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ABSTRACT

We describe a novel algorithm for the estimation of the colored
noise level in audio signals with mixed noise and sinusoidalcom-
ponents. The noise envelope model is based on the assumptions
that the envelope varies slowly with frequency and that the magni-
tudes of the noise peaks obey a Rayleigh distribution. Our method
is an extension of a recently proposed approach of spectral peak
classification of sinusoids and noise, which takes into account a
noise envelope model to improve the detection of sinusoidalpeaks.
By means of iterative evaluation and adaptation of the noiseen-
velope model, the classification of noise and sinusoidal peaks is
iteratively refined until the detected noise peaks are coherently ex-
plained by the noise envelope model. Testing examples of estimat-
ing white noise and colored noise are demonstrated.

1. INTRODUCTION

Many applications for audio signals such as speech and musicre-
quire an estimation of the noise level that should be local intime
and in frequency such that non-stationary and colored noisecan
be dealt with. Noise level estimation, or noise power spectral den-
sity estimation, is usually done by explicit detection of time seg-
ments that contain only noise, or explicit estimation of harmon-
ically related spectral components (for nearly-harmonic signals).
Since some of the noise is related to the signal, relying onlyon
pure noise segments will not allow to properly detect the noise in-
troduced with the source signal. Therefore, it has been proposed to
include several consecutive analysis frames assuming thatthe time
segment contains low energy portion and the noise present within
the segment is more stationary than the signal [1] [2].

The other classical approach is to remove the sinusoids and
estimate the underlying noise components afterwards [3]. This in-
volves sinusoidal component identification, either in single frame
[4] [5] or by tracking sinusoidal components across frames [6] [7].
We decide to follow this approach because the assumptions com-
pared to the methods reviewed in [1] are released. We proposeto
classify the spectral peaks in each short-time spectrum indepen-
dently because the costly tracking of sinusoidal components could
then be avoided. Moreover, the spectral peak classificationmethod
proposed in [4] [5] allows to control the classification results such
that a bias towards sinusoids or noise can be easily altered.After
subtracting the sinusoidal peaks from the observed spectrum, we
expect that there are few sinusoidal peaks left in the residual spec-
trum. Then, a bandwise noise distribution fit is performed using
a statistical measure. The outliers of the observed noise peaks are
excluded through an iterative process of distribution fit and noise
level estimation. Upon the termination of the iterative approxima-
tion, the estimated noise level is thus defined.

This paper is organized as follows. First the problem of noise
level estimation is defined. In section3, we explain how the dis-
tribution of the magnitudes of narrow band noise can be modeled.
An iterative algorithm to approximate the noise level is then pre-
sented in section4. Lastly, different types of noise are used to
demonstrate the effectiveness of the proposed method.

2. PROBLEM DEFINITION

A signal is called "white noise” if the knowledge of the past sam-
ples does not tell anything about the subsequent samples to come.
The power density spectrum of white noise is constant. By means
of filtering a white noise signal, correlations between the samples
are introduced. Since in most cases the power density spectrum
will no longer be constant, filtered white noise signals are gener-
ally called "colored noise”. We define the "colored noise level” as
the expected magnitude level of the observed noise peaks. A noise
peak is defined as a peak that can not be explained as a stationary
or weakly modulated sinusoid of the signal. The noise level could
be represented as a smooth frequency dependent curve approxi-
mating the noise spectrum, as shown in Figure 1. The noise level
should include most of the noise peaks and also follows smoothly
the variation of the observed spectral magnitudes.
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Figure 1: Colored noise level
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3. MODELING NARROW BAND NOISE USING
RAYLEIGH DISTRIBUTION

Under the assumption that noise is nearly white within a consid-
ered frequency band, we choose Rayleigh distribution to fit the
distribution of the observed narrow band noise1. The Rayleigh
distribution was originally derived by Lord Rayleigh in connec-
tion with a problem in the field of acoustics. A Rayleigh random
variable X has probability density function [8]:

p(x) =
x

σ2
e−x2/(2σ2) (1)

with 0 6 x < ∞, σ > 0, cumulative distribution function

F (x) = 1 − e−x2/(2σ2) (2)

and thepth percentile

xp = F−1(p) = σ
p

−2 log(1 − p), 0 < p < 1 (3)

In Figure 2, the probability density function is plotted fordif-
ferent values ofσ (σ = 0.5, 1, 1.5, 2, 2.5 and3). σ corresponds to
themode of the Rayleigh distribution, which is the most frequently
observed value inX. Thus,p(σ) corresponds to the maximum of
the probability distribution. Notice thatσ is not the usual nota-
tion for the variance of a distribution. The variance of Rayleigh
distributed random variable is

Var(X) =
4 − π

2
σ (4)
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Figure 2: Rayleigh distribution with differentσ

Consider the Rayleigh random variableX as the observed
magnitudes of spectral peaks in a narrow band, thenσ represents
the most frequent magnitude values of noise peaks. The mode of
the Rayleigh distribution can then be used to derive the probability
of an observed peak to belong to the background noise process.
Comparing the magnitude of the spectral peak toσ we may con-
clude that peaks having amplitude belowσ are most likely noise

1In fact, Rice has showned in the Bell Laboratories Journal in1944
and 1945 that Rayleigh distribution is suitable for modeling the probability
distribution of a narrow band noise.

while for the spectral peaks having magnitudes larger thanσ, the
larger magnitudes they have, the less probable they are to benoise
(and thus they are more likely related to the deterministic part of
the signal).

4. NOISE LEVEL ESTIMATION

For a given narrow band, e.g. each frequency bink, the noise dis-
tribution can be modeled by means of Rayleigh with modeσ(k).
Onceσ(k) has been estimated for allk, the curve passing through
theseσ-value magnitudes defines a reference noise levelLσ . Us-
ing eq.(3) it is now possible to adjust the noise threshold toa de-
sired percentage of misclassified noise peaks. The relatednoise
envelopeLn can be estimated by simply multiplying theestimated
Rayleigh modeLσ with

p

−2 log(1 − p). Therefore, the problem
comes to estimating the frequency dependentσ(k).

It is known that the mean of a Rayleigh random variableX is

E[X] = σ
p

π/2 (5)

from which we have

σ =
E[X]
p

π/2
(6)

That is, the frequency dependentσ(k) can be calculated if the
mean noise magnitudeE[X], which is also frequency dependent,
can be estimated.

However, estimation of the expected noise magnitude corre-
sponding to each frequency bin requires sufficient observations
for statistical evaluation. Most of the existing approaches [1] rely
on observations from neighboring frames. Our approach relies on
the assumption that the noise spectral envelope is changingonly
weakly with the bin indexk such that we may use the observed
spectral peaks in the predefined subbands2 to estimate the (fre-
quency dependent)mean noise levelLm by means of a cepstrally-
smoothed curve over the noise peaks. We describe the noise level
estimation procedures in the following.

4.1. Spectral subtraction of sinusoids

In [4], four spectral peak descriptors have been proposed toclas-
sify spectral peaks. The descriptors are designed to properly deal
with non-stationary sinusoids. This method serves to classify sinu-
soidal and non-sinusoidal peaks in our algorithm. The sinusoidal
peaks are then subtracted from the observed spectrum to obtain the
residual spectrum that is assumed to contain mostly noise peaks.

To estimate the spectral parameters of each sinusoidal peak,
the reassignment method proposed by F. Auger and P. Flandrin[9]
is used to estimate the frequency slope [10]. Given a STFT (Short
Time Fourier Transform), the frequency slope can be estimated by
means of

ω′(t, ω) =
∂ω̂(t, ω)/∂t

∂t̂(t, ω)/∂t
, (7)

where t̂(t, ω) and ω̂(t, ω) are the reassignment operators. Once
the frequency and the frequency slope of each sinusoidal peak are
estimated, the peak is subtracted from the observed spectrum. The
optimal phase is estimated by means of the least square errorcri-
terion, i.e., the error between the original signal and the processed
signal is minimized. However, if the estimated slope is larger than

2We divide equally the subbands with the bandwidth 312.5Hz.
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the maximal slope around the observed peak, it will not be consid-
ered as a consistent estimate and therefore be disregarded.

The main function of subtracting sinusoidal peaks is to pro-
vide sufficient residual peaks for a proper statistical measure of the
magnitude distribution even if the frequency resolution islimited
and sinusoidal peaks are very dense.

4.2. Iterative approximation of the noise level

After obtaining the residual spectrum, denoted asSR, the spectral
peaks are again classified and then the iterative approximation of
the noise level is carried out till the selected statisticalmeasure of
the noise distribution in all subbands fit that of Rayleigh distribu-
tion.

The reasons to use a statistical measure are: (i) the amount
of the observed samples is usually not large enough to draw the
underlying distribution, (ii) statistical measures are representative
of a distribution and are more efficient for distribution fit.

We use skewness as the statistical measure for distributionfit.
Skewness is a measure of the degree of asymmetry of a distribu-
tion [11]. If the right tail (tail at the large end of the distribution)
extends more than the left tail does, the function is said to have
positive skewness. If the reverse is true, it has negative skewness.
If the two tails extend symmetrically, it has zero skewness,e.g.
Gaussian distribution. The skewness of a distribution is defined as

Skw(X) =
µ3

µ
3/2
2

(8)

whereµi is theith central moment. And the skewness of Rayleigh
distribution is independent ofσ(k):

Skwrayl =
2(π − 3)

√
π

p

(4 − π)3
≅ 0.6311 (9)

If the distribution of the noise magnitudes in a subband is as-
sumed Rayleigh then we may test for misclassified sinusoids by
means of the conditionSkw(Xb

n) > Skwrayl, whereXb
n are the

noise magnitudes in thebth subband. Whenever this condition is
true we assume that there are misclassified sinusoids that can be
detected by observing their amplitude levels relative to the current
estimate ofσ(k).

Note that the distribution of noise magnitudes in each subband
will not be Rayleigh ifσ(k) in the subband is not constant. To im-
prove the consistency of the skewness test we therefore rescale all
noise magnitudes by means of normalizing with the current esti-
mated Rayleigh modeLσ .

Assuming that for each subband inSR there are a greater pro-
portion of noise peaks and only a few sinusoidal peaks with dom-
inant magnitudes remain. Then the noise level approximation can
be realized by iterating the following processes:

I. Calculate the cepstrum of the noise spectrum (constructed
from interpolating the magnitudes of noise peaks). The cep-
strum is the inverse Fourier transform of the log-magnitude
spectrum and thedth cepstral coefficient is formulated as

cd =
1

2

Z π

−π

log |Xn(ω)|eiωddω (10)

By truncating the cepstrum and using the firstD cepstral
coefficients, we reconstruct a smooth curve representing the

mean noise levelLm as a sum of the slowly-varying com-
ponents.

Lm(ω) = exp(c0 + 2

D−1
X

d=1

cd cos(ωd)) (11)

The cepstral orderD is determined in a way similar to that
of [12]: D = Fs/max(∆fmax, BW ) · C, whereFs is
half the sampling frequency,∆fmax is the maximum fre-
quency gap among all the noise peaks,BW is the subband
bandwidth, andC is a parameter to set.

II. Then we have the estimated Rayleigh modeLσ = Lm/(
p

π/2)
across the analysis frequency range.

III. For each subband, check if the distribution fit is achieved.
If the distribution fit is not achieved in the subband under
investigation, that is,Skw(Xb

n/Lb
σ) > Skwrayl where

Lb
σ denotes the estimated Rayleigh mode in thebth sub-

band, then the largest outlier is excluded (re-classifyingthe
largest outlier in the subband as sinusoid).

When all the subbands meet the requirement of the skewness
measure, the estimated Rayleigh modeLσ can be used to derive a
probabilistic classification of all spectral peaks into noise and si-
nusoidal peaks. For this we suggest thepth percentile of Rayleigh
distribution

Ln = Lσ

p

−2 log(1 − p) (12)

with a user selected value forp. Notice that if the underlying noise
level varies very fast in such a way that the proposed model can-
not capture the noise level evolution then the procedure maynot
converge or may not converge to a reasonable estimate.

5. TESTING EXAMPLES

To demonstrate the effectiveness of the proposed algorithm, we
have tested two types of signals: white noise and a polyphonic sig-
nal with background noise. In both cases, the sampling frequency
is 16kHz and we setC = 1 for the cepstral order andp = 0.8
in eq.(12), that is, we allow20% of the noise to be misclassified
according to Rayleigh distribution.
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Figure 3: Estimated noise level for white noise (test 1)
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Figure 4: Initial spectral peak classification (test 2)
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Figure 5: Residual Spectrum (test 2)
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Figure 6: Estimated noise level for a polyphonic signal (test 2)

In Figure 3, a white noise spectrum is shown with the esti-
mated noise level. The estimated mean noise levelLm does ap-
proximate the constant white noise mean. The estimated noise
envelopeLn is noted as “noise threshold” to notify that this is a
user-adjustable level. The noise peaks are finally re-classified as
the spectral peaks having magnitudes below this threshold.

To further demonstrate how the proposed algorithm works for
polyphonic signals, we estimate the colored noise level of apoly-
phonic signal. Figure 4 shows the initial spectral peak classifica-
tion result and Figure 5 shows the residual spectrum after subtract-
ing the sinusoidal peaks. The dotted vertical lines represent the
boundaries of the equally divided subbands. The estimated noise
level is shown in Figure 63. The proposed noise envelope model
does follow well the variation of the observed spectrum. More-
over, it provides us the control over misclassified spectralpeaks at
the first stage.

6. CONCLUSIONS

We have presented an iterative algorithm for approximatingthe
noise level local in time and in frequency. This algorithm isadap-
tive to the dynamics of the spectral variation. It neither includes
additional information from the neighboring frames or purenoise
segments, nor makes use of harmonic analysis. The proposed
noise envelope model represents the instantaneous noise spectrum,
which can be used as a new feature for signal analysis.

Its ability to handle different types of signals has been demon-
strated. However, there are several parameters to be studied: the
number of subbands, the order (the number of cepstral coefficients)
of the noise level curve, and the percentage of the noise in eq.(12)
to be included according to Rayleigh distribution.

The proposed algorithm is useful for many signal analysis and
synthesis applications, such as partial tracking, signal enhance-
ment, etc. It has been implemented by the authors for estimat-
ing the number of quasi-harmonic sources in connection withthe
problem of multiple fundamental frequency estimation.
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