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A. Röbel
IRCAM, 1, place Igor Stravinsky

75004, Paris, France
roebel@ircam.fr

ABSTRACT

This abstract describes an onset detection algorithm that
is based on a classification of spectral peaks into transient
and non-transient peaks and a statistical model of the clas-
sification results to prevent detection of random transient
peaks due to noise. A special feature of the proposed al-
gorithm is that it is suitable for real time analysis with a
maximum delay of only an 8-th part of the analysis win-
dow.

Keywords: real time, onset detection, polyphonic sig-
nals, peak classification.

1 INTRODUCTION

In the following article we are going to describe a tran-
sient detection algorithm that has been developed for a
special application, the detection of transients to prevent
transformation artifacts in phase vocoder based (real time)
signal transformations (R̈obel, 2003a,b). This application
requires a number of special features that distinguishes the
proposed algorithm from general case onset detection al-
gorithms: The detection delay should be as short as pos-
sible, frequency resolution should be high such that it be-
comes possible to distinguish spectral peaks that are re-
lated to transient and non transient signal components, for
proper phase reinitialization the onset detector needs to
provide a precise estimate of the location of the steepest
ascend of the energy of the attack. In contrast to this con-
straints the application does not require the detection of
soft onsets, where a soft onset is characterized by time
constants equal to or above the length of the analysis win-
dow. This is due to the fact that such onsets are suffi-
ciently well treated by the standard phase vocoder algo-
rithm. False positive detections are not very problematic
as long as they appear in noisy time frequency regions. A
major distinction is that a single onsets may be (and very
often is) composed of multiple transient parts, related ei-
ther to a slight desynchronization of polyphonic onsets or
due to sound made during the preparation of the sound
(gliding fingers on a string). While these desynchronized
transients are generally not considered as independent on-
sets they nevertheless constitute transients which should
be detected for the intended application.

The evaluation of the transient detection algorithm for
onset detection and music segmentation tasks has revealed

that the detection results are comparable with existing al-
gorithms for onset detection or signal segmentation tasks
and, therefore, it has been implemented as a means for
signal segmentation and onset detection in IRCAMS Au-
dioSculpt application (Bogaards et al., 2004).

In the following article we will first describe the al-
gorithm and comment on its features and expected perfor-
mance, will then describe the optimal parameters that have
been selected for the MIREX comparison and then discuss
the evaluation results obtained for the MIREX 2005 audio
onset detection task.

2 Fundamental Strategy

There exist many approaches to detect attack transients.
For a number of current approaches see the other articles
that have been proposed in the MIREX 2005 onset detec-
tion contest and furthermore Bonada (2000); Masri and
Bateman (1996); Duxbury et al. (2002); Rodet and Jail-
let (2001). In contrast to the evaluation of energy evolu-
tion in integral frequency bands, a criterion that most of
the approaches are relying on, the following article pro-
poses a two stage strategy which first classifies the spec-
tral peaks in a standard DFT spectrum into peaks that po-
tentially may be part of an attack transient and those that
are not. Based on this classification a statistical model
of background transient peak activity is employed to de-
tect transient events. The advantage of this two stage ap-
proach is that the transient components of the signal are
classified with rather high frequency resolution, allowing
a precise distinction between transient and non transient
signal components.

The basic idea of the proposed transient detection
scheme is straightforward. A peak is detected as poten-
tially transient whenever the center of gravity (COG) of
the time domain energy of the signal related to this peak
is at the far right side of the center of the signal window.
Note, that it will be shown in section5 that the COG of the
energy of the time signal and the normalized energy slope
are two quantities with qualitatively similar evolution and,
therefore, the use of the COG of the energy for transient
detection instead of the energy evolution appears to be of
minor importance. Still it would be interesting to compare
a COG based and amplitude slope based implementation
of the algorithm.
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Figure 1: Center of gravity of partial energy (according to eq. (4)) as a function of transient position under the analysis
window for transient partials with fixed frequencyw = 0.2π and different length of linear ramp (in percent of window
size). Window type used is a Hanning window and SNR is−∞ (left) and 10dB (right). The minimum thresholdsCe (see
text) used for transient classification are marked.

3 Classification of spectral peaks
To understand the analysis procedure we investigate into
the COG of a single transient sinusoid having an ampli-
tude envelope representing a linear ramp with saturation.
The signal is analyzed by means of moving the analysis
window over the attack and performing a STFT. Without
loss of generality we assume that the time origin is moving
and is always in the center of the analysis window.

We denote the Fourier spectrum of the signalsh(t, tm)
which is the signals(t) windowed with the analysis win-
dow centered at time positiontm, h(t, tm), to be

Sh(w, tm) = A(w, tm)ejφ(w,tm). (1)

Herew is the frequency in rad andA(w, .) andφ(w, .)
are the amplitude and phase spectrum respectively. As
shown in Cohen (1995) the center of gravity (COG) of
the instantaneous energy of the windowed signalsh(t, tm)
defined as

tcg =
∫

tsh(t, tm)2dt∫
sh(t, tm)2dt

, (2)

can be calculated by means of

tcg =

∫
−∂φ(w,tm)

∂w A(w, tm)2dw∫
A(w, tm)2dw

. (3)

The negative phase derivative, called group delay, deter-
mines the contribution of a frequency to this position.
While equations (1) - (3) are derived for time continuous
signals the same type of relations can be established for
the DFT of discrete time signals where the integrations
have to be replaced by summations and the differentiation
with respect to frequency is understood to be performed
using the properly interpolated DFT spectrum. The origin
of the coordinate system for the sample positions has to be
chosen consistently when calculating the DFT. Note, that
the differentiation of the phase with respect to frequency,

the group delay, is equal to the time reassignment oper-
ator, which can be calculated efficiently by means of a
Fourier transform (or DFT) of the signal using a modified
analysis window Auger and Flandrin (1995).

To be able to determine transient positions for sinu-
soidal components that are part of a conglomerate spec-
trum we need to modify the estimation of the COG such
that it operates local in frequency. This is achieved by
means of considering each spectral peak independently
and limit the integral in eq. (3) to the frequencies located
between the amplitude minimum surrounding each peak.
Consequently, the COG is calculated using

tcg =

∫ wh

wl
−∂φ(w,tm)

∂w A(w, tm)2dw∫ wh

wl
A(w, tm)2dw

, (4)

wherewl andwh are the positions of the amplitude min-
ima below and above the current maximum respectively.
Due to the amplitude weighting taking place the differ-
ence between eq. (3) and eq. (4) will be small as long
as the partial is sufficiently resolved. For sinusoids that
are to close in frequency to be individually resolved the
treatment of individual peaks performs a somewhat arbi-
trary signal decomposition which nevertheless will cor-
rectly detect transient situations as long as all the sinusoids
that are contributing to the same peak are transient.

If the analysis window is moved from the left over the
attack of a sinusoid the COG is first located to the right
of the window center. Moving the window further to the
right results in the COG moving to the left such that the
absolute value of the phase slope is decreasing together
with the bandwidth of the peak. Finally, the phase slope
becomes zero and the peak reaches its minimum band-
width if the window has completely moved over the attack
transient in which case we have reached the stationary part
of the sinusoid. In fig. 1 the decrease of the COG is shown
that results if the analysis window moves over sinusoids
having an attack transient of different ramp length. The



analysis window that has been used in fig. 1 is a Han-
ning window, however qualitatively similar results are ob-
tained for all other analysis windows. The ramp length of
the attack phase is given in percent of the analysis window
length and the window position is given in terms of the po-
sition of the right end of the window relative to the start of
the attack. The window position is normalized by window
length and expressed in percent of the window length. The
left figure in fig. 1 shows the evolution of the COG in case
of a pure sinusoid, while the right figure shows the COG if
the sinusoid is embedded in white background noise with
a SNR of 10dB relative to the stationary part of the sinu-
soid. In both cases the transient part of the sinusoid can be
detected by simply thresholding the COG curve. The base
threshold levelCe has been selected according to (Röbel,
2003a,b) such that the transient will be close to the signal
center if the COG is close toCe. If the attack takes place
in background noise the increase of the COG is delayed
due to the fact that the noise that fills the analysis window
will offset the COG to the center of the window. Never-
theless, for a stationary sinusoid with amplitude of about
20dB above the background noise amplitude (and simi-
larly for the attack of a chirp signal) the maximum COG
still exceedsCe.

4 From transient peaks to onsets

Unfortunately not every spectral peak detected as transient
indicates the existence of a transient signal component.
Further inspection reveals that spectral peaks related to
noise signals quite often have a COG far of the center of
the window. In contrast to spectral peaks related to signal
attacks the transient peaks in noise are not synchronized
between each others and this synchronization of a suffi-
cient number of transient peaks will be our final means to
avoid detection of noise peaks as transient events.

In the following we will extend the deterministic tran-
sient peak model described above by means of a statistical
model that treats the randomly occurring transient events
that are due to background noise or dense sinusoids as a
background transient process. The stationary background
noise needs to be distinguished from singular events re-
lated to a change of sound characteristics or beginning of
a new note. The fundamental idea here is, that the aver-
age observed number of transient peaks should stay nearly
constant as long as now attack transient takes place. In
the later case the number of transient peaks should sig-
nificantly increase, giving an indication about the onset.
Because the statistical model should be able to indicate
whether the state in a narrow frequency band has changed
from non transient to transient, for example if a single si-
nusoid takes part in an onset, it appears to be favorable to
operate the statistical model within frequency bands that
will not cover the whole spectrum.

Therefore, to achieve the statistical description we di-
vide the spectrum into overlapping frequency bands with
equal bandwidth. For each band a statistical model is esti-
mated that describes the average probability of a transient
peak using a short history ofFh frames. To detect the
singular transient events that are related to instrument on-
sets we compare this probability with the number of tran-
sient peaks in the nextFc frames. The statistical model

is a simple binomial model describing the probability of a
spectral peak to have COG> Cs = KCe with K ≥ 1.
As will be shown later in the experimental evaluation of
the algorithm an increase inK decreases the sensitivity of
the algorithm and is one of the major means to control the
robustness of the detection.

For the estimation of the binomial model the num-
ber of independent eventsN of the statistical process is
needed. There exist multiple choices to select this param-
eter. A first idea would be to use the number of observed
peaks in each spectral band. This choice, however, would
link the number of peaks to the confidence of the deci-
sion and a strong transient that creates a single wide band
peak in the spectrum would always be biased by low con-
fidence because the number of observed events becomes
small. Therefore, a more sensible means to selectN is
the average number of peaks that may be contained in
a frequency band given the current analysis window. A
simple means to obtainN is to divide the bandwidth of
the main-lobe of the spectrum of stationary sinusoid by
the width of the spectral band and multiply the value by
the number of frames,Fc or Fh respectively. A slightly
more reasonable procedure would be to estimate the aver-
age number of peaks that will be contained in a frequency
band if the observed signal is pure white noise. As long
as the number of events does not change with time the ex-
act value is not very important because its impact can be
adjusted by the confidence level parameter introduced be-
low. Therefore, for the following experiments the simpler
method has been used.

A means to control the robustness of the detection is
the confidence level required when testing for a change in
the transient probability model between the frame history
and the current frames. Using the formula for the variance
of a binomial distribution with transient peak probability
p

σ2 = p(1− p)N (5)

we want to select the transient probability such that it is
consistent with the number of observed transient hitsn in
the frequency band within the range ofG times the stan-
dard deviation of the mean valuepN . Therefore, forp we
require

n = pN ±Gσ = pN ±G
√

p(1− p)N. (6)

where the plus and minus sign are used to determine the
transient probability for the current frames and frame his-
tory, respectively. Solving forp we obtain

pc=
G2Nc + 2ncNc −G

√
Nc(G2Nc + 4ncNc − 4n2

c)
2Nc(G2 + Nc)

(7)

ph=
G2Nh + 2nhNh + G

√
Nh(G2Nh + 4nhNh − 4n2

h)
2Nh(G2 + Nh)

,(8)

whereNx andnx are the number of independent events
and observed transient peaks in the frame history (for
x = h) and the current frames (forx = c), respectively.
An attack transient is detected if in any of the frequency
bands the transient probability in the current framespc is
larger than the transient probability in the frame history
ph, because this means that there does not exist a singlep



that can explain the observed transient peaks in both frame
sets with the required confidence.

After having detected an attack transient we want to
assemble all the transient peaks into a single event to be
able then to make a more precise estimation of the tran-
sient position. Until the end of the attack event is detected
all peaks that have a COG aboveCe are collected into a
set of transient bins. This set is non contracting and bins
stay in the set even if their COG falls below the threshold.
The attack is finished when the spectral energy of the bins
having a COG aboveCe in the current frame is smaller
than half the spectral energy contained in the set of bins
marked as transient.

4.1 Determining transient position

An attack transient event can be characterized in time by
its start and end time. As start time of the transient we
define the time location where the related signal energy
becomes detectable. Having classified the spectral frames
into transient and non transient bins it is now possible to
reproduce the transient signal by means of removing all
transient bins from the spectrum and transforming it back
into the time domain. As a simple means to estimate a pre-
cise location of the end of the transient we search for the
maximum absolute amplitude of the transient time signal.
For the start of the transient we take the absolute value of
the transient time signal before the detected end time and
search for a minimum mean squared error representation
by means of two line segments, the first one horizontal and
the second one with arbitrary slope. The connecting point
between these to segments is adapted such that a global
minimum error of the line segment representation is ob-
tained and the optimal connecting point is selected as start
time of the transient signal. The start time of the transient
signal has been used as transient position in the MIREX
evaluation.

4.2 Transient energy ratio

As will be shown in the following sections the use of
the transient detector as explained above yields good per-
formance for the detection and preservation of transient
events during the phase vocoder treatment. The detection
parametersCs and G are adjusted rather sensitive such
that recall percentage is close to 100%. The somewhat
large number of false positives does not have any nega-
tive impact because in nearly all cases the related signal
is part of a noise signal and has rather low energy. The
algorithm as described so far has been submitted for the
MIREX evaluation under the nameRoebel, A. 1. For the
use as onset detector a number of improvements may be
applied. The first one would be to require a minimum dis-
tance between two detected onsets keeping only the max-
imally significant onset if there are more within the given
time window. This approach has not yet been tested. An-
other approach that is currently used for the application to
signal segmentation is to filter the detected transient with
respect to their normalized energy variation(NEV).

As normalized energy variation we define the maxi-
mum of the ratio between total signal energy in a transient
frame and the transient energy in the same frame, where

the maximization is done over the whole duration of the
onset. As defined the NEV is bounded between 0 and 1.
Usually this filtering is done interactively by the user who
can adapt the NEV threshold after the detection process as
desired. For the current evaluation the threshold has been
optimized using a set of training data and for algorithm
Roebel, A. 2has been selected to NEV= 0.35 such that for
the training data the maximum F-measure was achieved.

5 COG and energy slope criteria
As mentioned above transient detection algorithms are
usually making their decisions based on the time evolu-
tion of the signal energy. In the following we show that
the COG is closely related to the change of energy with
time. From the theory of reassignment we know that the
group delay is equal to

− ∂

∂w
φ(w, tm) = − real

Sh(w, tm)ShT (w, tm)
|Sh(w, tm)|2

(9)

whereSh(w, .) andShT (w, .) are the Fourier transforms
of the signals using the windowsh andhT centered at
positiontm. The windowhT is obtained from the analy-
sis windowh by multiplication with a time ramp having
its origin in tm. If we calculate the derivative of the spec-
tral energy|Sh(w, tm)|2 with respect to window position
tm and normalize the derivative by the spectral energy we
obtain

∂|Sh(w, tm)|2

|Sh(w, tm)|2∂tm
= −2 real(

Sh(w, tm)Shd(w, tm)
|Sh(w, tm)|2

(10)
which besides a constant factor 2 can be derived from eq.
(9) by replacing the Fourier transform using the window
hT by a Fourier transform using the windowhd which is
the derivative of the analysis window with respect to time.
Becausehd andhT are qualitatively similar functions the
group delay eq. (9) and the normalized derivative of the
spectral energy eq. (10) will be similar functions as well.

6 Optimizing parameters
To give an indication of the precision/recall curves that
can be obtained with the proposed onset detector we will
discuss experimental results that have been performed on
a set of training signals. This set has been hand labeled
to obtain a ground truth for onset detection. The database
contains a set of 17 sound signals with a total of 305 at-
tack transients. For the following experiments the history
size to estimate the back ground transient probability has
been fixed to contain all frames that are covered by the
analysis window. Because the window step is the eights
part of the window the history always containsFh = 8
frames. For estimating the actual transient probability we
have experimented withFc = 1 andFc = 2. The results
obtained with these two settings are qualitatively similar,
however, with clearly better results forFc = 2. Therefore,
all following experiments will use this value.

There remain four user selectable parameters for the
transient detector. The first one is the analysis window
size. With respect to this parameter there exist contra-
dicting demands because on one hand attack transients of
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Figure 2: Comparison of relation between recall and precision ratio for transient detection with and without energy level
filter. Size of the analysis window has been set to 57ms and the confidence factorsG have been set as indicated in the
legend. For all curves the transient threshold factorK varies in the range from1.4 ≤ K ≤ 3.

sinusoids that mix with stationary sinusoids will not be
correctly detected such that frequency resolution should
be high and window size large. On the other hand we can
not detect more than one attack transient within a single
window such that window size should be small. This is a
variant of the well known time resolution/frequency res-
olution trade off for time frequency analysis. Aiming at
the mirex comparative study a fixed window size had to
be selected. For polyphonic signals a window of50ms or
more is generally preferable. Accordingly a window size
of 2500 samples has been selected.

The second parameter is the threshold factorK. A
simple theoretical investigation shows that for the noise
free case the maximum COG normalized by the analysis
window is0.5 and for maximum robustnessCs should be
close to this value. Due to background noise or preceding
notes, however, part of the transient may be covered in real
signals such that the maximum value of the observed COG
will generally be lower than0.5. As shown in section5
the COG has a close relation to the energy derivative and
we may understand the parameterCs (or K) to control
the jump in energy that is required for a transient to be
detected. Therefore, the parameterK is a natural means
to control the sensitivity of the detection algorithm.

The third parameter is the bandwidth of the frequency
bands that are used to obtain the statistical model for back-
ground transient activity. By increasing the bandwidth we
increase the reliability of the transient probability estima-
tion, however, at the same time we increase the number of
bins that have to be affected by a transient event to trig-
ger the transient detector. The band width of the statistical
model is expressed in terms of the number of independent
events within the band. During the optimization procedure
in preparation for the mirex evaluation we tried a band-
widths covering the range from 7 to 16 events per band.
Unfortunately no clear relation between bandwidth and re-
sults has been established. The optimal bandwidth varies
with the parametersK andG, the relations need further
investigation. For the evaluation we simply selected two
parameter sets that did work well with the training data.

It turned out that for the case with and without NEV filter
two different bandwidth were necessary to obtain optimal
training performance. Without NEV filter a number of7
events per band provided optimal performance while for
the case with NEV filter13 events per band was a slightly
better selection.

The last parameter is the confidence factorG that is
used to control the confidence in detecting a change in
transient probability. G has been varied in the range
[2, 3.75]. Depicted in fig. 2 are the recall and precision
ratios obtained for the hand labeled training data set and
for K ranging from1.4 up to3.

According to the MIREX evaluation procedure a tran-
sient has been considered correctly classified whenever
the hand labeled transient was not further then50ms away
from the estimated transient start time. All other detec-
tions are counted as false. In the left part of fig. 2 the
results for the simple transient detector without NEV fil-
ter is depicted. In the right part of the figure the same
experiment with additional threshold for the NEV=0.35 is
displayed. As expected, an increase inK as well as an
increase inG increases the precision and reduces recall
rate. Therefore an increase inK can be approximately
compensated by an appropriate decrease inG. Precision
and recall rate vary somewhat stronger if no NEV filter
is used. In this case the optimal performance has been
achieved forG = 3.5 andK = 2.4. Enabling the NEV
filter reduces the variation of the results for the different
parameter settings and at the same time significantly in-
creases the performance. Due to the fact that the NEV
filter removes a number of unreliable onsets the optimal
transient confidence factorG and the threshold factorK
are reduced toG = 3 andK = 1.6.

7 MIREX evaluation results

In the following section we are going to shortly discuss the
results obtained with the two parameter settings during the
MIREX onset detection contest.

A first remark concerns the significance of the out-



come. Clearly the neural network based algorithm of La-
coste and Eck achieved best overall performance. This,
however, is combined with a significantly increased pro-
cessing time (between 6 to 25 times longer than the pro-
posed algorithms). An important problem with this eval-
uation lies in the fact that each algorithm was trained on
different training data (because no training data was avail-
able) and that only a single parameter set was allowed. A
certain amount of luck was certainly required to win this
competition given the fact that the selected training data
may or may not have been similar to what was used in the
contest. For our algorithm the precision and recall rates
with the selected parameters were very similar, while in
the contest they are off by more than 10%. This indicates
a suboptimal algorithm working point and, therefore, it
can be expected that a simple change of parameters should
improve the performance.

Therefore, for further evaluation it is certainly essen-
tial to allow parameter variations during the competition,
such that each algorithm can be adapted and for each algo-
rithm only the globally best parameter set will be counted.

Considering now the places 3 to 5 it appears that all
these algorithms achieve similar performance. The algo-
rithm with NEV filter proposed in the current paper is at
position 5 with only 0.16% difference to place 3. It is
probably save to say that this difference is not significant.
Still there is an important remark in order. The algorithm
proposed in this paper has by far the largest number of
doubled onsets. From the discussion of the algorithm this
appears to be a consequence of the fact that close by tran-
sients are explicitly favored. It would be simple to im-
prove the algorithm by means of preventing the number
of close by detections, however, the open question espe-
cially with respect to the polyphonic and complex refer-
ence data would be, whether the ground truth reference
is correct. For signal segmentation it is certainly unde-
sirable to have multiple onsets triggered by slightly de-
synchronized instruments, however, for signal separation,
polyphonic f0 estimation or the present target application -
transient preservation in the phase vocoder - the detection
of slightly de-synchronized instruments may be a benefit.
Besides that it appears also save to say that the NEV fil-
ter significantly improves the performance of the proposed
algorithm.

Considering the different classes we may say that most
of the results could have been more or less expected. A
problem with the following comments is the fact that the
sound data for the experiments is not available. Therefore,
some of the following comments are based on guessing
how the sounds may have been.

It is obvious that the proposed algorithm should work
very well for impulsive attacks as for the solo bars and
bells, drums and solo plucked strings. These signals have
low background activity and will provide clear COG off-
sets for the resolved transient partials. Here the algo-
rithm performs rather good. For the drums the algorithm
achieves a very high recall with not as high precision, may
be due to the number of doubled detections which is sig-
nificantly higher than the average. Here again it would be
interesting to see, whether the algorithm is really wrong or
whether it was able to resolve drum beats that were rather
close such that the reference did not consider them as dis-

tinct events.
It is by far the best algorithm for solo wind instruments

which is to some extend a surprise. Probably the wind in-
struments also have clearly resolved partials with rather
strong attack covered by a lot of wind noise which is a
rather favorable environment for the high frequency reso-
lution that the algorithm provides.

Expected from all experiments so far was the weak
performance related to sustained strings. Often an onset
in a sustained string is just a move in frequency with a
nevertheless continuous partial trajectory. For this kind of
signal the peak based COG will always stay close to the
center of the window and detection cannot be expected.
A surprise is the relatively good performance for the solo
singing voice.

8 Acknowledgments
We would like to express our gratitude for the enormous
amount of work the MIREX team invested into this con-
test. It would certainly be a very good idea to repeat the
evaluation with a somewhat stabilized and improved pro-
cedure taking into account the weak points outlined above.

References
F. Auger and P. Flandrin. Improving the readability of

time-frequency and time-scale representations by the
reassignment method.IEEE Trans. on Signal Process-
ing, 43(5):1068–1089, 1995.

N. Bogaards, A. R̈obel, and X. Rodet. Sound analysis and
processing with audiosculpt 2. InProc. Int. Computer
Music Conference (ICMC), 2004.

J. Bonada. Automatic technique in frequency domain for
near-lossless time-scale modification of audio. InPro-
ceedings of the International Computer Music Confer-
ence (ICMC), pages 396–399, 2000.

L. Cohen. Time-frequency analysis. Signal Processing
Series. Prentice Hall, 1995.

C. Duxbury, M. Davies, and M. Sandler. Improved time-
scaling of musical audio using phase locking at tran-
sients. In112th AES Convention, 2002. Convention
Paper 5530.

P. Masri and A. Bateman. Improved modelling of attack
transients in music analysis-resynthesis. InProceed-
ings of the International Computer Music Conference
(ICMC), pages 100–103, 1996.
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