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ABSTRACT
In this report, we describe our development on the Max/MSP
toolbox MnM dedicated to mapping between gesture and
sound, and more generally to statistical and machine learning
methods. This library is built on top of the FTM library, which
enables the efficient use of matrices and other data structures
in Max/MSP. Mapping examples are described based on
various matrix manipulations such as Single Value
Decomposition. The FTM and MnM libraries are freely
available.
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1. INTRODUCTION
In gesture controlled digital audio systems, the term
"mapping" refers to the relationship between the
gesture/control data and the digital sound processes. The
ability to choose and control this relationship makes digital
instruments fundamentally different than acoustic or electric
instruments.

Different types of mapping have been developed over the
years, often using idiosyncratic methods. Recently, mapping
methods have been the subject of formalization and discussed
in several papers [1]-[9]. Generally, mapping strategies are
separated in three different classes: one-to-one, one-to-many,
many-to-one . By combining these classes, many-to-many
mappings can be built. Interestingly, it has been recognized
that such complex mappings are more satisfactory, after a
learning phase, than one-to-one mappings [2].

Nevertheless, there is still a lack of practical tools to
implement complex mappings in a relatively intuitive manner.
For this reason, we are currently developing a series of
Max/MSP externals and abstractions, the MnM toolbox, based
on the free FTM library.

The goal of this paper is to present our approach for this
ensemble of Max/MSP externals and abstractions, based on

modular matrix manipulations. We describe here the use of a
first set of objects available with help patches2.

2. RELATED WORKS
Mapping strategies have been reviewed in recent papers and we
refer the reader to references [1] and [2] for a comprehensive
overview.

Van Nort et al. [9] give a mathematical formulation of mapping
as a function g between a controller parameter space ℜn and a
sound parameter space ℜm. If the mapping is described by a
series of discrete couples of vectors {Xi, Yi}, where Xi ⊂ ℜn

(control parameter space) and Yi ⊂  ℜ m  (sound parameter
space), the mapping can be seen as an interpolation problem.
Van Nort et al. [9] and Goudeseune [4][5] have provided
elegant mathematical solutions for such an approach.

 It is interesting to note that if the series {Xi, Yi}
overdetermines the mapping function, considering a possible
uncertainty for each value of the vectors {Xi, Yi}, the problem
can be then considered as a regression problem.

Finally, mapping procedures can be also viewed as pattern
recognition problems, especially many-to-few mappings. For
example, neural networks have been previously used, as
described in [10][11][12].

Nevertheless, other common linear and non-linear techniques
in statistical and machine learning methods seem promising
for mapping, for example Principal Component Analysis,
Linear Discriminant Analysis, Gaussian Mixture Models,
Kernel Methods and Support Vector Machines, Hidden Markov
Models. Even if particular cases have been implemented in
dedicated Max/MSP externals [17][18], the use of such
methods remains generally cumbersome in real-time musical
context. The long-term goal of the MnM project is to fill this
gap by providing general and modular mapping tools.

3. MAPPING USING MATRICES
3.1 Basic operations
A first approach consists in building mapping procedures as a
combination of relatively simple matrix operations. Consider
X, a vector of size n from the controller parameter space and Y,
a vector of size m from the sound parameter space. A simple
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reel/maxmsp/mnm.html.
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mapping operation corresponds for example to the matrix
multiplication with a m×n matrix A.

Y = A*X Eq. 1

A is a n-to-m linear mapping (from ℜn to ℜm). This formulation
can include both cases n≥m (many-to-few) or n<m (few-to-
many). Note that A can be defined as time-dependant, i.e. A(t).

If n≥m, A is a projection from the Euclidian space ℜn to an
hyperplan in a subspace ℜm

. If m≥n, A can be interpreted as a
linear extrapolation by defining a hyperplan in a space of
higher dimension.

The matrix A can be exactly determined by a series of n
examples {Xi, Yi}, where 1≤i≤n. If the number of example i s
larger than n, A can be determined by linear regression. The
solution for this case will be described in the section 5.

More complex mappings can be built as a combination of
several matrices. In particular, a layered mapping [7] can be
easily set by a series of matrix multiplications. For example,
considering three matrices A, B and C, the mapping can be
easily defined as:

Y=(A*B*C) *X Eq. 2

In particular, note that the intermediate mapping layer B can
operate in a space of different dimension than n or m.

Other matrix operations can be also considered, such as the
element by element multiplication (noted here as .*). In such a
case, the dimensions of the matrices A and B must be identical.

Y=(A.*B) *X Eq. 3

A matrix can also be combined with a function f applied to
each element of the matrix.

Y= [f(ai j)]*X Eq. 4

The obvious interest of such an operation is to introduce non-
linear mappings. As a matter of fact, the combination of
equations 2, 3, and 4 enables the design of powerful non-linear
mappings (which can have similar structures to neural
networks).

3.2 Notation
The case of an affine transform (B is a vector of size m×1):

Y = A*X + B Eq. 5

can rewritten as an extension of A:

Y = Ae *Xe  Eq. 6

where Ae is a m×(n+1) matrix.

The vector Xe of size n+1 is built from the vector X= (x1,…, xn)
as follows:

Xe  = (x1,…, xn, 1) Eq. 7

From this point, we will use this notation that allows for a
more compact representation of the mapping. In this case, the
number of examples necessary to completely determined Ae i s
n+1.

3.3 Single Value Decomposition (SVD)
Obviously several other matrix operations can be useful to
extend the mapping procedure. In particular, Singular Value
Decomposition allows for the computation of the inverse (or
pseudo-inverse) of a matrix, linear regression and Principal
Component Analysis [14].

We briefly recall here SVD. Possible applications are
commented further in section 5.

Consider a n×m matrix M. The SVD decomposition
corresponds to compute three matrices U, S, V whose sizes are
n×m, m×m, and m×m, respectively:

M = U * S * V t Eq. 8

U and V are unitary matrices (i.e. Ut=U-1). S is diagonal, and its
elements are ordered in decreasing values.

4. Max/MSP IMPLEMENTATION
We chose to develop mapping modules using the recent shared
library FTM in Max/MSP, which enables matrix handling. We
describe FTM shortly in the next section. The integration of
the approach shown in this report could be easily performed in
other software with equivalent matrix structures and methods.

4.1 FTM
FTM is a shared library for Max/MSP providing a small and
simple real-time object system and optimized services to be
used within Max/MSP externals. FTM is distributed under
LGPL3.

The main purpose of FTM is the representation and processing
of sound, music and gesture data in Max/MSP extending the
data types processed and exchanged by the Max/MSP
modules. The implemented classes include matrices,
dictionaries, sequences, break point functions and tuples.

FTM allows for static and dynamic creation of complex data
structures. An extended Max/MSP message box allows for the
evaluation of arithmetic expressions, function calls and
method invocation on FTM objects.

FTM objects can contain references to other FTM objects. A
simple garbage collector handles transparently the destruction
of dynamically created FTM objects referenced by multiple
elements of a patch. FTM supports MIDI and SDIF file formats.

The FTM fmat class implements a simple two-dimensional
matrix of floating-point values providing methods for inplace
matrix calculations and data import/export. An FTM track
object allows for recording and playing of a stream of matrices
as well as for the import/export of a stream in the SDIF file
format.

The mat class acts as a 2-dimensionnal cell array of generic
FTM objects, and in particular can handle matrices of fmat.

The externals of the libraries based on FTM use fmat as a
generic representation for a variety of algorithms
implementing analysis/synthesis, mapping, statistical
modeling, machine learning and information retrieval. FTM
enable to easily connect these algorithms in an application,
thus creating a tied link between gesture analysis and sound
synthesis.

4.2 MnM
MnM, "Mapping is not Music", is a set of Max/MSP externals
based on FTM , taking advantages principally of the matrix
classes fmat and mat . The construction of the mapping
procedure is performed using both basic matrix operations
from the FTM library and using the dedicated MnM set of
externals and abstractions. As already stressed, mapping can
be thus built in a modular way. Different types of mapping
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approaches, including interpolation, regression and
recognition are implemented.

5. EXAMPLES
We explain here two abstractions, mnm.matmap and mnm.pca,
which illustrate the use of the external mnm.svd (performing
the Single Value Decomposition of a matrix).

5.1 mnm.matmap
The idea of this abstraction is to implement a
multidimensional linear mapping. It can be seen as basic
module to build complex n-to-m mapping.

The mapping is based on the matrix multiplication Y=Ae*Xe,
as described in Eq.6, corresponding to an affine transform.

The matrix Ae can be determined by a set of k  mapping
examples {Xi, Yi}, called "training examples".  Two matrices
are created from these examples:

1) Xtrain, of size (n+1)×k, formed by concatenating the vectors
Xi

2) Ytrain, of size m×,k formed by concatenating the vectors Yi.
The concatenation is performed by the object mnm.q (Fig.1)

We can therefore write the following equation:

 Ytrain =Ae* Xtrain Eq. 9

A SVD decomposition of the matrix Xtrain enables the
determination of A as shown below, (taking advantage of the
fact that U and V are unitary matrices):

 SVD: Xtrain = U*S*Vt Eq. 10

 ⇒ Ytrain = Ae*U*S*Vt Eq. 11

⇒ Ytrain* V*S-1*Ut = Ae Eq. 12

The computation of S-1 is simple since S is diagonal. Note that
V*S-1*Ut corresponds to compute the inverse of Xtrain,, if this
latter exists. For the other cases, in particular if k≠(n+1), the
SVD procedure still guarantees the determination of A
(corresponding to a pseudo-inverse).

This procedure can be easily performed in Max/MSP thanks to
the MnM objects mnm.svd and mnm.xmul, as shown in Fig.1.
For example, the abstraction mnm.matmap allows for the
computation of the matrix (bottom part of Fig1), as well as the
multiplication Y=Ae*X. The matrix Ae can be
imported/exported as a txt file.

The top part of Fig1 shows a possible use of mnm.matamp, i.e.
the interpolation between different waveforms controlled by
the 2D positions of the cursor.

Several of these objects can be used in parallel, enabling
piecewise linear mappings [9][13]. Note also that switching
and/or interpolating between matrices in real-time, allows for
interesting "dynamic" mapping procedures.

5.2 mnm.pca
Similarly to the previous section, consider the matrix Xtrain

(size n×k) formed by concatenating a series of k vectors of the
controller space ℜn. The mnm.pca object performs Principal
Component Analysis (PCA), based on the SVD computation,
that outputs the three matrices U, S, and V.  The first p
principal components of Xtrain are determined by keeping only
the first p diagonal elements of S (setting the others to zero).
Note that Xtrain must be centered prior to performing SVD.

Fig.1 Max patch using the abstraction mnm.matmap,
illustrating a 2 to 600 mapping, based on a set of
training examples.  The bottom part of the figure
shows the part of mnm.matmap where the mapping
matrix is computed.



Thus, PCA enables the reduction of the dimension of the
effective control space, which can simplify the mapping
procedure [15]. As a matter of fact, the actual space dimension
formed by all controller values is often lower than n . This
occurs typically when some configurations cannot be played
due to physical constraints. In such a case, PCA can be used to
define a new orthogonal basis of the actual controller space.

PCA can also be seen as a practical way to parameterize
principal features of the control space (or the sound parameter
space). After decomposing Xtrain in principal components, the
re-synthesis is possible using the matrices U, S, and an
additional "control" vector C (size of p×1):

X =U*S*C Eq. 13

For example, the first value of C weights the major component
of this space, whereas the last one weights the smallest
component, generally a "noise" contribution.

5.3 Towards kernel methods
Principal component analysis based on SVD can suffer from
severe limitations due to the assumption of the linear
combination of the components. Nevertheless, kernel methods
allows for the extension of PCA to non-linear problems, called
Kernel-PCA [16]. We are currently investigating such an
approach for mapping, which will be implemented in MnM in
the near future.

6. DISCUSSION AND PERSPECTIVES
We described our approach for the design of mapping tools
and some elements of the MnM library. The modular design of
the MnM library greatly facilitates the experimentation of
various mapping strategies, including interpolation,
regression and recognition.

The object we described, mnm.matmap and mnm.pca were
found to be very simple to use and promising. Their main
limitation resides in the fact they model data linearly.
However, as already mentioned, such objects can be
generalized for non-linear mapping using kernel methods.
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