a finite state automaton constructed in 
linear time and space in an incremental fashion. A sequence of 
symbols s = s1s2 .. sn is learned in such an automaton, the states of 
which are S0, S1, S2 .. Sn. There is always a transition arrow 
(called factor link) labelled by symbol si going from state Si-1 to 
state Si, 1≤ i < n. Depending on the structure of s, other arrows 
will be added to the automaton. Some are directed from a state Si 
to a state Sj, where 0 ≤ i < j ≤ n. These also belong to the set of 
factor links and are labelled by symbol sj. Some are directed « 
backward », going from a state Si to a state Sj, where 0 ≤ j < i ≤ n. 
They are called suffix links, and bear no label. The factor links 
model a factor automaton, that is every factor p in s corresponds 
to a unique factor link path labeled by p, starting in S0 and ending 
in some other state. Suffix links have an important property : a 
suffix link goes from Si to Sj iff the longest repeated suffix of 
s[1..i] is recognized in Sj. Thus suffix links connect repeated 
patterns of s. 

The oracle is learned on-line. For each new entering symbol 
si, a new state Si is added and an arrow from Si-1 to Si is created 
with label si. Starting from Si-1, the suffix links are iteratively 
followed backward, until a state is reached where a factor link 

with label si originates (going to some state Sj), or until there is no 
more suffix link to follow. For each state met during this iteration, 
a new factor link labeled by si is added from this state to Si. 
Finally, a suffix link is added from Si to the state Sj or to state 0 
depending on which condition terminated the iteration. 

Navigating the oracle in order to generate variants is 
straightforward : starting in any place, following factor links 
generates a sequence of labelling symbols that are re-iterations of 
portions of the learned sequence ; following one suffix link 
followed by a factor links creates a recombined pattern sharing a 
common suffix with an existing pattern in the original sequence. 
This common suffix is, in effect, equivalent to the context in the 
context-inferences model. In addition to completeness and 
incrementality of this model, the best suffix is known at the 
minimal cost of just following one pointer. By following more 
than one suffix link before going back to the factor generation, or 
by reducing the number of successive factor link steps, we make 
the generated variant less similar to the original. 

FO’s are functionally close to suffix trees, but with much 
fewer nodes. In comparison to IP and PST trees that discard 
substrings, FO’s are preferred because they can be built quickly 
and, like the suffix tree, they encode all possible substrings. One 
of the main properties of FO’s is that they index the input 
sequence in such a way that, at every point along the data, they 
constructs pointers to possible continuations for most recent 
suffixes at that point. By “recent suffixes” we mean suffixes that 
occur for the first time when a new symbol is observed. Since 
FO’s are constructed online, all “previously seen” suffixes are 
detected earlier in the sequence. So, at every point along the 
sequence FO’s provides pointers to continuations for most recent 
suffixes, and a pointer back to the longest repeating suffix. F0 is 
used to generate new improvization by either jumping into the 
“future” based on the most recent past, or by going back to the 
more distant past to look for continuations of previously 
encountered suffixes. So, instead of considering the best context 
with log-loss “gambling” on the next note, the FO method 
operates by “forgetting” and selective choice of historical 
precedence for deciding the future. 

 

4. OMax BROS ARCHITECTURE 
OMax is distributed across two computer music 

environments : OpenMusic and Max (see Figure 3). Obviously, 
the Max components are dedicated to real-time interaction, 
instrumental capture, MIDI and audio control, while OpenMusic 
components are specialized in higher level operations such as 
building and browsing the statistical model. Communication 
channels between Max and OM allow the transmission of streams 
of musical data as well as control information. In the primitive 
version of OMax, Midishare [14] has been used as an inter-
application communication system, but all the transmitted data 
had to be encoded in MIDI. Of course this is not very convenient, 
specially when structured data has to be exchanged, so this 
component has been rewritten using OSC [17], a powerful 
message based communication protocol that is increasing in 
popularity in the computer music community. 

At the input and the output, Max handles the direct 
interaction with the performers. It extracts high level features 
from the sound signal such as the pitch, velocity, onset-offset, and 
streams them to OpenMusic using the OSC protocol. The data 
flowing in this channel is called “augmented MIDI” because it 
contains MIDI-like symbolic information, plus any necessary 
relevant information regarding the original signal. OpenMusic 



builds up incrementally the high level representations derived 
from the learning process. Simultaneously, it generates an 
improvization from the learned model and outputs it as an 
“augmented MIDI” stream. At the output, Max reconstructs a 
signal by taking advantage of the augmented data. For example, 
the signal feature could be the pitch as extracted by a pitch 
tracker. The augmented information could be pointers into the 
recorded sound buffer, mapping the MIDI information to sound 
events. The reconstruction process could be concatenative 
synthesis that would mount in real-time the sound units into a 
continuous signal. 

Of course, the input could be restricted to MIDI, and the 
output could be restricted, in any case, to controlling some 
expander using the MIDI data and ignoring the augmented data, 
or any such combination. We develop here the most difficult case 
which is going from audio to audio. 

Right now we have mostly experimented on pitch extraction, 
but of course any descriptor could be used, including spectral or 
gesture descriptors, and any reconstruction could be tried, 
including pure synthesis. 
 

 

 
Figure 3. OMax architecture 

 
Inside the OpenMusic world lives a community of concurrent 

agents that can be freely instantiated and arranged into different 
topologies. These agents belong to six main classes : 

 
• Listener 
• Slicer 
• Learner 
• Improvizer 
• Unslicer 
• Player 
 

 
Figure 4. A simple agent topology 

Figure 4 shows a typical topology where the augmented 
MIDI stream is prepared into some convenient form by the 
listener and slicer agents and provided to a learner process that 
feeds the Oracle structure. Concurrently, an Improvizer process 
walks the oracle and generate a stream that is prepared in order to 
feed the rendering engine in Max. 

The statistical modeling techniques we use suppose the data 
to be in the form of sequences of symbol taken from an alphabet. 
Of course, because music is multidimensional, it has to be 
processed in some way in order for the model to be usable and 
meaningful. We detail in [11] a method for processing polyphonic 
streams in order to turn them into a sequence of symbols such that 
a sequence model can be built from which new generated strings 
can be easily turned into a polyphony similar in structure to the 
original. Such “super-symbols”, output by the polyphony manager 
in OM, are “musical slices” associated with a certain pitch content 
and a duration. Two processes, the “slicer” and the “unslicer” will 
be dedicated to transforming the raw augmented MIDI stream into 
the slice representation used by the model, then back into a 
polyphonic stream (see Figure 5).  
 

 
Figure 5. Slicing polyphony 

 
OMax provides a toolkit for easily setting up different agent 

topologies in order to experiment with a variety of musical 
situations.  

 

4.1 Example 1 : a simple OMax topology 
For example, in Figure 6, two musical sources (MIDI or 

audio) are merged into the same slicer, which means that the 
sliced representation at the output of the process will account for 
the overall polyphony of the two sources. In such a case, the 
Oracle learns not only the pattern logic of both musicians, but also 
the way they interact. Improvizing on such an oracle will generate 
a polyphonic stream that respects the vertical as well as horizontal 
relations in the learned material. The learner process here feeds 
three different Oracles. Such a configuration may prove useful 
either for splitting the musical information into different points of 
view (e.g. pitch versus rhythm) or in order to learn different parts 
of the performance into different Oracles so they are not polluted 
one by the other. Then the three Oracles are improvized by three 
independent Improvizers, either simultaneously or in turn. Many 
interesting comparable topologies can be tested. The agent 
connectivity is implemented using (invisible) connection agents 
that provide dynamic port allocation so the program can 
instantiate communication ports and connect agent input and 
output. 
 



 
Figure 6. Another agent topology. 

 

4.2 Example 2 : a meta-learning topology 
This configurable agent topology is ready for experiments 

that go well beyond the machine improvization state of the art, by 
adding a meta-learning level. In Figure 7, the agents in the 
rectangle at the bottom learn in a separate oracle a “polyphony” 
made up from the musical information issued by the listener, and 
from the states of the first-level oracle just above the rectangle. 
What the bottom oracle learns really is the correlation between 
what is played by the musician and by the oracle simultaneously, 
that is it learns the interaction between them (considering that the 
musician always adapts his performance with regard to what the 
oracle produces). Learning the states instead of the output of the 
oracle means that if the human tries later to reinstall the same 
musical situation, the system is then able, through a new module 
called a reinforcer, to get back to the original oracle in order to 
reinforce the learned states. The effect of this architecture would 
be a better  musical control of the global  form by the human 
performer, and the feeling that OMax understands actually the 
message that is implicitly sent by a musician when he gets back to 
a previously encountered musical situation : the message in effect 
could be that he liked the interaction that occurred at that time and 
would like the computer to behave in a similar way. 

 

 
Figure 7. An agent topology with a meta-oracle. 

 

5. REINFORCEMENT LEARNING  
One of  the common methods to simulate anticipatory 

planning has been the use of reinforcement learning techniques 
with reward signals calculated on expected future states [21].  

In a RL (Reinforcement Learning) system, rewards are 
defined for goal-oriented interaction. In musical applications, 
defining a goal would be either impossible or would limit the 
utility of the system to certain styles. In this  sense, the rewards 
used in our interaction are rather guides to evoke or repress parts 
of the learned model in the memory. We define two execution 
modes for our system demonstrated in Figure 8.  

In the first, referred to as Interaction mode, the system is 
interacting with a human performer. During the second mode, 
called self listening mode, the system is in the generation phase 
and is interacting with itself, or in other words it is listening to 
itself, in order to decide how to proceed.  

 

 
Figure 8. The Reinforcement Learning scheme 

 
The agent in both modes consists of a model-based RL 

framework. It consists of an internal model of its environment and 
reinforcement learning for planning. This internal model plays the 
role of memory and representation of new inputs. The main 
feature of the agent is that it handles different  types of musical 
representations (or viewpoints) as separate models. The RL 
algorithm used would then be a one with  collaborative and 
competitive learning between viewpoints. 

The interaction mode occurs when external information is 
being passed to the system from the environment (human 
improvizer). This way the reward would  be the manner in which 
this new information reinforces (positively or negatively) the 
current stored  model in the agent. The self listening mode occurs 
when the system is improvising new sequences. In this mode, the 
RL framework would be in a model-free learning state, meaning 
that the internal model of the environment stays intact but the 
planning is influenced by the latest musical sequence that has 
been generated by the system itself, thus, the idea of self listening.  

When a new sequence St with length N is received from the 
environment, an ideal reward signal should reinforce the part of 
memory which most likely evoke the sequence received to be able 
to generate recombinations or musically meaningful sequences 
thereafter. In the RL framework, this means that we want to 
assign numerical rewards to transition states and suffix states of 
an existing FO. Reward computation occurs before integrating the 
new sequence into the model. 

After different attributes of St are extracted as separate 
sequence (each in the form  {x1 . . . xN }), we use a probability 
assignment function P from S∗ → [0, 1] (where S∗ is the set of all 
available tuple of states) to assign rewards to states in the model 
as follows:  

 
where 

 
and Ftrn is the factor link between two states. 



The meaning of this equation is that it reinforces the states 
in the memory that can most regenerate  all of the original 
sequence. In other words, it will guide the learning described later 
to the places in the memory that should be most regarded during 
learning and generation. For example, for an attribute  sequence  
{e1 , . . . , eN }, a sequence of states {s1* , . . . , sN* } in a FO would 
get a reward  of 1 if it regenerates exactly the original St. 

To assign rewards to suffix links, we recall that they refer to 
previous states with the largest common  suffix. Using this 
knowledge, a natural reward for a suffix link would be 
proportional to the length  of the common suffix that the link is 
referring to. Fortunately, using FO’s, this  measure can be easily 
calculated online. It has been introduced in [22], and is adopted 
here as well.  

Rewards or guides are calculated the same way for both 
modes of the system described before with  a small difference. We 
argue that the rewards for the interaction mode correspond to a 
psychological attention towards some part of the memory and 
guides for the self-listening mode correspond to a preventive 
anticipation scheme. This means that during interaction  with a 
human improvisor, the system needs to be attentive to (new) input 
sequences from the environment and during self-listening in needs 
to be preventive so that it would not generate the same (optimal) 
path over and over. For this reason, rewards calculated using the 
above formula will get a negative sign for the self-listening mode.  

In order to implement full RL, rewards are not enough. A 
policy has to be defined. A policy is a strategy for choosing the 
next action with regard to the current environment. In our case, a 
policy will be a probability weighting of possible transitions in the 
FO, considering not only the current rewards but also the 
estimation of  how these rewards will progress in the future. In 
effect, considering only the current rewards would lead to poor  
planning, as a highly valued path in the FO could be attained 
through less valued transitions. 

In order to achieve this, a policy matrix is maintained with 
the FO states as lines and the music vocabulary (called « actions » 
in the RL terminology) as columns. After the rewards update has 
been performed, a policy update is done by « practicing », i.e. 
generating silently a certain number of  improvizations paths of a 
fixed length. For each consecutive transition (a state-action pair) 
we update the corresponding cell in the policy matrix by 
accumulating the reward associated with the transition. This is 
summarized in the following formula : 

 
The Policy Matrix Q is updated at position sm, am. R(sm) is 

the integration of the reward value for state sm over an infinite 
horizon. The γ coefficient, called discount factor, ensures that this 
calculation finishes as γm decreases down to ε.The sequence of 
successive states/rewards is obtained by following greedily a 
chain of states in Q, just as it would be done for effective 
generation, starting at sm and choosing the best policy. α is a 
learning rate that controls the effectiveness of the update.  

At generation time, the FO transitions will be followed as 
usual, but the policy will arbitrate the choices between concurrent 
transitions by checking the values in Q. 

 

6. CURRENT STATE / PERSPECTIVES 
The current version of OMax is implemented in OpenMusic 

and Max. The OpenMusic version provides a general framework 
for musical agents which frees the developer from the details of 
handling agent messaging,  inter-agent agent data streaming, and 
agent synchronization. This framework has been implemented 
using meta-programming techniques so that an agent instance 
comes automatically equipped with all  the concurrency 
management gear, letting the developer program using the usual 
CLOS (Common Lisp Object System) abstractions (classes, 
methods, slots, etc.). This framework is inspired by NetClos, a 
package for distributed concurrent programming in Lisp [23]. 
On the Max side, the audio stage uses intensively the Yin~ pitch 
follower object designed by Alain de Cheveigné and implemented 
by Norbert Schnell [9]. We have developed a yin post processor 
that increases significantly the pitch detection quality and 
provides a valuable onset-offset detection. 

The RL scheme presented in the last section is still a Matlab 
prototype, which we have to optimize for real-time. The RL 
techniques will be experimented in two directions :  increasing the 
intrinsic quality of the generation, and learning the large scale 
planning of the human performer and the way he reacts to the 
machine improvization, by the use of a meta-oracle that learns the 
interaction. 

Examples (audio, midi and video) can be found at : 
 

http://recherche.ircam.fr/equipes/repmus/OMax/ 
 

The video examples have been realized using the sound 
desriptors as  a simple means of segmenting and recombining the 
images. This aspect of  OMax has not been detailed in this paper 
and is left for future presentation. 
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