
HAL Id: hal-01161338
https://hal.science/hal-01161338

Submitted on 8 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FTM - Complex data structures for Max
Norbert Schnell, Riccardo Borghesi, Diemo Schwarz, Frédéric Bevilacqua,

Remy Müller

To cite this version:
Norbert Schnell, Riccardo Borghesi, Diemo Schwarz, Frédéric Bevilacqua, Remy Müller. FTM -
Complex data structures for Max. International Computer Music Conference (ICMC), Sep 2005,
Barcelona, Spain. pp.1-1. �hal-01161338�

https://hal.science/hal-01161338
https://hal.archives-ouvertes.fr

FTM — COMPLEX DATA STRUCTURES FOR MAX

Norbert Schnell Riccardo Borghesi Diemo Schwarz Frederic Bevilacqua Remy Müller
IRCAM — Centre Pompidou

Paris, Europe
Real-Time Applications Team & Performing Arts Technology Research Team

ABSTRACT

This article presents FTM, a shared library and a set of
modules extending the Max/MSP environment. It also
gives a brief description of additional sets of modules ba-
sed on FTM. The article particularly addresses the com-
munity of researchers and musicians familiar withMaxor
Max-like programming environments such asPure Data.

FTM extends the signal and message data flow paradi-
gm of Max permitting the representation and processing
of complex data structures such as matrices, sequences or
dictionaries as well as tuples, MIDI events or score ele-
ments (notes, silences, trills etc.).

1. INTRODUCTION

The integration of references to complex data structures in
the Max/MSP data flow opens new possibilities to the user
for powerful and efficient data representations and mod-
ularization of applications. FTM is the basis of several
sets of modules for Max/MSP specialized on score fol-
lowing, sound analysis/re-synthesis, statistical modeling
and database access. Designed for particular applications
in automatic accompaniment, advanced signal processing
and gestural analysis, the libraries use a common set of ba-
sic FTM data structures. They are perfectly interoperable
while smoothly integrating into the modular programming
paradigm of the host environment Max/MSP [5].

Inheriting most of its functionalities and implementa-
tion from the former jMax project [2], FTM concentrates
on providing a set of optimized services for the handling
and processing of data structures related to sound, gesture
and music representations in real-time. FTM includes a
small and simple C-written object system and graphical
Java editors embedded into Max/MSP. FTM is distributed
in form of a shared library and a set of external modules
under the LGPL open source host1 .

The acronym FTM is a reference to FTSFaster Than
Sound[6], the real-time monitor underlying the Max soft-
ware on the ISPW platform, which became later the sound
server of other real-time platform projects at IRCAM. One
can imagine FTM standing forFaster Than Musicor Fun-
ner Than Messages.

The original motivation for the development of FTM
was the need for a flexible score representation related to

1 http://www.gnu.org/licenses/

score following and an efficient representation of matrices
and vectors allowing for modular implementation of var-
ious analysis/re-synthesis algorithms in a unified frame-
work. Today, external modules for both applications have
been implemented in packages:Suivi and Gabor. Fur-
ther packages are following addressing gesture analysis
and database access (see section 3).

FTM is available for Max/MSP on Mac OS X and Win-
dows. The porting of FTM toPure Data[7] on Linux is
in progress.

2. FTM FEATURES AND SERVICES

The features of FTM can be summarized as follows:

• static and dynamic creation of data structures (FTM
objects) of predefined classes

• editors and visualization tools

• expression evaluation including functions, method
calls, and arithmetic operators

• import/export of text, standard MIDI, SDIF [9] and
the usual sound file formats

• object serialization and persistence

2.1. Data Structures and Operators

FTM allows for static and dynamic instantiation of FTM
classes creating FTM objects. Static FTM objects are cre-
ated in a patcher using a dedicated Max/MSP external
module. Dynamic object creation is provided by a new-
function within the FTM message box and by other exter-
nal modules. The objects are represented by references,
which can be sent within the data-flow between the Max
modules as arguments of lists and messages.

FTM strictly separates data objects and operators. Only
basic operations on FTM objects are implemented as meth-
ods of the FTM classes which can be invoked within the
FTM message box or by sending a message to a statically
created object. More complex calculations and interac-
tions with objects are implemented as Max/MSP external
modules receiving references to FTM objects into their in-
lets or referencing objects by name as their arguments.

2.1.1. Classes and Objects

The following FTM classes are currently provided with
documentation:

mat... matrix of arbitrary values or objects
dict ... dictionary of arbitrary key/value pairs
track ... sequence of time-tagged items
fmat... two-dimensional matrix of floats
fvec... reference to a col, row or diag of anfmat
expr... expression
bpf ... break point function
tuple... immutable array of arbitrary items
scoob... score object (note, trill, rest, etc.)
midi ... midi event

FTM classes are predefined. They are implemented in
C and optimized for real-time performance. The classes
themselves are kept as generic as possible providing a
maximum of interoperability.

In the current packages based on FTM, the matrix and
dictionary class are mainly used to organize data. Since
they can contain references to other objects they easily
allow for building up recursive structures such as matrices
of matrices or dictionaries of sequences. Thetuple class
gives the possibility of creating lists of lists (i.e. tuples of
tuples). The classesfmatandbpf are well adapted to real-
time processing of sound and movement capture data.

The generic two-dimensional float matrixfmat repre-
sents various data such as vectors of sounds samples, spec-
tral data, coefficients and movement capture data. Com-
plex calculations are implemented within specific meth-
ods, functions or processing modules requiring two-col-
umn matrices as input.

2.1.2. Modules, Messages, Names and Expressions

FTM is released with a set of external Max/MSP mod-
ules providing basic functionalities for the creation and
handling of objects and operations related to the provided
classes. All operations on FTM objects requiring or pro-
viding additional memory, timing or visualization are im-
plemented in form of external Max/MSP modules rather
than methods of the FTM classes.

Figure 1. Example of a static FTM object namedmyfmat
in a Max/MSP patcher

Figure 1 shows an FTM object statically created with
the ftm.object module in a Max/MSP patcher. The
module defines afmatmatrix of floats with 4 rows and 7
columns. The module redirects all incoming messages to
the defined FTM object. A bang message causes the mod-
ule to output a reference to the object from the left out-
let. The object can be given a name within global or local

scope. Local scope is limited to a patcher file such as a
loaded top level patcher or an instance of an abstraction.
This way local names can be defined and used within a
patcher file and all its sub-patches, while different patcher
files and abstractions can have each their private name def-
initions. FTM names are used with a leading ‘$‘ character
in all FTM modules including the FTM message box.

The persistence of the content of a static FTM object as
well as its name and scope can be set by graphical inter-
actions with the module or using an associated Max/MSP
inspector. A persistent object saves its content within the
Max/MSP patcher file and restores its content when it is
copied and pasted to a patcher using the serialization mech-
anism described at the end of 2.1.3. More over, the con-
tent of any statically defined object can be saved to and
restored from a text file.

Static object definitions are invalid (i.e.ftm.object
appear opaque) when they include a reference to an unde-
fined name and turn automatically into valid objects as
soon as the name is defined by anotherftm.object
module.

The moduleftm.mess provides the possibility to
compose and output messages in a way which is similar
to the usual message box built into Max/MSP. As an ex-
tension the FTM message box allows the dynamic eval-
uation of expressions. Figure 2 shows several examples
of expressions in theftm.mess module. Function calls
require parenthesis around the function name followed by
the arguments. Method calls are similar within parenthe-
sis starting with an object followed by the method name
and arguments. Methods can be invoked on objects ref-
erenced by name or by references received into the inputs
using numbered references (i.e. $1, $2, etc).

Figure 2. Three examples of messages using expressions
in the FTM message box

The return values of FTM class methods can be used in
an arithmetic expression or as argument of another method
or function call.

2.1.3. References, Data-flow and Persistence

The introduction of references to complex data structures
into the Max data-flow creates new possibilities as well
as unusual Max programming paradigms. While Max
messages are immutable and copied in order to perform
successive calculations module by module following the
patches connections, the FTM objects floating in a Max
patch are often modified by the modules they traverse.

Figure 3 shows a simplified example of a patch calcu-
lating the logarithmic magnitude of an FFT spectrum and
a smoothed spectral envelope of a frame of 512 samples

Figure 3. Max data flow with in-place calculations

of a speech sound. Each of the messages boxes invoke one
or two methods performing an in-place calculation which
destructively transforms the content of the matrix. Some
methods even change its dimensions.

The Max control flow executes the message boxes in
right-to-left and top-to-bottom order. All of thefmatmeth-
ods used in the example (mul , div , clogabs , zero
andrifft) return a reference to thefmatnamedframe.
The method calls can be chained as in the expression
‘ (($1 fft) div 256) ‘ and the message boxes can
be connected in series or in parallel respecting the right-
to-left output order. Since the execution order of two
Max modules connected to the same outlet depends on the
graphical position of the modules, moving FTM modules
in the patcher window can change drastically the result of
the calculation. Like the Max message box,ftm.mess
allows for separating expressions by comma successively
evaluating and outputting the resulting values or lists in
left-to-right order. A semicolon instead of the comma sup-
presses the output while keeping the expression evaluated.

FTM objects such as amat, dict or track can contain
references to other objects. More over many FTM mod-
ules, such as the message box or the moduleftm.play
interpreting atrack sequence, store references to objects.
The destruction of statically or dynamically created ob-
jects is handled by a simple reference count garbage col-
lector. Objects which have been referenced by other ob-
jects or FTM modules are immediately destroyed when
the last reference to the object has been released.

For persistency, FTM provides a serialization mech-
anism recursively saving the content of objects and the
objects contained as references. Using this mechanism,
FTM objects containing FTM objects can be saved and
restored within a Max/MSP patcher file and copied and
pasted between patchers.

2.2. FTM Interfaces, Interchange and Integration

2.2.1. Graphical Editors

FTM provides editors for most of the complex classes.
Similar to other Max/MSP modules, an editor can be
opened by double-clicking on the anftm.object mod-
ule. While some editors such as those for thetrackandbpf
classes allow for a graphical representation of the objects
content, others consist of a simple textual table view (e.g.
mator dict). All editors use Java2 and integrate into Max/
MSP using themxjJava interface.

The currently most developed FTM editor is available
for the track class when representing a sequence ofscoob
objects. The editor provides a chronometric representa-
tion for musical scores as shown in figure 4. The represen-
tation integrates score events such as notes, rests and trills,
with a temporal structure of bars and additional markers.
The same content can be edited in parallel in a table view
describing the displayed score objects and markers as a
textual list.

Figure 4. Detail of a screenshot of the score editor

2.2.2. SDIF

The Sound Description Interchange Format (SDIF) [9] is a
file format of increasing popularity for the storage and ex-
change of sound data in various representations including
frequency domain descriptions such as partials, spectral
envelopes, STFT frames, FOF parameters or LPC coeffi-
cients but also PCM samples or PSOLA markers. SDIF
can also be used for motion capture data and other data
sets with a temporal development.

The import and export methods of the FTMtrackclass
support SDIF. Atrack object represents an SDIF file as a
sequence offmatobjects, eachfmatobject representing a
matrix of the SDIF file.

2.2.3. Max/MSP Integration

FTM can be seen as partly independent from Max/MSP
and can easily be integrated into other environments.
However special care is taken to assure the seamless in-
tegration of FTM into Max/MSP.

It has been chosen to represent references to FTM ob-
jects in the Max data-flow on the level of elementary types
such as int, float and symbols. Single FTM objects are
sent as a single argument of a special message “ftm.obj“,
which is only understood by the FTM external modules.

2 http://java.sun.com/

As a consequence some Max/MSP modules such aspack
don’t apply to FTM objects. In this case an FTM specific
replacement is provided.

2.2.4. Platform Independent API for External Modules

FTM provides an API for the development of FTM mod-
ules such as Max/MSP externals independently from a
specific real-time environment. The API is currently im-
plemented for Max/MSP andPure Data. It assures the
possibility of easily porting the available FTM modules to
any Max-like environment. The API supports the decla-
ration of Max/MSP-style attributes and transparently in-
cludes a redefinition mechanism for named references to
FTM objects in instantiation arguments as explained in
section 2.1.2

3. FTM PACKAGES

Several packages dedicated to different domains of appli-
cation are available for FTM.

The packageSuivicontains modules performing score
following based onHidden Markov Models(HMM) [4].

The package consists mainly of two objects performing
score following on MIDI and audio input. They reference
trackobjects containing the score information.

The Gabor package is a toolbox for analysis/re-
synthesis applications. The modules of theGabor pack-
age are built around the notion of generalized granular
synthesis processing atomic units of short sounds (frames,
grains, wave periods, etc.) [8].Gabor provides a uni-
fied framework for granular synthesis, PSOLA [3], phase
vocoder and other overlap-add techniques.

The packageMnM (“Music is not Mapping“) [1] is
a set of modules providing basic linear algebra, map-
ping and statistical modeling algorithms such asPrinci-
pal Component Analysis(PCA), Gaussian Mixture Mod-
els (GMM) and Hidden Markov Models(HMM). The
close integration of motion capture with complex statisti-
cal models and sound analysis/re-synthesis is a promising
platform encouraging the development and composition
of new artistic applications going far beyond simple map-
pings.

The most recent packageFDM (FTM Data Man-
agement), introduces relational SQL database access
(SQLite) using FTM classes (mat, dict). Other FTM ob-
jects can be stored as BLOBs (fmat) or using the serializa-
tion mechanism. The package prepares the real-time im-
plementation of concatenative data-driven synthesis [10].

4. CONCLUSIONS

FTM provides a consistent set of features integrated to
Max/MSP opening new possibilities for the development
of interactive music and multi-media applications. FTM
successfully absolved a phase of proof-of-concept and is
today freely distributed with a set of packages oriented

towards different domains forming a coherent ensemble
around a kernel of basic FTM modules.

FTM and its libraries have been successfully employed
in various concert, dance and theatre performances for
score following, voice and sound processing, mapping and
gesture recognition.

FTM is released under theLesser GNU Public Li-
cense(LGPL). Recent releases are available from the web
page of the IRCAM Real-Time Applications Team3 . The
packagesGabor, MnM and FDM are released with the
FTM distribution for Max/MSP.Suivias well as advanced
examples and additional phase vocoder components are
available within the IRCAM Forum4 .

5. ACKNOWLEDGMENTS

The development of FTM wouldn’t have been possible
without the contribution of musical assistants and com-
posers at IRCAM. Thanks to all of them for their passion
and patience.

6. REFERENCES

[1] F. Bevilacqua, R. Muller, and N. Schnell. MnM: a
Max/MSP Mapping Toolbox. InNIME, Vancouver,
Canada, 2005.

[2] F. Dechelle et al. jMax: a new JAVA-based edit-
ing and control system for real-time musical appli-
cations. InICMC, Ann Arbor, MI, 1998.

[3] N. Schnell and G. Peeters et al. Synthesizing a Choir
in Real-time Using Pitch-Synchronous Overlap Add
(PSOLA). InICMC, Berlin, Germany, 2000.

[4] N. Orio, S. Lemouton, D. Schwarz, and N. Schnell.
Score Following: State of the Art and New Develop-
ments. InNIME, Montreal, Canada, 2003.

[5] M. Puckette. Combining Event and Signal Process-
ing in the MAX Graphical Programming Environ-
ment.CMJ, 15(3), 1991.

[6] M. Puckette. FTS: A Real-time Monitor for Multi-
processor Music Synthesis.CMJ, 15(3), 1991.

[7] M. Puckette. Pure Data. InICMC, San Francisco,
CA, 1996.

[8] Curtis Roads.Microsound. The MIT Press, Cam-
bridge, MA, 2002.

[9] D. Schwarz and M. Wright. Extensions and Appli-
cations of the SDIF Sound Description Interchange
Format. InICMC, Berlin, Germany, 2000.

[10] Diemo Schwarz. New Developments in Data-Driven
Concatenative Sound Synthesis. InICMC, Singa-
pore, 2003.

3 http://www.ircam.fr/ftm
4 http://forumnet.ircam.fr/

