
HAL Id: hal-01161346
https://hal.science/hal-01161346

Submitted on 28 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

OMax-Ofon
Gérard Assayag, Georges Bloch, Marc Chemillier

To cite this version:
Gérard Assayag, Georges Bloch, Marc Chemillier. OMax-Ofon. Sound and Music Computing (SMC)
2006, May 2006, Marseille, France. pp.1-1. �hal-01161346�

https://hal.science/hal-01161346
https://hal.archives-ouvertes.fr

OMAX-OFON

G. Assayag
Ircam-Cnrs UMR Stms

gerard.assayag@ircam.fr

G. Bloch
Université de Strasbourg
gbloch@umb.u-strasbg.fr

M. Chemillier
Université de Caen
chemilli@free.fr

ABSTRACT

We describe an architecture for an improvisation
oriented musician-machine interaction system. The
virtual improvisation kernel is based on a statistical
learning model. The working system involves a hybrid
architecture using two popular composition/perfomance
environments, Max and OpenMusic, that are put to
work and communicate together. The Midi based
OMAX system is described first, followed by the OFON
system, its extension to audio.

1. INTRODUCTION

Machine improvisation and related style learning
problems usually consider building representations of
time-based media data, such as music or dance, either by
explicit coding of rules or applying machine learning
methods. Stylistic machines for dance emulation try to
capture movement by training statistical models from a
sequence of motion-capture sequences [6]. Stylistic
learning of musical style use statistical models of
melodies or polyphonies to recreate variants of musical
examples [8]. These and additional researches indicate
that emulation of particular behaviors is possible and that
credible behavior could be produced by a computer for a
specific domain.
In the field of music improvisation with computers there
has been recently notable advances in statistical music
modeling that allows capturing stylistic musical surface
rules in a manner that allows musically meaningful
interaction between humans and computers. We have
experimented several of these models during the past
years, and more recently implemented OMAX, an
environment which benefits both from the power of
OpenMusic [4] for modelling and high level
programming, and MaxMSP [15] for performance and
real time processing. This environment allows
interaction with one or more human player, on-the-fly
stylistic learning, virtual improvisation generation,
metrical and harmonic alignment, stylistic model
archiving and hybridation. It operates on two distinct
time scales : the Max one, which is close to real time and
involves fast decision/reaction, and the OpenMusic one,
which has a deeper analysis/prediction span directed
towards the past and the future. This two conceptions of
time have to interact and synchronize through

communication channels through which musical data as
well as control signals circulate in both direction. A
decisive advantage we have found in this hybrid
environment experience is its double folded
extendability. In the OM domain, it is easy, even while
the system is running, to change the body of a lisp
function and test incremental changes. Furthermore, it is
easy to enrich the generation by connecting the system to
a wide variety of compositional algorithms available in
this environment. Same thing in the Max domain, with a
fabulous collection of real-time generation and
processing modules. As a proof of this flexibility, it took
no more then 2 days, once OMAX was running, to extend
it to OFON, its audio version, by a few tweaks on the
OM side and the Max one as well. So we think of this
environment more as an indefinitely modulable and
extendible experimental environment for testing new
ideas about interaction, than to a fixed, ready for
distribution, application. A realist strategy would be,
once we are happy with a learning/generating model
experimented in OMAX, to fix it into a pure Max
application by taking the time to recode the OM part in
C.

2. STATISTICAL MODELLING

Statistical modeling of musical sequences has been
experimented since the very beginnings of musical
informatics [8]. The idea behind context models we use,
is that events in a musical piece can be predicted from the
sequence of preceding events. The operational property
of such models is to provide the conditional probability
distribution over an alphabet given a preceding sequence
called a context. This distribution will be used for
generating new sequences or for computing the
probability of a given one. First experiments in context
based modeling made intensive use of Markov chains,
based on an idea that dates back to Shannon : complex
sequences do not have obvious underlying source,
however, they exhibit a property called short memory
property by Ron and al; there exists a certain memory
lengh L such that the conditional probability distribution
on the next symbol does not change significantly if we
condition it on contextes longer than L. In the case of
Markov chains, L is the order. However, the size of
Markov chains is O(|Σ|L), so only low order models have
been actually experimented.

To cope with the model order problem, in earlier works
[3, 10-13] we have proposed a method for building
musical style analyzers and generators based on several
algorithms for prediction of discrete sequences using
Variable Markov Models (VMM). The class of these
algorithms is large and we focused mainly on two
variants of predictors - universal prediction based on
Incremental Parsing (IP) and prediction based on
Probabilistic Suffix Trees (PST).

From these early experiences we have drawn a series of
prescriptions for an interactive music learning and
generating method. In the following, we consider a
learning algorithm, that builds the statistical model from
musical samples, and a generation algorithm, that walks
the model and generates a musical stream by predicting
at each step the next musical unit from the already
generated sequence. These prescription could be
summed up as :
• learning must be incremental and fast in order to be

compatible with real-time interaction, and be able
to switch instantly to generation (real-time
alternation of learning and generating can be seen as
« machine improvisation » where the machine
« reacts » to other musician playing).

• The generation of each musical unit must bounded
in time for compatibility with a real time scheduler

• In order to cope with the variety of musical sources,
it is interesting to be able to maintain several models
and switch between them at generation time.

• Assuming the parametric complexity of music
(multi-dimensionality and multi-scale structures)
multi-attribute models must be searched for, or at
least a mechanism must be provided for handling
polyphony.

We have chosen for OMAX a model named factor
oracle (FO) that conforms with points 1, 2 and 4. It is
described in [1] and its application to music data is
described in [2]. An exemple is given in figure 1.

Figure 1. A factor oracle for the string ABABABABAABB.

FO are basically automata that capture all sub-phrases
(factors) in a sequence of symbols, transformed into a
linear chain of states by an efficient incremental
algorithm. Through this transformation, the sequence
structure is “learned” into the FO. The states are linked

by two kind of arrows. Forward arrrows are called factor
links. By following these at generation time, it is possible
to generate factors of the original sequence, i.e. litterally
repeat learned subsequences. Backward arrows are called
suffix links. By following these, it is possible to switch to
another subsequence sharing a common suffix with the
current position. Such a recombination, is really a context
based generation, the context being the common suffix.
Although the probability model has not yet been defined,
Fo’s are conjectured to be VMM.

3. OMAX ARCHITECTURE

OMAX is distributed across two computer music
environments : OpenMusic and Max. Obviously, the
Max components are dedicated to real-time interaction,
instrumental capture, Midi and audio control, while
OpenMusic components are specialized in higher level
operations such as building and browsing the statistical
model. Communication channels between max and OM
allow the transmission of streams of musical data as well
as control information. In the primitive version of
OMAX, Midishare [14] has been used as an inter-
application communication system, but all the
transmitted data had to be encoded in Midi. Of course
this is not very convenient, specially when structured
data has to be exchanged, so this component is being
rewritten using OSC [17], a powerful message based
communication protocol that is getting very popular in
the computer music community.
On the OpenMusic side, a few lisp-based software
components have been implemented :

• A Midi listener, that fetches the incoming midi
events sent by Max and bufferizes them

• A phrase segmenter that prepares a phrase from
the Midi stream based on special signals
received from Max.

• A polyphony expert module that turns the raw
Midi stream into a sequence of polyphonic units
(see details below).

• A harmonic expert module
• A learning/generating module that implements

the FO structure and knows 2 messages : learn
and improvize, with a granularity of one phrase.

• A communication module that handles the
data/control exchanges with Max.

On the Max side, the components are :
• A Midi input module that listens to a Midi port,

prepares the data to be sent to OM, provides
basic analysis in order to detect phrase
boundaries. This module also provides clock
information for the beat mode (see below).

• A Midi sequencer A where sequences can
be launched in the case when the computer
is supposed to play a fixed part such as a

A
A

B
B

B

B B B B B A A A A A
0 1 2 3 4

such as a harmonic/rythmic background for
improvisation.

• A Midi sequencer B that is fed with
generated “improvisations” received from
OM.

• A communication module that is
responsible for data and control exchanges
with OM.

Polyphony management :

The statistical modelling techniques we use
suppose the data to be in the form of sequences of
symbol taken from an alphabet. Of course music
being multidimensional it has to be processed in
some way in order for the model to be usable and
meaningful. We detail in [11] a method for
processing polyphonic streams in order to turn them
into a sequence of symbols such that a sequence
model can be built from which new generated
strings can easily be turned into a polyphony
similar in structure to the original. Such “super-
symbols”, output by the polyphony manager in
OM, are “musical slices” associated with a certain
pitch content and a duration.

Free / Beat scenarios :

Two different scenarios can be experimented in
OMAX. In the so-called “free-mode”, there is no
notion of metrical structure. The human performer
plays freely. From the OM point of view, phrases to
be learned arrive with the appearance of sequences
of polyphonic symbols with various durations.
Generated phrases will share the same flexible
allure.
In the “beat-mode”, the musical session is anchored
to a certain metrical / harmonic grid, which is
generally played by the computer. In this mode,
Max will intertwine clock messages in the stream
of midi events it sends to OM. These clocks
segment the time according to beat boundaries. The
OM phrase segmenter and polyphony manager will
build consecutive polyphonic symbols which
duration are aligned with the beat boundaries. New
improvisations generated by OM are now multiples
of the beat duration. Upon receival of these
sequences, Max will align them correctly with the
metrical structure it is playing.
Handling the harmony is a bit more complicated
and involves several round trips between Max and

OM. This is due to the fact that we have mostly
experimented in jazz harmony, including the jazz
substitution mechanisms. For a given harmonic grid,
stored in an OM data structure, the OM harmony
expert module, operating one grid ahead with
respect to the current time in Max, generates a new
variant grid. The model used for this is detailed in
[7]. OM expands the new grid into chords and sends
the sequence of chords to Max which stores them in
a midi sequencer, keeping them ready for the next
grid occurence. At any time, when a human played
phrase is sent to OM and therefore turned into a
sequence of beat aligned polyphonic symbols, a
harmonic label is sticked to each of these symbol.
This is possible because the entering beats are
numbered relatively to the periodic grid and OM
knows the details of the grid currently played by
Max.
The FO learning module now learns data packets
that are contained within a beat and associated to a
harmonic label.
At generation time, the harmony may have changed
due to the perpetual substitution mechanism. So the
FO is asked to generate under the constraint of the
current harmony. Technically, this means that we
follow the arrows (factor or suffix links) by giving a
priority to the pathes that generate a sequence of
harmonic labels either identical to the current ones
or compatible under the substitution theory.
In the beat mode, the generated impros are thus
aligned metrically and harmonically, although
nothing restricts the harmony from changing at each
grid occurrence. Of course it would be just a small
change to this architecture if we wanted the
harmony to be lively captured fro a human
performer (e.g. a pianist), and there would be no
need to refer to a particular style such as ‘jazz’ as
long as we had a theory for harmonic label
equivalences. Such an equivalence theory would be
necessary in order to avoid too many failures at
generation time. Such failures occur when the
statistical process leads up to a state where no
outgoing arrow is compatible with the current
harmonic label.
Figure 2 gives an overview of the (simplified)
Omax architecture.

Figure 2. OMAX architecture

The bottom line is a time line where the small
circles show grid boundaries. In the Max world
(bottom half) the rectangles indicate Max processes
running along time. The picture shows a situation
where the beat mode, the more complex one, is
used. The leftmost, thick arrow shows the stream of
Midi information sent continuously to OM by the
Midi recorder and being learned. The next, broken
arrows are punctual signals sent to OM, telling it
either to “expand” (generate data, either from
compositional algorithm or from the harmony
model), or to “simulate”, that is asking an
improvised phrase from the statistical learn base.
These musical data, sent back to Max, will be
reserved in the Midi sequencer and be ready for the
next grid occurrence. Midi Tracks and audio tracks
are for static data to be played by Max.
The two bottom Max processes implement the
OFON extension and will be explained in the next
section.

4. OMAX WITH SOUND : OFON EXTENSIONS

The Ofon system was developed in order to benefit from
the Omax system while using acoustic instruments. It
only works now with monophonic instruments.
The principle is simple : a pitch tracker extracts the pitch
and intensity values while the sound of the instrument is
recorded in a buffer.
Time stamps corresponding to the offset of sound events
in the buffer are associated to the corresponding Midi
events built at the ouput of the pitch tracker and sent to
OM as well. Now the symbols learned in the FO contain
a reference into a sound buffer. When OM performs the
reconstruction of an improvisation using the oracle, the

time stamps are sent back to Max along with the midi
stream. An Ofon module, the audio montage, is then able
to assemble the sound pieces extracted from the sound
buffer thanks to the time stamps. So, the music is learned
from an audio signal, and the virtual improvisations
result in an audio signal reconstructed from thet original
audio material.
It is worth noting that, since we can get several
computer-generated improvisations going on at the same
time, it becomes possible to create multiple clones of the
live player and have him/her play with them. This results,
of course, in an exciting interaction situation. For the
moment, the system has been extensively used with
saxophone players (Philippe Leclerc in France and Tracy
McMullen in San Diego), and experimented with student
actors of the Théâtre national de Strasbourg in a language
and sound poetry environment under the direction of the
stage director Jean-François Peyret.
There are three main problems in order to achieve such a
system: a reliable pitch tracking, a real time editing of the
sounds in the buffer, and a diffusion of the cloned
instrument interesting enough to bear the immediate
comparison with the real instrument.

Editing the buffer

Editing the buffer is a relatively trivial task, given the
fact all the tools for sound editing are already
implemented in Max.
The main problem of editing (whether in real time or not)
is to correctly estimate the position of the editing point.
This ends up being a pitch tracking problem: the tracking
must determine the exact moment when the note starts
(or with a constant offset), for every possible pitch.
An aspect specific to Omax is that, sometimes, editing is
simply not necessary, when Omax recombines sound
events that, in the original take, have been played in
sequence. Therefore these occurrences must be detected
to avoid unnecessary editing and just read continuously
the corresponding part of the buffer in sequence.

Pitch tracking

One of the main problems is to get a reliable pitch
tracking system. Everyone who has tempered with such a
system knows how picky these kinds of system are, as
soon as we are dealing with instruments with large timbre
capacities, as it is often the case in real life. Having
experimented with saxophone and voice, we started with
quite tricky examples.
However, we need to know what we mean by “reliable”.
An important point, as we have seen, is to determine
when the note begins whatever the pitch and regardless
of the playing mode. If the time offset is constant on each
pitch but differs according to the range, it can be

arranged by referring to a table of offsets, once the pitch
is determined.
Extracting the pitch itself can be problematic, especially
when the player uses sounds that do not correspond to
the official labels of the Conservatoire de Paris or of the
Julliard School. This is often the case when one works,
for instance, with jazz players. One runs therefore into
two kinds of problems: pitch detection errors and “wrong
notes” added. Curiously, the errors in pitch detection are
not that important, as long as they are consistent. The
point of the oracle is to find similar passages, and
consistency is enough to have it work well. Also, errors
generally correspond to some aural logic (octave errors,
which do not matter that much, and particularly strong
harmonics being taken as the fundamental tone).
Much more important is the problem of added notes,
since the Omax system may receive a lot of irrelevant
information. These notes most often are more or less
interesting pitch information on transient sounds
(especially on instruments like saxophone, voice, but
also bow and reed instruments in which the attack part
can be relatively underlined for expressive purposes). It
is important to get rid of those.
We are using the yin~ pitch algorithm [9] as
implemented in Max by Norbert Schnell, along with
some post processing of our own. The output of a
saxophone looks like the plot in figure 3.

figure 3. An example of the yin~ output. Pitch is on top,
amplitude in the middle and quality at the bottom. Time is

right to left.

The most interesting feature of the yin~ algorithm is its
quality parameter. In the picture above, we can notice
that, if the quality is not sufficient, the pitch is routed to
a default low value (this is the case, for instance, on the
right part of the graph, in the beginning of the excerpt,
since the graph scrolls from right to left). This only
means that the instrument is not playing. The quality
factor is useful in an instrument in which the “purity” of
the sound is extremely variable: we can accept pitches
even with a low quality factor. In the middle of the
graph, there are moments when the quality falters: how
to decide if the pitch is good enough? On the other hand,

when reading the graph, the solution is obvious: the
melody is (from right to left) D# E G# D# B (last note on
the graph, cut). Obviously, the three (or perhaps four)
first notes are slurred, the last one is detached, and there
is vibrato on the top D#.
The extensions to yin tried so far consists of :

• using a window of a certain length (e.g., 60
milliseconds) for each new pitch value detected

• using the quality factor in order to allow several
types of sound, to generate note-off and to
consider low quality as a special pitch

• achieving statistics on each window: that is,
each new pitch value opens the window and, for
the duration of the window, the following values
are analyzed; if the original value represents
more than a certain proportion of all found
values (50% for example), a note-on is
generated.

It results in a delay (the window length) before
evaluating the pitch; this delay is relatively short, except
if a large window is chosen to suppress the vibrato (not
always a desirable feature). If two notes follow each
other (slurred playing), the corresponding note-off is
automatically generated (since we are dealing with a
monophonic instrument). If notes are detached, the
insufficient quality factor (insufficient for the duration of
the window) will generate a note-off between them.
The result is satisfying, especially since it gives a really
correct time estimation for editing. It requires of course a
careful tune-up of the three parameters: quality factor,
window length and statistical mean to keep a pitch value
(the two last parameters depend on the DSP vector size,
of course). With a very large vector size, there can be just
one value in each window, and the averaging is done by
the yin~ algorithm itself, a hardly satisfying solution.

Towards a realistic diffusion of the cloned instrument

The other problem of Ofon (and actually of Omax in
certain circumstances) is a very general and quite ancient
problem: the coexistence of acoustic instruments with
loudspeakers. The difficulty is even greater in Ofon,
since the virtual instrument is supposed to sound so
similar to the “real” one.
The main difference between a loudspeaker and an
acoustic instrument is that the directivity of the acoustic
instrument varies, according to many parameters, mostly
pitch and loudness (not only, by the way: on a violin,
many pitches can be played on several strings and have
therefore distinct directivities).
That is the reason why a variable directivity system
called “La Timée” has been developed at Ircam [16] in
Olivier Warusfel’s team. The connection of “La Timée”
to Ofon has proved easy, thanks to the help by Olivier
Warusfell, since the MIDI data used with Omax and
resulting from the pitch tracking give the necessary

information of pitch and loudness allowing to command
the directivity parameters (which are pitch-loudness
dependent). These data are transmitted by Max to La
Timée control system through OSC. It results in a very
good rendering of the virtual saxophones. The
description of this system is beyond the scope of this
paper However, it is possible to get a decent virtual
instrument without such a complex system.

figure 4. An Ofon concert at Ircam (SMC’05, Workshop on
Improvisation with the Computer) : left, Philippe Leclerc,

saxophone. In the center, “la Timée. Right, Olivier
Warusfel and Georges Boch.

A “cheap imitation” of a variable directivity system
already gives a much more realistic effect than a single
loudspeaker. It can be realized by a set of loudspeakers
centered on one point. Each speaker points in one
direction and can have its proper frequency response.
The balance between the speakers is controlled by the
pitch and loudness data, in reference (or not) to the
directivity features of the emulated instrument.

5. OFONVIDEO

Ofonvideo was developed by three students of
University of Strasbourg II (Anne-Sophie Joubert,
Vincent Robischung and Émilie Rossez) under the
direction of Georges Bloch. It adds a further Layer to
Ofon, and therefore to Omax.
The principle is the same as in Ofon. The performer is
filmed, the learning is performed on the music, and the
filmed extracts are re-edited in real-time, according to
the Omax virtual improvisation sequences augmented
with time stamps. So, recombined improvisations of the
music are doubled by a consistent recombination of
video sequences.
Ofonvideo has been programmed with jitter, an
extension of the Max programming language aiming
primarily at video control.
The technical complexity of Ofonvideo depends on
several features: the video has to be recorded on disk
(and not in RAM), the machine must be powerful
(actually, a single machine must be dedicated to the
video processing) and the delay between the recording
and playback of film and sound files must be carefully
adjusted. Finally, the system is greatly enhanced if too

short edits are avoided (in sound, one can edit a very
short note, shorter even than a frame, but it is useless –
and power expensive – in video).

Image and sound in Ofonvideo

In the principle, it looks like the sound in Ofonvideo will
always double the image, a feature which can become
tedious. This is false. It is always possible to call
archived images, at any moment, and send them to the
screen, regardless of the sound going on. And there is
another possibility. In Ofon, there are five possible sound
tracks at the same time, therefore five possible films. If
the Ofon mixer mutes the sound tracks instead of
stopping them, the images are still going on.
Furthermore, Ofon can be set in “loop” mode while the
film is running further on.

One of the main interests of Ofonvideo is to allow
improbable encounter between musicians. For example,
the saxophonist Philippe Leclerc can meet Thelonius
Monk, improvise with him, and each musician influences
the improvisation of the other. The filming ends up in a
bottomless mirror, in which Leclerc watches Leclerc who
whatches Monk who watches Leclerc… see figure 5.

figure 5. A picture of an Ofonvideo session, with Philippe
Leclerc, saxophone, watching himself watching Monk. This

very picture may appear, seconds later, on the screen!

6. FURTHER DEVELOPMENTS

Omax-Ofon-OfonVideo open new perspectives in
computer assisted improvisation and in the study of style
in improvised music, in the path of the interactive
systems imagined by Joel Chadabe at the end of the
sixties and developed later by many performers-
researchers such as Georges Lewis, David Wessel etc.
The representational and compositional capacities of
OpenMusic enrich this system further and evokes the

idea of “composed improvisation” systems [5]. The
coexistence of Open Music and Max gives another
dimension to this idea: the presence of a sophisticated
computer assisted composition software allows the
interaction processes to act on more global features,
features that only musical representation can grab in an
abstract manner.
Let us claim this paradox: most interactive processes do
require very little real time. If a decision is taken at a
compositional level and on musical parameters that
extend on a large scope (in other terms, if we view
interaction as something else than a ornamentation of an
otherwise fixed compositional process), we generally
have some time to process the computation. What does
matter is that, at a given moment, some proposition
(solution) is available. For this reason, the coexistence of
a very fast response and tracking (max) with a very
powerful and flexible music representation program
(OM) seems the obvious solution, until the ideal time
when unified environments would exist.
This is not exactly the way Omax works at the present
moment: some aspects (notably the acquisition of
sequences) are directly made in Open Music. Not only is
it not practical (the MIDI or sound or video sequences
should be acquired in Max and their parameters globally
sent to Open Music) but also detrimental to the
modularity of the system. This is a historical
consequence of the development of the Omax system,
accomplished by several people over a large span of
time. This defects of youth are being corrected, notably
by grouping the whole sequencing aspect in the FTM
environment developed by Norbert Schnell at Ircam.
Once implemented, a complete interactive architecture to
which any Open Music composition-improvisation
process could be patched will be available.

7. REFERENCES

[1] Allauzen C., Crochemore M., Raffinot M.,
Factor oracle: a new structure for pattern
matching, Proceedings of SOFSEM'99, Theory
and Practice of Informatics, J. Pavelka, G. Tel
and M. Bartosek ed., Milovy, Lecture Notes in
Computer Science 1725, pp 291-306, Springer-
Verlag, Berlin, 1999.

 [2] Assayag, G., Dubnov, S., Using Factor Oracles
for Machine Improvisation, G. Assayag, V.
Cafagna, M. Chemillier (eds.), Formal Systems
and Music special issue, Soft Computing 8, pp.
1432-7643, September 2004.

 [3] Assayag, G., Dubnov, S., Delerue, O.,
“Guessing the Composer’s Mind: Applying
Universal Prediction to Musical Style,” Proc.

Int’l Computer Music Conf., Int’l Computer
Music Assoc., pp. 496-499, 1999.

[4] Assayag A., Rueda C., Laurson, M., Agon C.,
Delerue, O. “Computer Assisted Composition at
Ircam: PatchWork and OpenMusic,” The
Computer Music J., vol. 23, no. 3, 1999, pp. 59-
72.

[5] Bloch, G., Chabot X., Dannenberg, R., «A
Workstation in Live Performance: Composed
Improvisation», Proceedings of International
Computer Music Conference, The Hague,
Netherlands, 1986.

 [6] Brand, M., and Hertzmann, A, 2000, Style
Machines, In Proceedings of SIGGRAPH 2000,
New Orleans, Louisiana, USA

[7] Chemillier, M., “Toward a formal study of jazz
chord sequences generated by Steedman's
grammar,” G. Assayag, V. Cafagna, M.
Chemillier (eds.), Formal Systems and Music
special issue, Soft Computing 8, pp. 617-622,
2004

[8] Conklin, D. « Music Generation from Statistical
Models », Proceedings of the AISB 2003
Symposium on Artificial Intelligence and
Creativity in the Arts and Sciences, Aberystwyth,
Wales, 30– 35, 2003.

 [9] de Cheveigné, A., Kawahara, H. "YIN, a
fundamental frequency estimator for speech and
music", J. Acoust. Soc. Am. 111, 1917-1930,
2002.

 [10] Dubnov, S. Assayag, G., “Improvisation
Planning and Jam Session Design using
concepts of Sequence Variation and Flow
Experience”, Proceedings of Sound and Music
Computing ’05, Salerno, Italy, 2005.

[11] Dubnov, S., Assayag, G., Lartillot, O., Bejerano,
G., “Using Machine-Learning Methods for
Musical Style Modeling,” IEEE Computer, Vol.
10, n° 38, p.73-80, October 2003.

 [12] Dubnov, S., Assayag, G. « Universal Prediction
Applied to Stylistic Music Generation » in
Mathematics and Music, A Diderot
Mathematical Forum, Assayag, G.; Feichtinger,
H.G.; Rodrigues, J.F. (Eds.), pp.147-160,
Springer-Verlag, Berlin, 2002.

 [13] Dubnov, S., Assayag, G., El-Yaniv, R.
“Universal Classification Applied to Musical
Sequences,” Proc. Int’l Computer Music Conf.,
Int’l Computer Music Assoc., 1998, pp. 332-340.

[[14] Orlarey, Y., Lequay “ MidiShare : a Real Time
multi-tasks software module for Midi
applications”, Proceedings of the International
Computer Music Conference 1989, Computer
Music Association, San Francisco, 1989.

[15] Puckette, M. "Combining Event and Signal
Processing in the MAX Graphical Programming
Environment." Computer Music Journal 15(3):
68-77, 1991.

[16] Warusfel, O., Misdariis N., “Sound Source
Radiation Synthesis: From Stage Performance
to Domestic Rendering” in Proceedings of
116th AES Convention, 2004.

[17] Wright M., Freed, A., Momeni A.: “OpenSound
Control: State of the Art 2003.”, Proceedings of
NIME 2003: 153-159, 2003.

