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Automatically selecting signal descriptors for Sound Classification

. Among these applications is an authoring tool for managing sample databases including search by similarity, search by textual attributes but also a system allowing automatic sound classification based on predefined taxonomies but also allowing user to define its own taxonomies. This last point raises a crucial issue concerning -the design of the classifier but also -the choice of the appropriate signal descriptors in order to perform the classification. This paper concentrates on the design of CUIDADO classifier and on two algorithms for automatically selecting the most appropriate signal descriptors for a given taxonomy: the discriminant analysis and the mutual information.

Introduction

Sound classification has raised many interests in the last years [START_REF] Scheirer | Construction and evaluation of a robust multifeature speech/music discriminator[END_REF] [START_REF] Brown | Musical instrument identification using autocorrelation coefficients[END_REF]) [START_REF] Martin | 2pmu9. instrument identification: a pattern-recognition approach[END_REF] [START_REF] Wold | Classification, search and retrieval of audio[END_REF]. Most of current sound classification systems rely on the extraction of a set of signal descriptors (such as onset time, spectral centroid,...) which is used latter to perform the classification considering a given taxonomy. This taxonomy is defined by a set of textual attributes defining the properties of the sound such as its source (speech, music, noise, sound effects, instrument name, ...) or its perception (bright, dark, ...) and by a set of parameter's values depending on the model chosen to represent the classes of the taxonomy (multidimensional gaussian, gaussian mixture, tree, SVM, ...). The choice of the signal descriptors is specific to each case of classification since the discriminative power of the descriptors depends on the kind of considered sounds (an inharmonicity descriptors is useless to discriminate among only harmonic sounds).

In the case of the CUIDADO classification system, the taxonomy can be user-defined. This involves the system to be able to perform an online-learning including: -choosing among all signal descriptors the ones that are the most relevant for the given taxonomy -estimating from this signal descriptors the parameters of the classes.

Signal descriptors

Many different type of signal features have been proposed in the last years in order to describe sound. These come from the speech recognition community [START_REF] Foote | Decision-Tree Probability Modeling for HMM Speech Recognition[END_REF], previous studies on musical sound classification [START_REF] Scheirer | Construction and evaluation of a robust multifeature speech/music discriminator[END_REF] [START_REF] Brown | Musical instrument identification using autocorrelation coefficients[END_REF]) (Martin and Kim 1998) [START_REF] Serra | Sound transformations based on sms high level attributes[END_REF] [START_REF] Wold | Classification, search and retrieval of audio[END_REF] [START_REF] Jensen | Binary decision tree classification of musical sounds[END_REF] but also from the results of psycho-acoustical studies [START_REF] Krimphoff | Caractrisation du timbre des sons complexes. ii: Analyse acoustiques et quantification psychophyisique[END_REF]) [START_REF] Peeters | Instrument sound description in the context of mpeg-7[END_REF].

The different choice of features corresponds to different purpose of classification (speech/music/noise, harmonic/percussive sounds, ...). Each set of features is supposed to perform best in its own field. In order to allow covering the wider set of potential taxonomies, in CUIDADO we implemented them all.

Descriptors taxonomy

The signal descriptors used in our current classification is organized according to the following taxonomy [START_REF] Herrera | Automatic classification of musical instrument sounds[END_REF]. First we distinguish between the time extend validity of the description Global descriptors: descriptors computed for the whole signal, which meaning is for the whole signal.

Example of this are the attack-time of a sound.

Instantaneous descriptors: descriptors computed for each time frame. Example of this are the spectral centroid of a signal which can vary along time. The time vectors of instantaneous descriptors are then processed by a module allowing the modeling of their temporal evolution: mean, standard deviation, derivative, short-term crosscorrelation, slope, modulation values.

Inside each class of descriptors, we distinguish descriptors from the kind of signal representation used to extract them. 

Pre-selection of descriptors

Using a wide set of descriptors for the classification may cripple the system since some of them may be irrelevant for the considered class and the estimation of the class parameters may be unreliable. For this reason, a pre-selection of descriptors is necessary. Several techniques has been proposed in order to do that: Principal Component Analysis [START_REF] Kaminskyj | Automatic source identification of monophonic musical instrument sounds[END_REF], Discriminant Analysis [START_REF] Martin | 2pmu9. instrument identification: a pattern-recognition approach[END_REF], Genetic Algorithms [START_REF] Fujinaga | Machine recognition of timbre using steady-state tone of acoustical musical instruments[END_REF]) (sequential backward/forward generation), Neural Networks. Considering the restriction involved by the "online" availability of our system, we considered only computationally attractive techniques: discriminant analysis and mutual information.

Discriminant Analysis (DA) Understanding multidimensional data is the goals of various techniques such as Principal Component Analysis (PCA). The goal of PCA is to perform combination among data such that with a reduced set of orthogonal dimensions most of the initial variance of the data is explained. However, PCA does not allow taking into account data organization such as class belonging. This latter is allowed by the Discriminant Analysis.

Discriminant analysis allows finding combination among variables (in our case the variables are descriptors) in order to maximize discrimination between classes. In the case of the Linear Discriminant Analysis, these combinations are linear. The combinations are represented by a matrix which transforms the initial descriptor space ¡ into a new space ¡ £¢ such that only a few axes of ¡ ¢ are necessary to represent class dis- tribution. In the new space, we want the discrimination to be maximum. This criteria can be expressed by choosing such that after transformation the ratio of the between-class inertia to the total inertia is maximized.

For a ¤ dimensional descriptors, if we define ¥ as the mean vector of the descriptors for the whole set of ¦ sounds and ¥ § as the mean vector of the descriptors for the ¦ § sounds belonging to class ¨, we can define the total inertia matrix © and the between-class in- 

ertia matrix as © ¦ "! $# ¥ % &! $# ¥ % ¢ (1) (' § ) ¦ § ¦ ¥ § # ¥ % ¥ § # ¥ % ¢ (2) 
The matrix is the one such that after transformation, the ratio between the between-class inertia and the total inertia is maximized. If we note 0 the column vectors of , this maximization leads to the condition © 1 0 32 40 . The column vectors of are then given by the eigen vectors of the matrix © 1 associated to the eigen values 2 . 2 give the discriminative power of each of the new axes.

Descriptors selection with Discriminant Analysis: Each columns of represents a combination of the initial descriptors. If the range of each descriptor has been previously normalized, each value in a specific columns gives the weight of each descriptor for a specific dimension and therefore its importance. This is illustred in Figure 1. The selection of the descriptors is based on this weight value: only the descriptors with the biggest weights on each dimensions are retained for the classification.

Mutual Information (MI)

Mutual Information is a theory which have been used for features selection as early as 1962. In the context of sound classification, it has been recently used by [START_REF] Foote | A similarity measure for automatic audio classification[END_REF] for finding split rules in binary tree construction (binary entropy).

The mutual information between two variables 5 and 6 represents the entropy reduction of 5 provided by the knowledge of 6 . In our case, the mutual information between the class 7 (qualitative variable) and a specific descriptor ¡ (quantitative variable) is ex- pressed by:
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The conditional mutual information represents the entropy reduction of 7 provided by the knowledge of ¡ if we know already the descriptors ¡ ¢¡ . It can be ap- proximated [START_REF] Battiti | Using mutual information for selecting features in supervised neural net learning[END_REF]) by: 8 7 @9 ¡ ¤£ ¡ ¡ ¦¥ ¨ § © % B 8 7 @9 ¡ % # ¡ ) 8 7 @9 A¡ ¡ % (4) where ranges from 0.5 to 1.

Descriptors selection with Mutual Information:

The descriptors are selected according to their mutual information considering a specific set of classes. The first descriptor is the one that leads the largest mutual information given the classes. The following descriptors are the ones with the largest conditional mutual information given the classes and the already selected descriptors.

Class modeling

Among the different type of classifier: K-Nearest Neighboring [START_REF] Fujinaga | Machine recognition of timbre using steady-state tone of acoustical musical instruments[END_REF]) [START_REF] Martin | 2pmu9. instrument identification: a pattern-recognition approach[END_REF], Multiple-dimensional classifier, gaussian-mixture, Questionbased tree classifier (Jensen and Arnspang 1999), Treebased vector quantizer classifier [START_REF] Foote | A similarity measure for automatic audio classification[END_REF], ... we've chosen a multi-dimensional gaussian model. The choice of the K Nearest Neighboring (KNN) has not been retained since is does not provide an abstraction of the classes and then required the use of the whole database during classification. The choice of a multi-dimensional gaussian mixture model as well as the tree classifiers have not been retained because of their instability and therefore the difficulty to put them in practice in an online learning environment.

Learning: For the class ¨, the parameters of the multi-dimensional function are estimated by the maximum likelihood estimators given the set of pre-selected descriptors of the sounds belonging to the class ¨. The parameters of the class are the mean vector § and the covariance matrix § .

Evaluation:

For a new sound, the descriptor-vector ! is computed and the probability of the sound to belong to a class ¨is defined according to Bayes formula ¤ ¨£ ! % B "! $# &% ' § ( 0) # § ( ! $# &% ( where 1 32 4% is the "a priori" probability of observing the class (based on the proportion of each classes in the training set and therefore often omitted), 1 54 "! % is the distribution of the descriptor-vector ! which is independent of the classes,
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PI RQ % PS UT T £ § £ % is the conditional proba- bility of observing the descriptor-vector ! given a class ¨.

Descriptor space transformation

The classification can be further improved by the use also of the Discriminant Analysis. This time the 

Overall design

The overall design of our classification system is depicted in Figure 2. After descriptors pre-selection (by either Discriminant Analysis or Mutual Information) (top part of the figure), a transformation of the space composed of pre-selected descriptors is operated in order to maximize discrimination between classes (middle part of the figure). The result of the projection of the pre-selected descriptors on the main discriminant axes is then given to the class modeling module (bottom part of the figure).

6 Evaluation of the system

Database used

The evaluatino of the system is performed on a 1400 sounds database composed of extracts from the Ircam Studio OnLine database. The sounds are resampled at 44100 Hz, quantified at 16 bits and mixed in mono. For each considered instrument class, this leads to approximately 100 sounds. Inspired by [START_REF] Martin | 2pmu9. instrument identification: a pattern-recognition approach[END_REF] and [START_REF] Eronen | Automatic Musical Instrument Recognition[END_REF] 3). 

Results

The evaluation is performed using the 1400 sounds of the sound database. The learning is performed by selecting randomly 66% of the sounds of each class (class = pizzicato/ sustained, class=instrument's families or class = instruments). The evaluation is then performed on the remaining 33% of the sounds of each class. The ratings indicated in table 1 correspond to percentage of good classification over the total number of sounds to be classified. Because of the random process, the scores given are mean values over several random sets. For the pre-selection of the descriptors, the selection is performed using all samples of the database. The number of initial descriptors is 81. Pre-selection of descriptors by Discriminant Analysis (DA), (by taking only the descriptors with a value above 20% of the maximum descriptor value on the axe) reduces it to 27 descriptors; using Mutual Information (MI), we kept only the 20 first descriptors. Only the first heigth discriminant axes are considered.

The results, indicated in Table 1, show that the preselection of descriptors using Mutual Information performs better than the one using Discriminant Analysis (higher score with less descriptors). Comparing the results obtained using the whole set of descriptors to the results obtained using only the pre-selected ones shows a slight decrease of performance which is compensated by a 75% reduction of space dimensionality and an equivalent gain of computation-time.

Conclusion

In this paper we depicted the current classification system proposed for CUIDADO sample database management application. Considering the possibility given to the user to define its own taxonomies, the system should be able to select automatically which signal features are relevant to perform the classification. We studied the applicability of the Discriminant Analysis and the Mutual Information in order to do that and evaluate them in the context of musical sounds classification. The results shows that among both, the Mutual Information performs best for features selection. Given this open framework, where additional features can be included, further works will concentrate on the evaluation of the system for non-instrumental sounds.
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 1 Figure 1: Descriptors selection by DA: weights of the descriptors for the first discriminant axe
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Table 1 :

 1 Classification module evaluation 16 instrument classes grouped into 4 instrument families further grouped into pizzicati and sustained instruments (see Figure
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