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ABSTRACT
Change detection within an audio stream is an important task
in several domains, such as classification and segmentation
of a sound or of a music piece, as well as indexing of broad-
cast news or surveillance applications. In this paper we pro-
pose two novel methods for spectral change detection without
any assumption about the input sound: they are both based
on the evaluation of information measures applied to a time-
frequency representation of the signal, and in particular to the
spectrogram. The class of measures we consider, the Rényi
entropies, are obtained by extending the Shannon entropy def-
inition: a biasing of the spectrogram coefficients is realized
through the dependence of such measures on a parameter,
which allows refined results compared to those obtained with
standard divergences. These methods provide a low compu-
tational cost and are well-suited as a support for higher level
analysis, segmentation and classification algorithms.

Index Terms— Change detection, spectral entropy, Kull-
back divergence, Rényi entropies, segmentation

1. INTRODUCTION

The detection of spectral changes within an audio signal can
be performed according to many different criteria, depend-
ing on the applications; the key point is what kind of spectral
change has to be considered significant. A typical problem
in audio classification is to identify signal segments with dif-
ferent contents, for example when analyzing a radio stream
to separate speech, music or mix of them; another type of
problem is speaker change detection, which typically occurs
when indexing audio recording of conferences, interviews or
lectures. In either case we have to perform a segmentation
and a classification, but the interesting spectral changes are
completely different. The point of view we consider is at
the signal level, since our research is about adaptive resolu-
tion methods for analysis, transformation and re-synthesis of
a sound.

The use of information measures to evaluate the features
of a time-frequency representation of a signal is frequent in
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the literature: Shannon entropy is applied to evaluate the con-
centration of the representation seen as a probability distribu-
tion, and the derived divergence measures [1] are employed
to identify variations within the representation.

The representation we consider is the spectrogram of
the signal: through a normalization which gives a unitary
sum, we consider the discrete spectrogram in a finite time
interval as a probability distribution, and we can apply typ-
ical information measures to evaluate its concentration in
the time-frequency plane. Fixing the signalf , we write
PSm = {PSf [m, k], k = 1, ..., N} to indicate them-th anal-
ysis frame in the discrete spectrogramPSf of f , where the
FFT sizeN is the finite number of sample frequencies con-
sidered. Given two normalized analysis framesPS1 andPS2,
the KullbackK divergence [1] is usually employed to have
a measure of their difference: a spectral change is detected
wheneverK(PS1,PS2) is larger than a chosen threshold. A
refinement of this method (see for example [2]) provides a
better robustness to false alarms defining amean spectrum
PSmean and comparing its divergence with the new analysis
frame.

The first method we propose is a straight extension of
the one just described: we consider the divergence measure
derived from theRényi entropy[3] instead of theK directed
divergence, allowing a tuning of the detection criteria thanks
to the dependance of the measure on a parameter. The sec-
ond method is not based on divergence but on Rényi entropy
itself, exploiting one of its fundamental property: the entropy
of a union of probability distributions can be evaluated con-
sidering the entropy values of the individual distributions.
Since we do consider analysis frames as probability distri-
butions, this property can be used to establish the expected
entropy value of a certain signal segment when the following
frame is added: if the actual value differs significantly from
the expected one, the last frame is considered to contain a
spectral change.

This kind of algorithm does not need acoustic models to
refer to, nor data training: a certain metric is evaluated in



a given space [4]. The information measures we take into
account can be applied on several different representationof
the signal: in [5] theK divergence is used in a GMM frame-
work instead of on the spectrogram. In several approach,
for example in [6], difference measures are calculated as a
first step which gives a suitable analysis for segmentation and
classification purposes: for all these algorithms, the class of
measures we introduce could ameliorate the detection perfor-
mances as they allow a further parameter of choice, while still
including theK divergence for a given value of the parameter.

In the next section we give the essential properties and
definitions of the measures considered, then we describe the
biasing obtained with the parameter introduced. Finally we
present our algorithms and give some examples: we use a
speech fragment to compare the detection with the one given
by the K divergence measure; we take as a reference the
segmentation given on the same signal by an HMM-based
phoneme segmentation method [7], and the voiced-unvoiced
classification obtained with a PSOLA-based algorithm [8].
Our results are interesting as the methods provide a refined
adjustable detection, despite of their substantial plainness and
low computational cost.

2. RÉNYI ENTROPIES AND INFORMATION
MEASURES

Given a finite probability densityp and a rational numberα ≥
0, the Rényi entropy ofp is defined as follows,

Hα[p] =
1

1− α
log2

N
∑

k=1

pα[k] , (1)

wherep is in square brackets as we are considering the mea-
sure on discrete densities; asα tends to one this measure con-
verges to the Shannon entropy, which is therefore included in
this larger class. General properties of Rényi entropies can be
found in [3], [9] and [10]; in particular,Hα(P ) is a non in-
creasing function ofα, soα1 < α2 ⇒ Hα1

(P ) ≥ Hα2
(P ) .

Moreover, for every orderα the Rényi entropyHα is maxi-
mum whenP is uniformly distributed, while it is minimum
and equal to zero whenP has a single non-zero value. As we
are working with finite discrete densities we can also consider
the caseα = 0 which is simply the logarithm of the number
of elements inp; as a consequenceH0[p] ≥ Hα[p] for every
admissible orderα. Given a second finite probability density
q of the same length, ifp andq have exactly the same zeros
theRényi information[3] is defined as follows,

Iα(q, p) =
1

α− 1
log2

N
∑

k=1

qα[k]

pα−1[k]
, (2)

and it tends to the KullbackI divergence [1] asα tends to one.
We can thus consider this class of measures to obtain different

divergences as for the KullbackI one, and apply them to the
spectrogram frames: as long as we can give an interpretation
to theα parameter, this class of measures offers a largely more
detailed information about the time-frequency representation
of the signal.

2.1. Biasing spectral coefficients through theα parameter

To show the biasing introduced on the spectral coefficients by
theα parameter we consider a simplified model of a spectro-
gram composed by a variable amount of large and small coef-
ficients. We realize a vectorU of lengthN = 100 generating
numbers between 0 and 1 with a normal random distribution;
then we consider the vectorsUM , 1 ≤ M ≤ N such that

UM [k] =

{

U [k] if k ≤ M
U [k]
20 if k > M

and then normalize to obtain a unitary sum. We then apply
Rényi entropy measures withα varying between 0 and 30: as
we see from figure 1, there is a relation betweenM and the
slope of the entropy curves for the different values ofα.
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Fig. 1. Rényi entropy evaluations of theUM vectors with
varyingα.

For α = 0, H0[UM ] is the logarithm of the number of
non-zero coefficients and it is therefore constant; whenα in-
creases, we see that densities with a small amount of large
coefficients gradually decrease their entropy. This means that
increasingα we emphasize the difference between the en-
tropy values of a peaky distribution and that of a nearly flat
one. In the next section we will give an example of the ex-
ploiting of this important property, but care should be taken
when applying this criterium: small coefficients in a spectro-
gram include signal components of weak amplitude as well
as noise; choosing an extremely smallα the change detection
robustness to noise level significantly decreases.

2.2. The entropy prediction method

The second method we introduce is not based on a divergence
criterium, but on entropy itself. We first give the definition



of Rényi entropy for the case of distribution obtained with
a discretization of their continuous version [11]: letPSf be
a normalization with unitary sum of a discrete spectrogram,
then the Rényi entropy ofPSf is

Hα[PSf ] =
1

1− α
log2

∑

n,k

(PSf [n, k])
α + log2(ab) , (3)

wherek varies between 1 and the FFT sizeN while n varies
in the time interval where the evaluation has to be performed,
according to the time grid. The termlog2(ab) takes into
account the time and frequency stepsa and b of the lattice
Λ used to sample the continuous spectrogram: this guar-
antees the stability of the discrete entropy when changing
the hop and the FFT sizes, as long as the sampling grid is
dense enough in the time-frequency plane. For the entropy
of a single analysis frame we writeHα[PSf ] = Hα[PSm] as
above, wherem is the time index of the analysis frame con-
sidered; forL different analyses frames, we writeHα[PSf ] =
Hα[PSm, ...,PSm+L] to focus on the individual vectors. The
following properties are straightforward by the definitions.

Proposition 2.1(Rényi entropy prediction). Consider a spec-
trogramPSf and a rational numberα ≥ 0.

(i) Let PSm be an analysis frame inPSf ; if PSk is ob-
tained rearranging the elements ofPSm, then

Hα[PSm] = Hα[PSk] = H , (4)

Hα[PSm,PSk] = H + 1 . (5)

(ii) In general, if PSm+1, ...,PSm+L are obtained rear-
ranging the elements ofPSm, than

Hα[PSm, ...,PSm+L] = H + log2(L + 1) . (6)

As a rearrangement we mean a reordering of the frame co-
efficients, thus including the case of equality between frames.
The idea of our method is that given the entropy of a cer-
tain signal segmentHα(PSm, ...,PSm+L) composed byL
contiguous frames, we can predictHα(PSm, ...,PSm+L+1)
supposing the new frame to be spectrally coherent and thus
iso-entropic with the previous ones. If on the other hand the
entropy value of the new segment largely differs from the
predicted value, we assume the new frame to be incoherent
with the previous and so a spectral change is detected. There
is here a strong assumption concerning the equivalence be-
tween the concept of spectral coherence and the fact that two
frames are obtained with a rearrangement of their elements;
according to the specific needs in the applications, the detec-
tion criteria can be based on variations of the property (6) to
take into account different definitions of spectral coherence:
for example, considering a set of admissible operations on the
analysis coefficients in relation with the entropy variation that
they provide.

3. ALGORITHMS AND EXAMPLES

We show here an application of the detection algorithms with
the measures defined: the first algorithm we analyze has the
same operations for theK divergence and Rényi informa-
tion (2): we calculate the spectrogram of a signal with a
1024-samples Hamming window, 768-samples overlap and
2048-points FFT size; we obtain a mean spectrum taking the
first 20 analysis frames, and calculate the divergence of the
next frame with respect to the mean spectrum. Once we have
the first divergence value, we shift the mean spectrum of one
analysis frame and consider the following 20 frames, then
calculate the divergence between the new mean spectrum and
the following frame. At this point, if the ratio between the last
divergence value and the previous exceeds a certain thresh-
old, a change is detected at the incoming frame; otherwise
the procedure goes on. The second algorithm is a variation of
the first one based on entropy prediction: once obtained the
spectrogram of the signal, we calculate the Rényi entropy of
the vector composed of its first 6 analysis frames; then we
consider the next frame and set the predicted entropy value
according to (6). We calculate the actual entropy of the vector
obtained adding the new frame to the previous ones, and if
the ratio between this value and the predicted one exceeds a
certain threshold, a change is detected. Then the procedure
goes on as in the previous case.

The Rényi prediction shows a slightly better accuracy at
the price of a higher computational cost; this is due to the
larger dimensions of the vectors managed in the entropy cal-
culus. The tuning of theα parameter gives interesting re-
sults: as seen in figure 1, higher values rise the difference
between the entropies of a peaky distribution and a flat one;
thus we expect in general a more refined detection increasing
α, leaving the threshold unchanged. The signal we analyze is
a speech fragment of a mail voice in French language,Véniti-
enne et lui suce la bouche un quart d’heure. We assume two
references: an automatic phoneme segmentation for French
language based on Hidden Markow Model [7], and a voiced-
unvoiced classification obtained with a PSOLA-based algo-
rithm [8]: they identify the major spectral changes in this
kind of signal, so we expect our detection to confirm them.
We are not interested in whether a marker belongs to one se-
lection or the other, as this could be established in a later clas-
sification step. As we see at the top of figure 2, the Rényi
prediction withα = 0.2 identifies all the voiced-unvoiced
transitions in both senses except at time 2.5, and a large part
of phonemes. If we need a less refined detection, setting the
α parameter to 0.05 (bottom of figure 2) preserves the detec-
tion of all the unvoiced-voiced transitions, while discarding
all the phonemes and the voiced-unvoiced transitions. Both
the measures provide a better detection with respect to the
K divergence, which shows a higher number of unexpected
markers.
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Fig. 2. Detections obtained with different methods on a speech fragment in French language;cross markers: Rényi entropy
prediction method, on top withα = 2, at the bottom withα = 1.1; square markers: K divergence;diamond markers:
HMM-based phoneme segmentation method;bold line: PSOLA voiced-unvoiced classification, 0 is unvoiced.
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