
HAL Id: hal-01161332
https://hal.science/hal-01161332

Submitted on 8 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

OpenMusic 5: A Cross-Platform Release of the
Computer-Assisted Composition Environment

Jean Bresson, Carlos Agon, Gérard Assayag

To cite this version:
Jean Bresson, Carlos Agon, Gérard Assayag. OpenMusic 5: A Cross-Platform Release of the
Computer-Assisted Composition Environment. Brazilian Symposium on Computer Music (SBCM’05),
2005, Belo Horizonte, Brazil. �hal-01161332�

https://hal.science/hal-01161332
https://hal.archives-ouvertes.fr

OpenMusic 5: A Cross-Platform Release of the Computer-
Assisted Composition Environment.

Jean Bresson, Carlos Agon, Gerard Assayag

Musical Representations Team

IRCAM – Centre G. Pompidou – 1, place I. Stravinsky – 75004 Paris – France
{bresson,agon,assayag}@ircam.fr

Abstract. This paper presents the computer-assisted composition environment
OpenMusic and introduces OM 5.0, a new cross-platform release. The
characteristics of this system will be exposed, with examples of applications in
music composition and analysis.

Resumo. Este artigo apresenta o ambiente de composição assistida por
computador OpenMusic, e introduz OM 5.0, uma nova versão do programa,
compatível Mac e PC. Serão expostas também algumas características do
sistema tendo em vista aplicações para a composição e análise musical.

1. Introduction
The Ircam's Computer-Aided Composition (CAC) project aims at connecting formal
computing tools and musical thought, in order to provide the composers with
programming languages adapted to their specific needs, and to allow them to formalize,
develop, and experiment their musical ideas [Assayag 1998]. Our experience demonstrates
that the definition of computing models corresponding to musical situations can lead to a
rich creative and analytic approach of composing processes.

In this framework, several environments have been developed, around the core
concept of programming languages, facilitating the formulation of musical concepts:
Formes (an object oriented environment in Lisp for high level control of sound synthesis,
[Rodet and Cointe 1984]), PreForm/Esquisse (an extension of Formes with graphical
interfaces, providing multidimensional objects and functions to manipulate them) , Crime
(a CAC environment providing musical abstractions and symbolic score descriptions,
[Assayag et al. 1985]), PatchWork and OpenMusic [Agon et al. 1999]. These languages
have been enriched and extended with graphical interfaces, along with the evolution of
computer science, allowing the introduction of visual programming.

OpenMusic is an example of a complete programming language dedicated to
music composition. In this article, we present an overview of this
programming/composition environment (section 2) and some examples of applications
(section 3). In section 4 we introduce OM 5, the new cross-platform release of
OpenMusic.

2. The OpenMusic visual programming language

2.1. A visual language based on Lisp
PatchWork [Laurson and Duthen 1989] is a graphical interface of the Common Lisp
programming language, in which programs are developed graphically by means of
functional boxes and connections. In this environment, any Lisp function can be
represented as a graphical box, and connected to other boxes to constitute a program. This
graphical program is a connected acyclic graph which corresponds to a Lisp form. The
data structures resulting from the functional boxes can be retained and associated with
graphical editors, which allows their visualization and edition in a musical notation.

OpenMusic [Agon 1998] was designed and developed in CLOS (Common Lisp
Object System [Steele 1998]) on top of the PatchWork model. It is now a powerful visual
language, allowing various programming models and applications.

2.2. Functional programming
The basis of OpenMusic, inherited from PatchWork, is purely functional. Functional
programming is an intuitive approach that has been widely used by the composers. It
allows to define operations that are applied on multidimensional data structures, in order to
create new ones.

In OpenMusic, a patch is a visual algorithm, in which boxes represent functional
calls, and connections are functional compositions. The evaluation of a box causes a
sequence of successive evaluations, corresponding to the execution of the program.

The visual language provides a set of graphical control structures, such as loops
and conditional controls, as well as the possibility to manipulate programming concepts
like abstraction or recursion. Through functional abstraction, some elements of the
program can become variables, which leads to the definition of functional objects. These
objects can then be embedded into other programs or abstractions (see Figure 1).

Figure 1. Functional programming in OpenMusic: the example of t h e
"factorial" algorithm illustrates some of the language features :
conditional controls, abstraction, recursion. To create an abstraction,
the user adds inputs and outputs to the patch, which will then appear
on the patch abstraction box. This abstraction can then be applied in
another patch or in the patch itself.

2.3. Object-Oriented programming
Built on the Common Lisp Object System, the visual language is an object-oriented
environment enriched with classes and generic functions [Agon 2003].

Some basic classes are provided by the environment to represent musical
structures (notes, chords, sounds, break-point functions, etc.) These classes can be used in
the development of the graphical programs through the use of factory boxes. A factory is a
special box which inlets correspond to the public slots of the corresponding class. Its
evaluation creates and stores an instance of this class (see Figure 2).

Figure 2. A patch using some of the OM classes. In this example, a
voice instance is created by computing a rhythmic pattern and a
melodic profile.

The user can also create his/her own classes, using slot definition tools, and by
setting inheritance relationships. The OpenMusic classes can thus be extended with user
defined subclasses (Figure 3-a). The polymorphism feature of CLOS is integrated in the
language through the possibility to create generic functions and methods (Figure 3-b).

Figure 3. Object-Oriented programming - (a) Inheritance: definition o f
a class extending an OM class - (b) Polymorphism: definition of a new
method for the om+ generic function.

The object-oriented language is extended with a graphical MOP (Meta-Object
Programming) [Agon and Assayag 2003], allowing one to interact with the language
elements and providing access to the visual components' properties and behavior.

(b)(a)

2.4. Constraint programming
Constraint programming aroused a great interest among composers and computer music
researchers. In OpenMusic, composers can graphically define a constraint satisfaction
problem (CSP), and try to solve it using different constraint resolution systems: Situation
[Rueda and Bonnet 1998], Screamer [Siskind and McAllester 1993], or OMClouds
[Truchet et al. 2003]).

2.5. Music representation and notation
The representation of musical structures is a concrete expression of the information
transmitted across the system. In OpenMusic this representation can be audibly or visually
rendered with audio and MIDI players (the MIDI manipulations and renderings are
implemented using the MidiShare system [Orlarey and Lequay 1989]) or with graphical
editors associated to the main OM classes (musical structures, break-point functions,
sounds, etc.) Musical notation editors provide the user with interactive editing and
navigation into the hierarchical structure of the score (see Figure 4).

Figure 4. OpenMusic score editor.

Figure 5. Programming inside the score editor.

The integration of musical editors with visual programs can be done in different ways:
- By including the editors in patches; as a way to control the value of the components of a
computation tree (as in Figure 2).
- By including visual programs within the score editor itself; by defining relationships
between different sub-structures of a score (Figure 5).

2.6. Temporal aspects: the Maquette
The maquette [Agon and Assayag 2002] is an original concept designed to unify both the
program and the score in a common representation. A maquette is a bi-dimensional space
containing blocks called "temporal boxes" (see Figure 6). Such boxes can contain either :

- simple musical objects (instances of the OM musical classes),
- temporal patches (patches having an output in the temporal context),
- embedded maquettes (for constructing hierarchical temporal structures).

Figure 6. A maquette.

In the maquette, the horizontal axis represents time, so that the position and
horizontal extension of the temporal boxes can be associated with offsets and duration in
the maquette's time referential. The MOP allows one to access the graphical characteristics
of a temporal box and to put it in relation to its contents. For example, the vertical position
and extent, can be assigned to any musical (frequency, intensity) or functional (an input
for the programs execution) parameter.

Boxes can have inputs and outputs and be connected in the maquette. It allows
functional relationships between the temporal objects, revealing further types of musical
semantics. A maquette can then be evaluated as a graphical program which takes into
account the temporal properties of its elements.

Eventually, the computed maquette can be executed (i.e. played) by MIDI and
audio players.

3. OpenMusic Applications

3.1. Models for musical formalisms: examples of compositional applications
OpenMusic has been used in a large panel of applications and musical pieces. Many
projects and toolboxes, dedicated to special musical purposes and specific formal systems,
have been developed. Some of these projects are available in the software release as "user
libraries".

The Esquisse library, for example, was created by Tristan Murail for his works on
harmonic structures. OMChaos and OMAlea were developed by Mikhail Malt to build
harmonic materials with stochastic processes and non-linear models [Malt 1994]. They
were used for the composition of Lambda 3.99 and Actrinou. The Profile and
Morphologie libraries were used by Jacopo Baboni-Schilingi for the creation and
manipulation of melodic profiles.

Rhythmic issues (quantification, rhythmic manipulation, rhythmic canons
construction) also inspired the work of many composers. For instance, Karim Haddad
manipulates the OpenMusic rhythmic trees representation [Agon et al. 2002] to create
complex rhythmic structures with the OMTrees library (e.g. in ...und wozu Dichter in
durftiger Zeit?...).

Various musical applications of constraint programming have also been developed
in OpenMusic, for example by Örjan Sandred with the OMRC library which is specialized
for finding structures corresponding to rhythmic constraints (used for example in the
piece Kalejdoskop.) The OM constraint systems were also used with harmonic constraints
(e.g. by Antoine Bonnet in Epitaphe, with the Situation constraint solver).

3.2. Control of sound synthesis and writing electronic music
The development of Digital Signal Processing technologies brought to music creation a
new field of exploration, and extended compositional activities to the composition of the
sound itself [Risset 2002]. The connection between musical signals, and symbolic objects
and concepts became an interesting challenge for both musicians and researchers. This
problem is one of our current research axes in OpenMusic. We consider it from a variety
of angles.

The importation of sound description data in the compositional environment allows
the composer to use musical material coming from real sounds, by transforming it into
symbolic entities. Sound-related material can be imported either as sound boxes (from
which data can be extracted as simple sound samples or analysed to produce sound
analysis data), or as SDIF boxes. The SDIF interface [Bresson and Agon 2004] allows
one to import SDIF sound description data [Wright et al. 1998] coming from an analysis
processed by external tools and softwares, and to convert them into symbolic musical
structures (see Figure 7-a).

Figure 7. Sound analysis/synthesis in OM - (a) An importation o f
partial tracking analysis data and conversion into a polyphonic musical
sequence [Hannape 1995] - (b) Sound synthesis with CSound using
symbolic data and operations.

The control of sound synthesis processes in OM allows one to take advantage of
the computational and expressive power of its visual language for creating and
manipulating sound synthesis parameter data. OM then generally delegates the sound
synthesis processing to external synthesizers, either by formatting parameters files, or

(a) (b)

through direct interfaces. Some of these interfaces are associated with dedicated libraries:
OM2CSound for the graphical design of CSound instruments and scores [Boulanger
2000] (see Figure 7-b), OM-AS for creating parameter files for the SuperVP phase
vocoder [Depalle and Poirot 1991], OMModalys for creating Modalys physical synthesis
patches [Eckel et al. 1995]. These tools have been used in the creation of several electro-
acoustic pieces of Karim Haddad, Hans Tutschku, Mauro Lanza, and more.

OMChroma is an other original approach to high level control of sound synthesis
based on Marco Stroppa's Chroma system [Agon et al. 2000]. Using object-oriented
programming techniques, this system allows a powerful instantiation of classes
representing complex data sets which can be sent to several external synthesizers.
OMChroma is used in several compositions by Marco Stroppa (e.g. Come Natura di
Foglia, etc.)

Sound spatialization can also be involved in computer-assisted composition.
OpenMusic provides special classes for designing three dimensional curves and
trajectories. This spatialization data can be sent to the Ircam's Spatialisateur [Jot and
Warusfel 1995] through the OMSpat library (e.g. Brian Ferneyhough, in Stelae for the
failed times).

3.3. Musical analysis
OpenMusic is used in musicology as a support for experiments on formal and
mathematical models of music. The reconstitution of musical formalisms and musical
pieces in this environment provides an intuitive and interactive approach of music analysis.
Interesting models of works by Iannis Xenakis, for example, (Achorripsis, Herma, Nomos
Alpha), could be recreated [Agon et al. 2004] (see Figure 8).

Figure 8. H e r m a (I. Xenakis). The composition's structure is
represented in a maquette: the pitch set operations and probabilistic
rules are implemented by means of graphical programs and
connections between blocks. Each box can be considered as a
graphical program (top-left window) in the computational flow, or as a
musical object in time (bottom-left window).

OpenMusic is also an experimental environment for various typres of research on
harmonic analysis, pattern recognition, neural networks, and musical style analysis and
simulations, in several institutions and universities.

4. OpenMusic 5

4.1. A cross-platform environment
The OpenMusic 5.0 release contains major internal changes. In this new version, the code
has been reorganized and divided in two distinct parts: the API code, and the OM code.

The API (Application Programming Interface) code contains low level primitives
and structures which have been identified as being dependent on the System and/or on the
Lisp implementation. These related primitives are generally non Common Lisp code
(previously specific to the Macintosh platform). They can be grouped into several
categories: windows, frames and graphic objects; dialog items and menus; graphical
primitive structures; drawing tools; images and icons; user interactions (keyboard, mouse),
drag&drop, and events handling; meta-objects programming tools; system tools and
communication with external libraries. OpenMusic was historically developed on
Digitool's Macintosh Common Lisp (MCL), so this new API has been specified following
the MCL model in order to maintain the original OpenMusic code structure and functional
system.

Figure 9. OpenMusic on Windows XP.

The O M code contains the functional kernel of OpenMusic (the visual
programming language), and some "projects" (code modules dedicated to specific
applications : music, sound synthesis, musical analysis, constraint programming, etc.) This
part represents the core of OpenMusic, and has been rewritten following the API
specification.

The API now allows an abstraction of the system-related constraints while writing
OpenMusic code. This code is thus interpreted for a target platform or Lisp
implementation, providing the API is implemented in it. This is the case for Macintosh
(with MCL) and Windows (with Allegro Common Lisp) (see Figure 9). A Linux version
would need the adaptation of the API on this platform; preliminary trials have been done
using SBCL and GTK.

Patches from older versions of OM can still be loaded and are automatically
converted, when saved, following the new specifications. Patches can also be transferred
between the Mac and PC versions.

4.2. Examples of new features in OM 5.0
The OM 5 audio library, based on GRAME's LibAudioStream project, extends the

audio support in OpenMusic. Advanced audio stream processing operations (mixing,
sequencing, effects, etc.) are available. The sound objects can now be assigned to an audio
channel, so that audio tracks can be simulated and controlled using a graphical mixing
console (see Figure 10).

Figure 10. Interactive control of audio objects.

The different available tools for sound analysis and synthesis have been gathered
around direct external interfaces (CSound, SuperVP, OSC, etc.) and a set of shared
globals variables and preferences. The SDIF toolbox is also enriched with new classes and
functions allowing one to store and write structured SDIF data within patches (see Figure
11.)

Figure 11. Programming with SDIF data structures.

Research in mathematical music theory carried out with OpenMusic (set theory,
classifications, canons, etc.) has been implemented in a new set of mathematical tools .

The OM musical classes have also been extended with a tonality model. By
following the hierarchical architecture of the musical objects, this tonal model contains
knowledge about relative tonality, which can be used for musical notation in score editors
(see Figure 12), or to compute properties and operations in the tonal field (tonal
transpositions, etc.)

Microtonal notation is now available in the score editors. Micro-intervals up to
16ths of a tone can be manipulated and displayed (Figure 12).

Figure 12. Representation of tonality and microtonality in score
editors.

The maquette's flexibility was also improved for example with the possibility to set
functional relationships throught the hierarchical levels. Current developments are oriented
towards a better integration of the programs in the maquette.

5. Conclusion

OpenMusic has proven to be a practical and innovative tool for music composition,
allowing musical material and musical processes to coexist in the same representation.

Many composers have been using OpenMusic, each with his/her specific tools and
methodologies.The OM Composer's Book [Agon et al. 2005], to be published in 2005-
2006, is a collection of user experiences in which each chapter, written by a composer,
describes his/her usage of OpenMusic for composition.

OpenMusic is also used in musical research, and is taught in composition classes
in several universities and conservatories (Columbia University, Harvard, Stanford,
Musikhochschule Stuttgart, Berkeley, CNSM Paris, etc.)

OM 5.0 constitutes a new step in the development of OpenMusic, and may
promote its diffusion with the extension to new platforms.

References

Agon, C. (1998) "OpenMusic: Un Langage Visuel pour la Composition Assistée par
Ordinateur", PhD. Thesis, Université Paris VI.

Agon, C., Assayag, G., Laurson, M. and Rueda, C. (1999) "Computer Assisted
Composition at Ircam: PatchWork & OpenMusic", Computer Music Journal 23(5).

Agon, C., Stroppa, M. and Assayag, G. (2000) "High Level Musical Control of Sound
Synthesis in OpenMusic", Proceedings of the International Computer Music
Conference, Berlin, Germany, 2000.

Agon, C. and Assayag, G. (2002) "Programmation Visuelle et Editeurs Musicaux pour la
Composition Assistée par Ordinateur", IHM'02, Poitiers, France, ACM Computer
Press.

Agon, C., Haddad, K. and Assayag, G. (2002) "Representation and Rendering of
Rhythmic Structures", WedelMusic Darmstadt, IEEE Computer Press.

Agon, C. (2003) "Object-Oriented Programming in OpenMusic", in Topos of Music,
Mazzola G., Birkhäuser Verlag Ed.

Agon, C. and Assayag, G. (2003) "OM: A Graphical Extension of CLOS using the
MOP", Proceedings ICL '03, New York.

Agon, C., Andreatta, M., Assayag, G. and Schaub, S. (2004) "Formal Aspects of Iannis
Xenakis' "Symbolic Music": A Computer-Aided Exploration of Compositional
Processes", Journal of New Music Research, 33(2).

Agon, C., Assayag, G. and Bresson, J. (ed.) (2005) "The OM Book", Delatour Editions, to
be published.

Assayag, G., Castellengo, M. and Malherbe, C. (1985) "Functional Integration of
Complex Instrumental Sounds in Music Writing", Proceedings of the International
Computer Music Conference, Burnaby, Canada, 1985.

Assayag, G. (1998) "Computer Assisted Composition Today", 1st Symposium on Music
and Computers, Corfu, 1998.

Boulanger, R. (ed.) (2000) "The Csound Book", MIT Press.
Bresson, J. and Agon, C. (2004) "SDIF Sound Description Data Representation and

Manipulation in Computer Assisted Composition", Proceedings of the International
Computer Music Conference, Miami, USA, 2004.

Depalle, Ph. And Poirot, G. (1991) "A Modular System for Analysis, Processing and
Synthesis of Sound Signals", Proceedings of the International Computer Music
Conference, Montreal, Canada, 1991.

Eckel, G., Iovino, F. and Caussé, R. (1995) "Sound Synthesis by Physical Modelling with
Modalys", Proceedings of the International Symposium on Music Acoustics, Dourdan,
France.

Hannape, P. (1995) "Integration des representations temps/frequence et des
representations musicales symboliques", in "Recherches et applications en
informatique musicale", M. Chemillier and F. Pachet (ed.), 1995.

Jot, J.-M. and Warusfel, O. (1995) "A Real-Time Spatial Sound Processor for Music and
Virtual Reality Applications", Proceedings of the International Computer Music
Conference, Banff, Canada, 1995.

Laurson, M. and Duthen, J. (1989) "Patchwork, a Graphic Language in PreForm",
Proceedings of the International Computer Music Conference, Ohio State University,
USA, 1989.

Malt, M. (1994) "Modêlos Matemáticos e composição Assistida por Computador,
Sistemas Estocásticos e Sistemas Caóticos", in Primeiro Simposio de Computação e
Música, Caxambu, MG, Brazil

Orlarey, Y. and Lequay, H. (1989) "MidiShare", Proceedings of the International
Computer Music Conference, Columbus, USA, 1989.

Risset, J.C. (2002) "Computing Musical Sounds", in Assayag et al. (ed.) "Mathematics
and Music", Springer, 2002.

Rodet, X. and Cointe, P. (1984) "Formes: Composition and Scheduling of Processes",
Computer Music Journal Vol. 8(3).

Siskind, J. M. and McAllester, D. (1993) "Nondeterministic Lisp as a Substrait for
Constraint Logic Programming", AAAI-93, pp133-138.

Steele, G. L. (1998) "Common LISP The language, second edition", Digital Press, USA.
Truchet, C., Assayag, G. and Codognet, Ph (2003) "OMClouds, petits nuages de

contraintes dans OpenMusic", Actes des Journées d'Informatique Musicale 2003,
Montbeliard, France.

Wright, M., Chaudhary, A., Freed, A., Wessel, D., Rodet, X., Virolle, D., Woehrmann, R.
and Serra, X. (1998) "New applications of the Sound Description Interchange Format",
Proceedings of the International Computer Music Conference, Ann Arbor, USA, 1998.

