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ABSTRACT

We describe a novel algorithm for the estimation of the aador
noise level in audio signals with mixed noise and sinuscidah-
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IRCAM/CNRS-STMS, Paris, France
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This paper is organized as follows. First the problem of @mois
level estimation is defined. In sectil@hwe explain how the dis-
tribution of the magnitudes of narrow band noise can be neatlel
An iterative algorithm to approximate the noise level isntipee-

ponents. The noise envelope model is based on the assusiptionsented in sectioll Lastly, different types of noise are used to

that the envelope varies slowly with frequency and that thgmi
tudes of the noise peaks obey a Rayleigh distribution. Ouhaoke
is an extension of a recently proposed approach of speaeX p
classification of sinusoids and noise, which takes into acta
noise envelope model to improve the detection of sinusqidaks.
By means of iterative evaluation and adaptation of the neise
velope model, the classification of noise and sinusoidakpésa
iteratively refined until the detected noise peaks are eotibrex-
plained by the noise envelope model. Testing examples iohaist
ing white noise and colored noise are demonstrated.

1. INTRODUCTION

Many applications for audio signals such as speech and massic
quire an estimation of the noise level that should be locéinire
and in frequency such that non-stationary and colored nzase
be dealt with. Noise level estimation, or noise power spéden-
sity estimation, is usually done by explicit detection oh¢i seg-
ments that contain only noise, or explicit estimation ofrhan-
ically related spectral components (for nearly-harmoigoas).
Since some of the noise is related to the signal, relying only
pure noise segments will not allow to properly detect thesa@i-
troduced with the source signal. Therefore, it has beengzeghto
include several consecutive analysis frames assumingfthéame
segment contains low energy portion and the noise preséminwi
the segment is more stationary than the signallll1] [2].

The other classical approach is to remove the sinusoids and

estimate the underlying noise components afterwaids [3k ih-
volves sinusoidal component identification, either in Erfgame
[4] [B] or by tracking sinusoidal components across frari@}§d].
We decide to follow this approach because the assumptians co
pared to the methods reviewed [ifi [1] are released. We prdpose
classify the spectral peaks in each short-time spectrurepieia-
dently because the costly tracking of sinusoidal companeitld
then be avoided. Moreover, the spectral peak classificatgthod
proposed in[[4]([5] allows to control the classification ésguch
that a bias towards sinusoids or noise can be easily altéiel
subtracting the sinusoidal peaks from the observed spectue
expect that there are few sinusoidal peaks left in the rasisjec-
trum. Then, a bandwise noise distribution fit is performehgis
a statistical measure. The outliers of the observed noiakspare
excluded through an iterative process of distribution fd aoise
level estimation. Upon the termination of the iterative mpgma-
tion, the estimated noise level is thus defined.

demonstrate the effectiveness of the proposed method.

2. PROBLEM DEFINITION

A signal is called "white noise” if the knowledge of the paatrs

ples does not tell anything about the subsequent samplesrte.c
The power density spectrum of white noise is constant. Bynsea
of filtering a white noise signal, correlations between thmgles

are introduced. Since in most cases the power density spectr
will no longer be constant, filtered white noise signals apeag-

ally called "colored noise”. We define the "colored noiseeleas

the expected magnitude level of the observed noise peaksis& n
peak is defined as a peak that can not be explained as a stgtiona
or weakly modulated sinusoid of the signal. The noise levela

be represented as a smooth frequency dependent curve approx
mating the noise spectrum, as shown in Figure 1. The noigt lev
should include most of the noise peaks and also follows sihpot
the variation of the observed spectral magnitudes.
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Figure 1: Colored noise level
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3. MODELING NARROW BAND NOISE USING
RAYLEIGH DISTRIBUTION

Under the assumption that noise is nearly white within a ichns
ered frequency band, we choose Rayleigh distribution tchét t
distribution of the observed narrow band ndkeThe Rayleigh
distribution was originally derived by Lord Rayleigh in awec-
tion with a problem in the field of acoustics. A Rayleigh rando
variable X has probability density functianl [8]:

ple) = S =/ &y
with 0 < = < o0, 0 > 0, cumulative distribution function
F(z)=1- e (2)
and thepth percentile
ap=F '(p) = 0/2log(1—p), 0<p<1 (3)

In Figure 2, the probability density function is plotted fdif-
ferent values o0& (o = 0.5, 1, 1.5, 2, 2.5 and3). o corresponds to
themode of the Rayleigh distribution, which is the most frequently
observed value iX. Thus,p(o) corresponds to the maximum of
the probability distribution. Notice that is not the usual nota-
tion for the variance of a distribution. The variance of Régh
distributed random variable is

44—
2

Var(X) = o 4)

1.4

p(x)

0.61 1

0.4 i

Figure 2: Rayleigh distribution with different

Consider the Rayleigh random variah¥ as the observed
magnitudes of spectral peaks in a narrow band, theepresents

the most frequent magnitude values of noise peaks. The mfode o

the Rayleigh distribution can then be used to derive theaiibity

of an observed peak to belong to the background noise process

Comparing the magnitude of the spectral peak twe may con-
clude that peaks having amplitude beleware most likely noise

1In fact, Rice has showned in the Bell Laboratories Journal9a4
and 1945 that Rayleigh distribution is suitable for modgline probability
distribution of a narrow band noise.

while for the spectral peaks having magnitudes larger thahe
larger magnitudes they have, the less probable they arertoibe
(and thus they are more likely related to the determinisid pf
the signal).

4. NOISE LEVEL ESTIMATION

For a given narrow band, e.g. each frequencyiithe noise dis-
tribution can be modeled by means of Rayleigh with medk).
Onceo (k) has been estimated for &l the curve passing through
theses-value magnitudes defines a reference noise |8yelUs-
ing eq.B) it is now possible to adjust the noise threshold tte-
sired percentage of misclassified noise peaks. The retatise
envelopel,, can be estimated by simply multiplying testimated
Rayleigh mode&, with /—21log(1 — p). Therefore, the problem
comes to estimating the frequency dependsit).

It is known that the mean of a Rayleigh random variaklés
®)

E[X]=0+7/2

from which we have
EX]

/2

That is, the frequency dependertk) can be calculated if the
mean noise magnitudg[X], which is also frequency dependent,
can be estimated.

However, estimation of the expected noise magnitude corre-
sponding to each frequency bin requires sufficient obsienst
for statistical evaluation. Most of the existing approac(if rely
on observations from neighboring frames. Our approackse&ln
the assumption that the noise spectral envelope is chargilyg
weakly with the bin index: such that we may use the observed
spectral peaks in the predefined subbdhds estimate the (fre-
guency dependenthean noise level,,, by means of a cepstrally-
smoothed curve over the noise peaks. We describe the nage le
estimation procedures in the following.

o=

(6)

4.1. Spectral subtraction of sinusoids

In [4], four spectral peak descriptors have been proposethto
sify spectral peaks. The descriptors are designed to fyogeal
with non-stationary sinusoids. This method serves to iflasisiu-
soidal and non-sinusoidal peaks in our algorithm. The siitlas
peaks are then subtracted from the observed spectrum fo tiga
residual spectrum that is assumed to contain mostly noiskspe
To estimate the spectral parameters of each sinusoidal peak
the reassignment method proposed by F. Auger and P. FIg8jirin
is used to estimate the frequency sldp€ [10]. Given a STFor{Sh
Time Fourier Transform), the frequency slope can be estichay
means of
_00(t,w)/ot
ot (t,w)/ot’

wherei(t,w) and@(t,w) are the reassignment operators. Once
the frequency and the frequency slope of each sinusoidél qrea
estimated, the peak is subtracted from the observed specliue
optimal phase is estimated by means of the least squarecgrror
terion, i.e., the error between the original signal and tleeg@ssed
signal is minimized. However, if the estimated slope isdattpan

w'(t,w) @)

2We divide equally the subbands with the bandwidth 312.5Hz.

DAFX-2



Proc. of the § Int. Conference on Digital Audio Effects (DAFx-06),

the maximal slope around the observed peak, it will not beichn
ered as a consistent estimate and therefore be disregarded.

The main function of subtracting sinusoidal peaks is to pro-
vide sufficient residual peaks for a proper statistical msaef the
magnitude distribution even if the frequency resolutiofirsted
and sinusoidal peaks are very dense.

4.2. Iterative approximation of the noiselevel

After obtaining the residual spectrum, denotedsas the spectral
peaks are again classified and then the iterative approximat
the noise level is carried out till the selected statistmahsure of
the noise distribution in all subbands fit that of Rayleigstidbu-
tion.

The reasons to use a statistical measure are: (i) the amount Ill.

of the observed samples is usually not large enough to draw th
underlying distribution, (ii) statistical measures arpresentative
of a distribution and are more efficient for distribution fit.

We use skewness as the statistical measure for distribfittion
Skewness is a measure of the degree of asymmetry of a distribu
tion [L1]. If the right tail (tail at the large end of the diitution)
extends more than the left tail does, the function is saidateeh
positive skewness. If the reverse is true, it has negatige/skss.

If the two tails extend symmetrically, it has zero skewnesg,
Gaussian distribution. The skewness of a distribution fsdd as

13
373 (®)
Ho

Skw(X)

wherey; is theith central moment. And the skewness of Rayleigh
distribution is independent ef(k):

Shwray = 2T Z3IVT o 6311 )
(4—m)?

If the distribution of the noise magnitudes in a subband is as
sumed Rayleigh then we may test for misclassified sinusoyds b
means of the conditiofkw(X%) > Skwray, whereX? are the
noise magnitudes in thigh subband. Whenever this condition is
true we assume that there are misclassified sinusoids thatea
detected by observing their amplitude levels relative &dirrent
estimate ot (k).

Note that the distribution of noise magnitudes in each sathba
will not be Rayleigh ife-(k) in the subband is not constant. To im-
prove the consistency of the skewness test we thereforaleesit
noise magnitudes by means of normalizing with the curretit es
mated Rayleigh modg,,.

Assuming that for each subbandSi there are a greater pro-
portion of noise peaks and only a few sinusoidal peaks with-do
inant magnitudes remain. Then the noise level approximatam
be realized by iterating the following processes:

I. Calculate the cepstrum of the noise spectrum (constiucte
from interpolating the magnitudes of noise peaks). The cep-
strum is the inverse Fourier transform of the log-magnitude
spectrum and théth cepstral coefficient is formulated as

cq = %/ log | X (w)]e™*dw

™

(10

By truncating the cepstrum and using the fifstcepstral
coefficients, we reconstruct a smooth curve representang th
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mean noise level,, as a sum of the slowly-varying com-
ponents.

D—1

L (w) = exp(co + 2 Z cq cos(wd))

d=1

(11)

The cepstral ordeb is determined in a way similar to that
of [[2): D = Fs/max(A fmaz, BW) - C, whereFs is
half the sampling frequency) finq. is the maximum fre-
guency gap among all the noise peak3} is the subband
bandwidth, and is a parameter to set.

Il. Thenwe have the estimated Rayleigh made= L, /(
across the analysis frequency range.

7/2)

For each subband, check if the distribution fit is aclkiév

If the distribution fit is not achieved in the subband under
investigation, that isSkw(X2/L5) > Skwyay, where
L% denotes the estimated Rayleigh mode in &te sub-
band, then the largest outlier is excluded (re-classifyfireg
largest outlier in the subband as sinusoid).

When all the subbands meet the requirement of the skewness
measure, the estimated Rayleigh matecan be used to derive a
probabilistic classification of all spectral peaks intosgand si-
nusoidal peaks. For this we suggest pitle percentile of Rayleigh

distribution

Ln = Lo/ —2log(l —p) (12)
with a user selected value fpr Notice that if the underlying noise
level varies very fast in such a way that the proposed model ca
not capture the noise level evolution then the procedure moay
converge or may not converge to a reasonable estimate.

5. TESTING EXAMPLES

To demonstrate the effectiveness of the proposed algayitin
have tested two types of signals: white noise and a polyshgigt
nal with background noise. In both cases, the sampling &equ
is 16kHz and we setC’ = 1 for the cepstral order ang = 0.8

in eq.[12), that is, we allo0% of the noise to be misclassified
according to Rayleigh distribution.

401 B
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Figure 3: Estimated noise level for white noisest 1)
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Figure 4: Initial spectral peak classificatidegt 2)
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Figure 5: Residual Spectrurteét 2)
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Figure 6: Estimated noise level for a polyphonic signes{ 2)

In Figure 3, a white noise spectrum is shown with the esti-
mated noise level. The estimated mean noise lévgldoes ap-
proximate the constant white noise mean. The estimated nois
envelopel,, is noted as “noise threshold” to notify that this is a
user-adjustable level. The noise peaks are finally redifledsas
the spectral peaks having magnitudes below this threshold.

To further demonstrate how the proposed algorithm works for
polyphonic signals, we estimate the colored noise levelmlg-
phonic signal. Figure 4 shows the initial spectral peaksifas-
tion result and Figure 5 shows the residual spectrum afteract-
ing the sinusoidal peaks. The dotted vertical lines remtede
boundaries of the equally divided subbands. The estimaiesn
level is shown in Figure B. The proposed noise envelope model
does follow well the variation of the observed spectrum. @&Aor
over, it provides us the control over misclassified spegteaks at
the first stage.

6. CONCLUSIONS

We have presented an iterative algorithm for approximathey
noise level local in time and in frequency. This algorithnad=ap-

tive to the dynamics of the spectral variation. It neithezluides
additional information from the neighboring frames or pooese
segments, nor makes use of harmonic analysis. The proposed
noise envelope model represents the instantaneous neisteLsp,
which can be used as a new feature for signal analysis.

Its ability to handle different types of signals has been alem
strated. However, there are several parameters to be diutiie
number of subbands, the order (the number of cepstral cieeits)
of the noise level curve, and the percentage of the noise. {@iZq
to be included according to Rayleigh distribution.

The proposed algorithm is useful for many signal analysis an
synthesis applications, such as partial tracking, signabece-
ment, etc. It has been implemented by the authors for estimat
ing the number of quasi-harmonic sources in connection thigh
problem of multiple fundamental frequency estimation.
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