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ABSTRACT 

We describe an architecture for an improvisation 
oriented musician-machine interaction system. The 
virtual improvisation kernel  is based on a statistical 
learning model. The working system involves a hybrid 
architecture using two popular composition/perfomance 
environments, Max and OpenMusic, that are put  to 
work and communicate together. The Midi based 
OMAX system is described first, followed by the OFON 
system, its extension to audio. 

1. INTRODUCTION 

Machine improvisation and related style learning 
problems usually consider building representations of 
time-based media data, such as music or dance, either by 
explicit coding of rules or applying machine learning 
methods. Stylistic machines for dance emulation try to 
capture movement by training statistical models from a 
sequence of motion-capture sequences [6]. Stylistic 
learning of musical style use statistical models of 
melodies or polyphonies to recreate variants of musical 
examples [8]. These and additional researches indicate 
that emulation of particular behaviors is possible and that 
credible behavior could be produced by a computer for a 
specific domain.  
In the field of music improvisation with computers there 
has been recently notable advances in statistical music 
modeling that allows capturing stylistic musical surface 
rules in a manner that allows musically meaningful 
interaction between humans and computers. We have 
experimented several of these models during the past 
years, and more recently implemented OMAX, an 
environment which benefits both from the power of 
OpenMusic [4] for modelling and high level 
programming, and MaxMSP [15] for performance and 
real time processing. This environment allows 
interaction with one or more human player, on-the-fly 
stylistic learning, virtual improvisation generation, 
metrical and harmonic alignment, stylistic model 
archiving and hybridation. It operates on two distinct 
time scales : the Max one, which is close to real time and 
involves fast decision/reaction, and the OpenMusic one, 
which has a deeper analysis/prediction span directed 
towards the past and the future. This two conceptions of 
time have to interact and synchronize through 

communication channels through which musical data as 
well as  control signals circulate in both direction. A 
decisive advantage we have found in this hybrid 
environment experience is its double folded 
extendability. In the OM domain, it is easy, even while 
the system is running, to change the body of a lisp 
function and test incremental changes. Furthermore, it is 
easy to enrich the generation by connecting the system to 
a wide variety of compositional algorithms available in 
this environment. Same thing in the Max domain,  with a 
fabulous collection of real-time generation and 
processing modules. As a proof of this flexibility, it took 
no more then 2 days, once OMAX was running, to extend 
it to OFON, its audio version, by a few tweaks on the 
OM side and the Max one as well. So we think of this 
environment more as an indefinitely modulable and 
extendible experimental environment for testing new 
ideas about interaction, than to a fixed, ready for 
distribution, application. A realist strategy would be, 
once we are happy with a learning/generating model 
experimented in OMAX, to fix it into a pure Max 
application by taking the time to recode the OM part in 
C. 

2. STATISTICAL MODELLING 

Statistical modeling of musical sequences has been 
experimented since the very beginnings of musical 
informatics  [8]. The idea behind context models we use, 
is that events in a musical piece can be predicted from the 
sequence of preceding events. The operational property 
of such models is to provide the conditional probability 
distribution over an alphabet given a preceding sequence 
called a context. This distribution will be used for 
generating new sequences or for computing the 
probability of a given one. First experiments in context 
based modeling made intensive use of Markov chains, 
based on an idea that dates back to Shannon : complex 
sequences do not have obvious underlying source, 
however, they exhibit a property called short memory 
property by Ron and al; there exists a certain memory 
lengh L such that the conditional probability distribution 
on the next symbol does not change significantly if we 
condition it on contextes longer than L. In the case of 
Markov chains, L is the order. However, the size of 
Markov chains is O(|Σ|L), so only low order models have 
been actually experimented.  



To cope with the model order problem, in earlier works 
[3, 10-13] we have proposed a method for building 
musical style analyzers and generators based on several 
algorithms for prediction of discrete sequences using 
Variable Markov Models (VMM). The class of these 
algorithms is large and we focused mainly on two 
variants of predictors - universal prediction based on 
Incremental Parsing (IP) and prediction based on 
Probabilistic Suffix Trees (PST).  
 
From these early experiences we have drawn a series of 
prescriptions for an interactive music learning and 
generating method. In the following, we consider a 
learning algorithm, that builds the statistical model from 
musical samples, and a generation algorithm, that walks 
the model and generates a musical stream by predicting 
at each step the next musical unit from the already 
generated sequence. These prescription could be 
summed up as : 
• learning  must be incremental and fast in order to be 

compatible with  real-time interaction, and be able 
to switch instantly to generation (real-time 
alternation of learning and generating can be seen as  
« machine improvisation » where the machine 
« reacts » to other  musician playing). 

• The generation of each musical unit must bounded 
in time for compatibility with a real time scheduler 

• In order to cope with the variety of musical sources, 
it is interesting to be able to maintain several models 
and switch between them at generation time. 

• Assuming the parametric complexity of music 
(multi-dimensionality and multi-scale structures) 
multi-attribute models must be searched for, or at 
least a mechanism must be provided for handling 
polyphony. 

We have chosen for OMAX a model named factor 
oracle (FO) that conforms with points 1, 2 and 4. It is 
described in [1] and its application to music data is 
described in  [2]. An exemple is given in figure 1. 
 

 
Figure 1. A factor oracle for the string ABABABABAABB. 
 
FO are basically automata that capture all sub-phrases 
(factors) in a sequence of  symbols, transformed into a 
linear chain of states by an efficient incremental 
algorithm. Through this transformation, the sequence 
structure is “learned” into the FO. The states are linked 

by two kind of arrows. Forward arrrows are called factor 
links. By following these at generation time, it is possible 
to generate factors of the original sequence, i.e. litterally 
repeat learned subsequences. Backward arrows are called 
suffix links. By following these, it is possible to switch to 
another subsequence sharing a common suffix with the 
current position. Such a recombination, is really a context 
based generation, the context being the common suffix. 
Although the probability model has not yet been defined, 
Fo’s are conjectured to be VMM. 

3. OMAX ARCHITECTURE 

OMAX is distributed across two computer music 
environments : OpenMusic  and Max. Obviously, the 
Max components are dedicated to real-time interaction, 
instrumental capture, Midi and audio control, while 
OpenMusic components are specialized in higher level 
operations such as building and browsing the statistical 
model. Communication channels between max and OM 
allow the transmission of streams of musical data as well 
as control information. In the primitive version of 
OMAX, Midishare [14] has been used as an inter-
application communication system, but all the 
transmitted data had to be encoded in Midi. Of course 
this is not very convenient, specially when structured 
data has to be exchanged, so this component is being 
rewritten using OSC [17], a powerful message based 
communication protocol that is getting very popular in 
the computer music community. 
On the OpenMusic side, a few lisp-based software 
components have been implemented : 

• A Midi listener, that fetches the incoming midi 
events sent by Max and bufferizes them 

• A phrase segmenter that prepares a phrase from 
the Midi stream based on special signals 
received from Max. 

• A polyphony expert module that turns the raw 
Midi stream into a sequence of polyphonic units 
(see details below). 

• A harmonic expert module  
• A learning/generating module that implements 

the FO structure and knows 2 messages : learn 
and improvize, with a granularity of one phrase. 

• A communication module that handles the 
data/control exchanges with Max. 

On the Max side, the components are : 
• A Midi input module that listens to a Midi port, 

prepares the data to be sent to OM, provides 
basic analysis in order to detect phrase 
boundaries. This module also provides clock 
information for the beat mode (see below). 

• A Midi sequencer A where sequences can 
be launched in the case when the computer 
is supposed to play a fixed part such as a 
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such as a harmonic/rythmic background for 
improvisation. 

• A Midi sequencer B that is fed with 
generated “improvisations” received from 
OM. 

• A communication module that is 
responsible for data and control exchanges 
with OM. 

 
Polyphony management  :  
 
The statistical modelling techniques we use 
suppose the data to be in the form of sequences of 
symbol taken from an alphabet. Of course music 
being multidimensional it has to be processed in 
some way in order for the model to be usable and 
meaningful. We detail in [11] a method for 
processing polyphonic streams in order to turn them 
into a sequence of symbols such that a sequence 
model can be built from which new generated 
strings can easily be turned into a polyphony 
similar in structure to the original. Such “super-
symbols”, output by the polyphony manager in 
OM, are “musical slices” associated with a certain 
pitch content and a duration.  
 
Free / Beat scenarios  :  
 
Two different scenarios can be experimented in 
OMAX. In the so-called “free-mode”, there is no 
notion of metrical structure. The human performer 
plays freely. From the OM point of view, phrases to 
be learned arrive with the appearance of  sequences 
of polyphonic symbols with various durations. 
Generated phrases will share the same flexible 
allure.  
In the “beat-mode”, the musical session is anchored 
to a certain metrical / harmonic grid, which is 
generally played by the computer. In this mode, 
Max will intertwine clock messages in the stream 
of midi events it sends to OM. These clocks 
segment the time according to beat boundaries. The 
OM phrase segmenter and polyphony manager will 
build consecutive polyphonic symbols which 
duration are aligned with the beat boundaries. New 
improvisations generated by OM are now multiples 
of the beat duration. Upon receival of these 
sequences, Max will align them correctly with the 
metrical structure it is playing. 
Handling the harmony is a bit more complicated 
and involves several round trips between Max and 

OM. This is due to the fact that we have mostly 
experimented in jazz harmony, including the jazz 
substitution mechanisms. For a given harmonic grid, 
stored in an OM data structure, the OM harmony 
expert module, operating one grid ahead with 
respect to the current time in Max, generates a new 
variant grid. The model used for this is detailed in 
[7]. OM expands the new grid into chords and sends 
the sequence of chords to Max which stores them in 
a midi sequencer, keeping them ready for the next 
grid occurence. At any time, when a human played 
phrase is sent to OM and therefore turned into a 
sequence of beat aligned polyphonic symbols, a 
harmonic label is sticked to each of these symbol. 
This is possible because the entering beats are 
numbered relatively to the periodic grid  and OM 
knows the details of the grid currently played by 
Max.  
The FO learning module now learns data packets 
that are contained within a beat and associated to a 
harmonic label.  
At generation time, the harmony may have changed 
due to the perpetual substitution mechanism. So the 
FO is asked to generate under the constraint of the 
current harmony. Technically, this means that we 
follow the arrows (factor or suffix links) by giving a 
priority to the pathes that generate a sequence of 
harmonic labels either identical to the current ones 
or compatible under the substitution theory. 
In the beat mode, the generated impros are thus 
aligned metrically and harmonically, although 
nothing restricts the harmony from changing at each 
grid occurrence. Of course it would be just a small 
change to this architecture if we wanted the 
harmony to be lively captured fro a human 
performer (e.g. a pianist), and there would be no 
need to refer to a particular style such as ‘jazz’ as 
long as we had a theory for harmonic label 
equivalences. Such an equivalence theory would be 
necessary in order to avoid too many failures at 
generation time. Such failures occur when the 
statistical process leads up to a state where no 
outgoing arrow is compatible with the current 
harmonic label. 
Figure 2 gives an overview of the (simplified) 
Omax architecture.  
 



Figure 2. OMAX architecture 
 
The bottom line is a time line where the small 
circles show grid boundaries. In the Max world 
(bottom half) the rectangles indicate Max processes 
running along time. The picture shows a situation 
where the beat mode, the more complex one, is 
used. The leftmost, thick arrow shows the stream of 
Midi information sent continuously to OM by the 
Midi recorder and being learned. The next, broken 
arrows are punctual signals sent to OM, telling it 
either to “expand” (generate data, either from 
compositional algorithm or from the harmony 
model), or to “simulate”, that is asking  an 
improvised phrase from the statistical learn base. 
These musical data, sent back to Max, will be 
reserved in the Midi sequencer and be ready for the 
next grid occurrence. Midi Tracks and audio tracks 
are for static data to be played by Max.  
The two bottom Max processes implement the 
OFON extension and will be explained in the next 
section. 

4. OMAX WITH SOUND : OFON EXTENSIONS 

The Ofon system was developed in order to benefit from 
the Omax system while using acoustic instruments. It 
only works now with monophonic instruments. 
The principle is simple : a pitch tracker extracts the pitch 
and intensity values while the sound of the instrument is 
recorded in a buffer. 
Time stamps corresponding to the offset of sound events 
in the buffer are associated to the corresponding Midi 
events built at the ouput of the pitch tracker and sent to 
OM as well. Now the symbols learned in the FO contain 
a reference into a sound buffer. When OM performs the 
reconstruction of an improvisation using the oracle, the 

time stamps are sent back to Max along with the midi 
stream. An Ofon module, the audio montage, is then able 
to assemble the sound pieces extracted from the sound 
buffer thanks to the time stamps. So, the music is learned 
from an audio signal, and the virtual improvisations 
result in an audio signal reconstructed from thet original 
audio material. 
It is worth noting that, since we can get several 
computer-generated improvisations going on at the same 
time, it becomes possible to create multiple clones of the 
live player and have him/her play with them. This results, 
of course, in an exciting interaction situation. For the 
moment, the system has been extensively used with 
saxophone players (Philippe Leclerc in France and Tracy 
McMullen in San Diego), and experimented with student 
actors of the Théâtre national de Strasbourg in a language 
and sound poetry environment under the direction of the 
stage director Jean-François Peyret. 
There are three main problems in order to achieve such a 
system: a reliable pitch tracking, a real time editing of the 
sounds in the buffer, and a diffusion of the cloned 
instrument interesting enough to bear the immediate 
comparison with the real instrument. 
 
Editing the buffer 
 
Editing the buffer is a relatively trivial task, given the 
fact all the tools for sound editing are already 
implemented in Max. 
The main problem of editing (whether in real time or not) 
is to correctly estimate the position of the editing point. 
This ends up being a pitch tracking problem: the tracking 
must determine the exact moment when the note starts 
(or with a constant offset), for every possible pitch. 
An aspect specific to Omax is that, sometimes, editing is 
simply not necessary, when Omax recombines sound 
events that, in the original take, have been played in 
sequence. Therefore these occurrences must be detected 
to avoid unnecessary editing and just read continuously 
the corresponding part of the buffer in sequence. 
 
Pitch tracking 
 
One of the main problems is to get a reliable pitch 
tracking system. Everyone who has tempered with such a 
system knows how picky these kinds of system are, as 
soon as we are dealing with instruments with large timbre 
capacities, as it is often the case in real life. Having 
experimented with saxophone and voice, we started with 
quite tricky examples. 
However, we need to know what we mean by “reliable”. 
An important point, as we have seen, is to determine 
when the note begins whatever the pitch and regardless 
of the playing mode. If the time offset is constant on each 
pitch but differs according to the range, it can be 



arranged by referring to a table of offsets, once the pitch 
is determined. 
Extracting the pitch itself can be problematic, especially 
when the player uses sounds that do not correspond to 
the official labels of the Conservatoire de Paris or of the 
Julliard School. This is often the case when one works, 
for instance, with jazz players. One runs therefore into 
two kinds of problems: pitch detection errors and “wrong 
notes” added. Curiously, the errors in pitch detection are 
not that important, as long as they are consistent. The 
point of the oracle is to find similar passages, and 
consistency is enough to have it work well. Also, errors 
generally correspond to some aural logic (octave errors, 
which do not matter that much, and particularly strong 
harmonics being taken as the fundamental tone). 
Much more important is the problem of added notes, 
since the Omax system may receive a lot of irrelevant 
information. These notes most often are more or less 
interesting pitch information on transient sounds 
(especially on instruments like saxophone, voice, but 
also bow and reed instruments in which the attack part 
can be relatively underlined for expressive purposes). It 
is important to get rid of those. 
We are using the yin~ pitch algorithm [9] as 
implemented in Max by Norbert Schnell, along with 
some post processing of our own. The output of a 
saxophone looks like  the plot in figure 3.  
 
 

 
 

figure 3.  An example of the yin~ output. Pitch is on top, 
amplitude in the middle and quality at the bottom. Time is 

right to left. 
 
The most interesting feature of the yin~ algorithm is its 
quality parameter. In the picture above, we can notice 
that, if the quality is not sufficient, the pitch is routed to 
a default low value (this is the case, for instance, on the 
right part of the graph, in the beginning of the excerpt, 
since the graph scrolls from right to left). This only 
means that the instrument is not playing. The quality 
factor is useful in an instrument in which the “purity” of 
the sound is extremely variable: we can accept pitches 
even with a low quality factor. In the middle of the 
graph, there are moments when the quality falters: how 
to decide if the pitch is good enough? On the other hand, 

when reading the graph, the solution is obvious: the 
melody is (from right to left) D# E G# D# B (last note on 
the graph, cut). Obviously, the three (or perhaps four) 
first notes are slurred, the last one is detached, and there 
is vibrato on the top D#. 
The extensions to yin tried so far consists of : 

• using a window of a certain length (e.g., 60 
milliseconds) for each new pitch value detected 

• using the quality factor in order to allow several 
types of sound, to generate note-off and to 
consider low quality as a special pitch 

• achieving statistics on each window: that is, 
each new pitch value opens the window and, for 
the duration of the window, the following values 
are analyzed; if the original value represents 
more than a certain proportion of all found 
values (50% for example), a note-on is 
generated. 

It results in a delay (the window length) before 
evaluating the pitch; this delay is relatively short, except 
if a large window is chosen to suppress the vibrato (not 
always a desirable feature). If two notes follow each 
other (slurred playing), the corresponding note-off is 
automatically generated (since we are dealing with a 
monophonic instrument). If notes are detached, the 
insufficient quality factor (insufficient for the duration of 
the window) will generate a note-off between them. 
The result is satisfying, especially since it gives a really 
correct time estimation for editing. It requires of course a 
careful tune-up of the three parameters: quality factor, 
window length and statistical mean to keep a pitch value 
(the two last parameters depend on the DSP vector size, 
of course). With a very large vector size, there can be just 
one value in each window, and the averaging is done by 
the yin~ algorithm itself, a hardly satisfying solution. 
 
Towards a realistic diffusion of the cloned instrument 
 
The other problem of Ofon (and actually of Omax in 
certain circumstances) is a very general and quite ancient 
problem: the coexistence of acoustic instruments with 
loudspeakers. The difficulty is even greater in Ofon, 
since the virtual instrument is supposed to sound so 
similar to the “real” one. 
The main difference between a loudspeaker and an 
acoustic instrument is that the directivity of the acoustic 
instrument varies, according to many parameters, mostly 
pitch and loudness (not only, by the way: on a violin, 
many pitches can be played on several strings and have 
therefore distinct directivities). 
That is the reason why a variable directivity system 
called “La Timée” has been developed at Ircam [16] in 
Olivier Warusfel’s team. The connection of “La Timée” 
to Ofon has proved easy, thanks to the help by Olivier 
Warusfell, since the MIDI data used with Omax and 
resulting from the pitch tracking give the necessary 



information of pitch and loudness allowing to command 
the directivity parameters (which are pitch-loudness 
dependent). These data are transmitted by Max to La 
Timée control system through OSC. It results in a very 
good rendering of the virtual saxophones. The 
description of this system is beyond the scope of this 
paper However, it is possible to get a decent virtual 
instrument without such a complex system. 
 

 
 

figure 4. An Ofon concert at Ircam (SMC’05, Workshop on 
Improvisation with the Computer) : left, Philippe Leclerc, 

saxophone. In the center, “la Timée. Right, Olivier 
Warusfel and Georges Boch. 

 
A “cheap imitation” of a variable directivity system 
already gives a much more realistic effect than a single 
loudspeaker. It can be realized by a set of loudspeakers 
centered on one point. Each speaker points in one 
direction and can have its proper frequency response. 
The balance between the speakers is controlled by the 
pitch and loudness data, in reference (or not) to the 
directivity features of the emulated instrument. 
 

5. OFONVIDEO 

Ofonvideo was developed by three students of 
University of Strasbourg II (Anne-Sophie Joubert, 
Vincent Robischung and Émilie Rossez) under the 
direction of Georges Bloch. It adds a further Layer to 
Ofon, and therefore to Omax. 
The principle is the same as in Ofon. The performer is 
filmed, the learning is performed on the music, and the 
filmed extracts are re-edited in real-time, according to 
the Omax virtual improvisation sequences augmented 
with time stamps. So, recombined improvisations of the 
music are doubled by a consistent recombination of 
video sequences. 
Ofonvideo has been programmed with jitter, an 
extension of the Max programming language aiming 
primarily at video control. 
The technical complexity of Ofonvideo depends on 
several features: the video has to be recorded on disk 
(and not in RAM), the machine must be powerful 
(actually, a single machine must be dedicated to the 
video processing) and the delay between the recording 
and playback of film and sound files must be carefully 
adjusted. Finally, the system is greatly enhanced if too 

short edits are avoided (in sound, one can edit a very 
short note, shorter even than a frame, but it is useless – 
and power expensive – in video). 
 
Image and sound in Ofonvideo 
 
In the principle, it looks like the sound in Ofonvideo will 
always double the image, a feature which can become 
tedious. This is false. It is always possible to call 
archived images, at any moment, and send them to the 
screen, regardless of the sound going on. And there is 
another possibility. In Ofon, there are five possible sound 
tracks at the same time, therefore five possible films. If 
the Ofon mixer mutes the sound tracks instead of 
stopping them, the images are still going on. 
Furthermore, Ofon can be set in “loop” mode while the 
film is running further on. 
 
One of the main interests of Ofonvideo is to allow 
improbable encounter between musicians. For example, 
the saxophonist Philippe Leclerc can meet Thelonius 
Monk, improvise with him, and each musician influences 
the improvisation of the other. The filming ends up in a 
bottomless mirror, in which Leclerc watches Leclerc who 
whatches Monk who watches Leclerc… see figure 5. 
 

 
 

figure 5.  A picture of an Ofonvideo session, with Philippe 
Leclerc, saxophone, watching himself watching Monk. This 

very picture may appear, seconds later, on the screen! 

6. FURTHER DEVELOPMENTS 

Omax-Ofon-OfonVideo open new perspectives in 
computer assisted improvisation and in the study of style 
in improvised music, in the path of the interactive 
systems imagined by Joel Chadabe at the end of the 
sixties and developed later by many performers-
researchers such as Georges Lewis, David Wessel etc. 
The representational and compositional capacities of 
OpenMusic enrich this system further and evokes the 



idea of “composed improvisation” systems [5]. The 
coexistence of Open Music and Max gives another 
dimension to this idea: the presence of a sophisticated 
computer assisted composition software allows the 
interaction processes to act on more global features, 
features that only musical representation can grab in an 
abstract manner. 
Let us claim this paradox: most interactive processes do 
require very little real time. If a decision is taken at a 
compositional level and on musical parameters that 
extend on a large scope (in other terms, if we view 
interaction as something else than a ornamentation of an 
otherwise fixed compositional process), we generally 
have some time to process the computation. What does 
matter is that, at a given moment, some proposition 
(solution) is available. For this reason, the coexistence of 
a very fast response and tracking (max) with a very 
powerful and flexible music representation program 
(OM) seems the obvious solution, until the ideal time 
when unified environments would exist. 
This is not exactly the way Omax works at the present 
moment: some aspects (notably the acquisition of 
sequences) are directly made in Open Music. Not only is 
it not practical (the MIDI or sound or video sequences 
should be acquired in Max and their parameters globally 
sent to Open Music) but also detrimental to the 
modularity of the system. This is a historical 
consequence of the development of the Omax system, 
accomplished by several people over a large span of 
time. This defects of youth are being corrected, notably 
by grouping the whole sequencing aspect in the FTM 
environment developed by Norbert Schnell at Ircam. 
Once implemented, a complete interactive architecture to 
which any Open Music composition-improvisation  
process could be patched will be available.  
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