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ABSTRACT

The synthesis of sound textures, such as rain, wind, or crowds, is
an important application for cinema, multimedia creation, games
and installations. However, despite the clearly defined require-
ments of naturalness and flexibility, no automatic method has yet
found widespread use. After clarifying the definition, terminology,
and usages of sound texture synthesis, we will give an overview
of the many existing methods and approaches, and the few avail-
able software implementations, and classify them by the synthe-
sis model they are based on, such as subtractive or additive syn-
thesis, granular synthesis, corpus-based concatenative synthesis,
wavelets, or physical modeling. Additionally, an overview is given
over analysis methods used for sound texture synthesis, such as
segmentation, statistical modeling, timbral analysis, and modeling
of transitions.

1. INTRODUCTION

The synthesis of sound textures is an important application for
cinema, multimedia creation, games and installations. Sound tex-
tures are generally understood as sound that is composed of many
micro-events, but whose features are stable on a larger time-scale,
such as rain, fire, wind, water, traffic noise, or crowd sounds. We
must distinguish this from the notion of soundscape, which de-
scribes the sum of sounds that compose a scene, some components
of which could be sound textures.
There are a plethora of methods for sound texture synthesis based
on very different approaches that we will try to classify in this
state-of-the-art article. We’ll start by a definition of the terminol-
ogy and usages (sections 1.1– 1.3), before giving an overview of
the existing methods for synthesis and analysis of sound textures
(sections 2 and 3), and some links to the first available software
products (section 4). Finally, the discussion (section 5) and con-
clusion (section 6) also point out some especially noteworthy arti-
cles that represent the current state of the art.

1.1. Definition of Sound Texture

An early thorough definition, and experiments on the perception
and generation of sound textures were given by Saint-Arnaud [74]
and Saint-Arnaud and Popat [75], summarised in the following
visual analogy:

A sound texture is like wallpaper: it can have local
structure and randomness, but the characteristics of
the fine structure must remain constant on the large
scale.

Figure 1 illustrates this statement. They culminate in the following
working definition:

1. Sound textures are formed of basic sound elements, or
atoms;

2. atoms occur according to a higher-level pattern, which can
be periodic, random, or both;

3. the high-level characteristics must remain the same over
long time periods (which implies that there can be no com-
plex message);

4. the high-level pattern must be completely exposed within a
few seconds (“attention span”);

5. high-level randomness is also acceptable, as long as there
are enough occurrences within the attention span to make a
good example of the random properties.
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FIG. 19.1. Sound textures and noise show constant long-term characteristics. 

sound texture is like wallpaper: it can have local structure and randomness, but 
the characteristics of the fine structure must remain constant on the large scale. 

This means that the pitch should not change like that of a racing car, the 
rhythm should not increase or decrease, and so on. This constraint also means 
that sounds in which the attack plays a great part (like many timbres) cannot be 
sound textures. A sound texture is characterized by its sustain. 

Fig. 19.1 shows an interesting way of segregating sound textures from other 
sounds, by showing how the “potential information content” increases with time. 
“Information” is taken here in the cognitive sense rather then the information 
theory sense. Speech or music can provide new information at any time, and 
their “potential information content” is shown here as a continuously increasing 
function of time. Textures, on the other hand, have constant long term 
characteristics, which translates into a flattening of the potential information 
increase. Noise (in the auditory cognitive sense) has somewhat less information 
than textures. 

Sounds that carry a lot of meaning are usually perceived as a message. The 
semantics take the foremost position in the cognition, downplaying the 
characteristics of the sound proper. We choose to work with sounds which are 
not primarily perceived as a message, that is, nonsemantic sounds, but we 
understand that there is no clear line between semantic and non-semantic. Note 
that this first time constraint about the required uniformity of high level 
characteristics over long times precludes any lengthy message. 

19.1.2 Two-Level Representation 

Sounds can be broken down to many levels, from a very fine (local in time) to a 
broad view, passing through many groupings suggested by physical, 
physiological and semantic properties of sound. We choose, however, to work 
with only two levels: a low level of simple atomic elements distributed in time 
and a high level describing the distribution in time of the atomic elements. 
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Figure 1: Potential information content of a sound texture vs. time
(from Saint-Arnaud and Popat [75]).

1.1.1. What Sound Texture is Not

Attempting a negative definition might help to clarify the concept.
We exclude from sound textures the following:

Contact sounds from interaction with objects, such as impact,
friction, rolling sounds, treated in many works close to
sound texture synthesis [1, 15, 48, 65, 87]. These sounds
violate the “wallpaper” property.

Sound scapes are often treated together with sound textures,
since they always contain sound textures. However, sound
scapes also comprise information-rich event-type sounds,
as further explained in section 1.1.2.
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Abstract

This paper explores two different methods to capture the local anisotropy of locally parallel
textures. The corresponding models allow for both an analysis and a synthesis of oriented
patterns. The first method models such textures as local oscillations that can be analyzed by
a windowed Fourier transform. The resulting model can be sampled by alternating projections
that enforce the consistency of the local phase with the estimated spectrum of the input texture.
The second method models the texture over the domain of local structure tensor. These tensors
encode the local energy, anisotropy and orientation of the texture. The synthesis is performed
by matching the multiscale histograms of the tensor fields.

Figure 1: Examples of locally parallel textures.

This paper exposes two models for analyzing and synthesizing natural textures that exhibit
a local anisotropy. In section 3 we propose a model based on a local Fourier expansion for the
analysis and on iterated projections for the synthesis of the phase function. In section 4, we propose
a statistical model that captures the variations of the orientation over a tensor domain.

1 Previous Works

Analysis of oriented patterns. Oriented patterns provide key features in computer vision and
find applications in many processing problems such as fingerprints analysis [9]. Their analysis is
performed through the application of local differential operators averaged over the image plane

1

Figure 2: Examples of natural and synthesised oriented oscillating patterns from Peyré [70].

Sound design is the wider context of creating interaction sounds,
sound scapes, and sound textures. Literature in the field
often contains useful methods for sound texture design [10,
14, 58–61].

In some cases of music composition or performance, sound texture
is used to mean non-tonal, non-percussive sound material, or non-
harmonic, non-rhythmic musical material.

See also Strobl [84] for an investigation of the term texture outside
of sound, such as in textiles, typography, gastronomy.

1.1.2. Sound Scapes

Because sound textures constitute a vital part of sound scapes, it
is useful to present here a very brief introduction to the classifica-
tion and automatic generation of sound scapes. Also, the literature
about sound scapes is inevitably concerned about the synthesis and
organisation of sound textures.

The first attempts at definition and classification of sound scapes
have been by Murray Schafer [76], who distinguishes keynote, sig-
nal, and soundmark layers in a soundscape, and proposes a refer-
ential taxonomy incorporating socio-cultural attributes and ecolog-
ical acoustics.

Gaver [36], coming from the point of view of acoustic ecology,
organises sounds according to their physical attributes and interac-
tion of materials.

Current work related to sound scapes are frequent [8, 9, 33, 58–
61, 88, 89].

1.2. Existing Attempts at Classification of Texture Synthesis

As a starting point, Strobl et al. [85] provide an attempt at a defi-
nition of sound texture, and an overview of work until 2006. They
divide the reviewed methods into two groups:

Methods from computer graphics Transfer of computer graph-
ics methods for visual texture synthesis applied to sound
synthesis [22, 64, 67]. See figure 2 for examples of tex-
tured images.

Methods from computer music Synthesis methods from com-
puter music or speech synthesis applied to sound texture
synthesis [4, 7, 17, 42, 43, 94].

A newer survey of tools in the larger field of sound design and
composition [58] propose the same classification by synthesis
method as elaborated in section 2 below. The article makes a point
that different classes of sound require different tools (“A full tool-
box means the whole world need not look like a nail!”) and gives
a list of possible matches between different types of sound and the
sound synthesis methods on which they work well.

In an article by Filatriau and Arfib [31], texture synthesis algo-
rithm are reviewed from the point of view of gesture-controlled
instruments, which makes it worthwile to point out the different
usage contexts of sound textures in the following section.

1.3. Different Usages and Significations

It is important to note that there is a possible confusion in the lit-
erature about the precise signification of the term sound texture
that is dependent on the intended usage. We can distinguish two
frequently occuring usages:

Expressive texture synthesis Here, the aim is to interactively
generate sound for music composition, performance, or
sound art, very often as an expressive digital musical in-
strument (DMI). Sound texture is then often meant to dis-
tinguish the generated sound material from tonal and per-
cussive sound, i.e. sound texture is anything that is predom-
inantly defined by timbre rather than by pitch or rhythm.
The methods employed for expressive texture generation
can give rise to naturally sounding textures, as noted by
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Sound Texture Synthesis
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Subtractive Additive Wavelets Granular Synthesis Physically Informed Modal Synthesis
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Figure 3: Classification hierarchy of sound texture synthesis methods. Dashed arrows represent use of information.

Di Scipio [17], but no systematic research on the usable pa-
rameter space has been carried out, and it is up to the user
(or player) to constrain herself to the natural sounding part.
This strand of sound texture is pursued in the already men-
tioned review in [31], and their follow-up work [32].

Natural texture resynthesis tries to synthesise environmental or
human textural sound as part of a larger soundscape,
amongst others for audio–visual creation like cinema or
games. Often, a certain degree of realism is striven for (like
in photorealistic texture image rendering), but for most ap-
plications, either symbolic or impressionistic credible tex-
ture synthesis is actually sufficient, in that the textures con-
vey the desired ambience or information, e.g. in simula-
tions for urbanistic planning. All but a few examples of the
work described in the present article is aimed this usage.

2. CLASSIFICATION OF SYNTHESIS METHODS

In this section, we will propose a classification of the existing
methods of sound texture synthesis. It seems most appropriate
to divide the different approaches by the synthesis methods (and
analysis methods, if applicable) they employ:

• Noise filtering (section 2.1) and additive sinusoidal synthe-
sis (section 2.2)

• Physical modeling (section 2.3) and physically-informed
signal models

• Wavelet representation and resynthesis (section 2.4)

• Granular synthesis (section 2.5) and its content-based ex-
tension corpus-based concatenative synthesis (section 2.6)

• Non-standard synthesis methods, such as fractal or chaotic
maps (section 2.7)

Figure 3 gives an overview over the classes and their relation-
ships. Other possible aspects for classification are the degree of
dependency on a model, the degree to which the method is data-
driven, the real-time capabilities, and if the method has been for-
mally evaluated in listening tests. Some of these aspects will be
discussed in section 5.

2.1. Subtractive Synthesis

Noise filtering is the “classic” synthesis method for sound textures,
often based on specific modeling of the source sounds.
Based on their working definition listed in section 1.1, Saint-
Arnaud and Popat [75] build one of the first analysis–synthesis
models for texture synthesis, based on 6-band Quadrature Mirror
filtered noise.
Athineos and Ellis [4] and Zhu and Wyse [94] apply cascaded
time and frequency domain linear prediction (CTFLP) analysis
and resynthesis by noise filtering. The latter resynthesise the back-
ground din and the previously detect foreground events (see sec-
tion 3.1.3) by applying the time and frequency domain LPC coeffi-
cients to noise frames with subsequent overlap–add synthesis. The
events are sequenced by a Poisson distribution. The focus here is
data reduction for transmission by low-bitrate coding.
McDermott et al. [53] apply statistical analysis (see section 3.2) to
noise filtering synthesis, restrained to unpitched static textures like
rain, fire, water only.
Peltola et al. [69] synthesises different characters of hand-clapping
sounds by filters tuned to recordings of claps and combines them
into a crowd by statistical modeling of different levels of enthou-
siasm and flocking behaviour of the crowd.
The venerable collection by Farnell [30], also available online1,
gives many sound and PUREDATA patch examples for synthesising

1http://obiwannabe.co.uk/tutorials/html/tutorials_main.html
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various sound textures and sound effects by oscillators and filters,
carefully tuned according to insights into the phenomenon to be
simulated, as in this quote about rain:

“What is the nature of rain? What does it do?” Ac-
cording to the lyrics of certain shoegazing philoso-
phies it’s "Always falling on me", but that is quite
unhelpful. Instead consider that it is nearly spher-
ical particles of water of approximately 1-3mm in
diameter moving at constant velocity impacting with
materials unknown at a typical flux of 200 per sec-
ond per meter squared. All raindrops have already
attained terminal velocity, so there are no fast or
slow ones. All raindrops are roughly the same size, a
factor determined by their formation at precipitation
under nominally uniform conditions, so there are no
big or small raindrops to speak of. Finally raindrops
are not "tear" shaped as is commonly held, they are
in fact near perfect spheres. The factor which pre-
vents rain being a uniform sound and gives rain its
diverse range of pitches and impact noises is what
it hits. Sometimes it falls on leaves, sometimes on
the pavement, or on the tin roof, or into a puddle of
rainwater.

2.2. Additive Sinusoidal + Noise Synthesis

Filtered noise is often complemented by oscillators in the additive
sinusoidal partials synthesis method.
In the QCITY project2, the non-real time simulation of traffic noise
is based on a sinusoids+noise sound representation, calibrated ac-
cording to measurements of motor states, exhaust pipe type, damp-
ing effects. It allows to simulate different traffic densities, speeds,
types of vehicles, tarmacs, damping walls, etc. [38]. The calcula-
tion of sound examples can take hours.
Verron [93] proposes in his PhD thesis and in other publications
[91, 92], 7 physically-informed models from Gaver’s [36] 3 larger
classes of environmental sounds: liquids, solids, aerodynamic
sounds. The models for impacting solids, wind, gushes, fire, water
drops, rain, and waves are based on 5 empirically defined and pa-
rameterised sound atoms: modal impact, noise impact, chirp im-
pact, narrow band noise, wide band noise. Each model has 2–
4 low-level parameters (with the exception of 32 band amplitudes
for wide band noise).
Verron then painstakingly maps high-level control parameters like
wind force and coldness, rain intensity, ocean wave size to the low-
level atom parameters and density distribution.
The synthesis uses the FFT-1 method [73] that is extended to in-
clude spatial encoding into the construction of the FFT, and then
one IFFT stage per output channel.3

2.3. Physical Modeling

Physical modeling can be applied to sound texture synthesis, with
the drawback that a model must be specifically developed for each

2http://qcity.eu/dissemination.html
3Binaural sound examples (sometimes slightly artificial sounding) and

one video illustrating the high-level control parameters and the difference
between point and extended spatial sources can be found on http://www.
charlesverron.com/thesis/.

class of sounds to synthesise (e.g. friction, rolling, machine noises,
bubbles, aerodynamic sounds) [63, 64], the latter adding an extrac-
tion of the impact impulse sound and a perceptual evaluation of
the realism of synthesised rolling sounds (see also Lagrange et al.
[47]). Often, modal resonance models are used [90], where the in-
expensively synthesisable modes are precalculated from expensive
rigid body simulations.

Other signal-based synthesis methods are often physically-
informed [12, 13] in that they control signal models by the out-
put of a physical model that captures the behaviour of the sound
source. See, e.g. Cook [14], Verron [93] (also described in sec-
tion 2.2), Picard et al. [71], or the comprehensive toolbox by Men-
zies [55] (see section 4 for its implementation).

The synthesis of liquid sounds described by Doel [20] is a combi-
nation of a physically informed sinusoidal signal model for single
bubble sounds (going back to [51]), and an empirical phenomeno-
logical model for bubble statistics, resulting in a great sound vari-
ety ranging from drops, rain, air bubbles in water to streams and
torrents.

An extreme example is the synthesis of sounds of liquids by
fluid simulations [62], deriving sound control information from
the spherical harmonics of individually simulated bubbles (up to
15000).4

2.4. Wavelets

The multiscale decomposition of a signal into a wavelet coefficient
tree has been first applied to sound texture synthesis by El-Yaniv
et al. [26] and Dubnov et al. [22], and been reconsidered by Ker-
sten and Purwins [45].5

Here, the multiscale wavelet tree signal and structure representa-
tion is resampled by reorganising the order of paths down the tree
structure. Each path then resynthesises a short bit of signal by the
inverse wavelet transform.

These approaches take inspiration from image texture analysis and
synthesis and try to model temporal dependencies as well as hier-
archic dependencies between different levels of the multi-level tree
representation they use. Kersten and Purwins’s work is in an early
stage where the overall sound of the textures is recognisable (as
shown by a quantitative evaluation experiment), but the resulting
structure seems too fine-grained, because the sequence constraints
of the original textures are actually not modeled, such that the fine
temporal structure gets lost. This violates the autocorrelation fea-
ture found important for audio and image textures by McDermott
et al. [53] and Fan and Xia [29].

An model-based approach using wavelets for modeling stochastic-
based sounds is pursued by Miner and Caudell [56]. Parameteriza-
tions of the wavelet models yield a variety of related sounds from
a small set of dynamic models.

Another wavelet-based approach is by Kokaram and O’Regan [46,
66], based on Efros and Leung’s algorithm for image texture syn-
thesis [23]. Their multichannel synthesis achieves a large segment
size well adapted to the source (words, baby cries, gear shifts,

4http://gamma.cs.unc.edu/SoundingLiquids
5Sound examples are available at http://mtg.upf.edu/people/

skersten?p=Sound%20Texture%20Modeling
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drum beats) and thus a convincing and mostly artefact-free resyn-
thesis.6

2.5. Granular Synthesis

Granular synthesis uses snippets of an original recording, and pos-
sibly a statistical model of the (re)composition of the grains [7,
22, 26, 35, 42, 43, 67]. The optimal grain size is dependent on
the typical time-scale of the texture. If chosen sufficiently long,
the short-term micro-event distribution is preserved within a grain,
while still allowing to create a non-repetitive long-term structure.

Lu et al. [50] recombine short segments, possibly with transpo-
sition, according to a model of transition probabilities (see sec-
tion 3.4). They explicitly forbid short backward transitions to
avoid repetition. The segmentation is based on a novelty score
on MFCCs, in the form of a similarity matrix.

Strobl [84] studies the methods by Hoskinson and Pai [42, 43] and
Lu et al. [50] in great detail, improves the parameters and resynthe-
sis to obtain “perceptually perfect segments of input textures”, and
tries a hybridisation between them [84, chapter 4]. She then im-
plements Lu et al.’s method in an interactive real-time PUREDATA
patch.

2.6. Corpus-based Synthesis

Corpus-based concatenative synthesis can be seen as a content-
based extension of granular synthesis [78, 79]. It is a new approach
to sound texture synthesis [11, 80, 82, 83]. Corpus-based conca-
tenative synthesis makes it possible to create sound by selecting
snippets of a large database of pre-recorded audio (the corpus) by
navigating through a space where each snippet is placed according
to its sonic character in terms of audio descriptors, which are char-
acteristics extracted from the source sounds such as pitch, loud-
ness, and brilliance, or higher level meta-data attributed to them.
This allows one to explore a corpus of sounds interactively or by
composing paths in the space, and to create novel timbral evolu-
tions while keeping the fine details of the original sound, which is
especially important for convincing sound textures.

Finney [33] uses a corpus of unstructured recordings from the free-
sound collaborative sound database7 as base material for sample-
based sound events and background textures in a comprehensive
sound scape synthesis application (see section 4, also for evalua-
tion by a subjective listening test). The recordings for sound tex-
ture synthesis are segmented by MFCC+BIC (see section 3.1.2)
and high- and low-pass filtered to their typical frequency ranges.
Spectral outliers (outside one standard deviation unit around the
mean MFCC) are removed. Synthesis then chooses randomly out
of a cluster of the 5 segments the MFCCs of which are closest.
How the cluster is chosen is not explicitly stated.

Schwarz and Schnell [80] observe that existing methods for sound
texture synthesis are often concerned with the extension of a given
recording, while keeping its overall properties and avoiding arte-
facts. However, they generally lack controllability of the resulting
sound texture. They propose two corpus-based methods of statisti-
cal modeling of the audio descriptor distribution of texture record-
ings using histograms and Gaussian mixture models. The models

6Sound examples are available at http://www.netsoc.tcd.ie/~dee/
STS_EUSIPCO.html.

7http://www.freesound.org/

can be interpolated to steer the evolution of the sound texture be-
tween different target recordings (e.g. from light to heavy rain).
Target descriptor values are stochastically drawn from the statis-
tic models by inverse transform sampling to control corpus-based
concatenative synthesis for the final sound generation, that can also
be controlled interactively by navigation through the descriptor
space.8 See also section 4 for the freely available CATART appli-
cation that served as testbed for interactive sound texture synthesis.
To better cover the target descriptor space, they expand the cor-
pus by automatically generating variants of the source sounds with
transformations applied, and storing only the resulting descriptors
and the transformation parameters in the corpus. A first attempt
of perceptual validation of the used descriptors for wind, rain, and
wave textures has been carried out by subject tests [52], based on
studies on the perception of environmental sound [57, 86].

The work by Picard et al. [71] (section 2.3) has a corpus-based
aspect in that it uses grain selection driven by a physics engine.

Dobashi et al. [18, 19] employ physically informed corpus-based
synthesis for the synthesis of aerodynamic sound such as from
wind or swords. They precompute a corpus of the aerodynamic
sound emissions of point sources by computationally expensive
turbulence simulation for different speeds and angles, and can then
interactively generate the sound of a complex moving object by
lookup and summation.

2.7. Non-standard Synthesis Methods

Non-standard synthesis methods, such as fractal synthesis or
chaotic maps, generated by iterating nonlinear functions, are used
most often for expressive texture synthesis [17, 32], especially
when controlled by gestural input devices [3, 31].

3. ANALYSIS METHODS FOR SOUND TEXTURES

Methods that analyse the properties of sound textures are con-
cerned with segmentation (section 3.1), the analysis of statisti-
cal properties (section 3.2) or timbral qualities (section 3.3), or
the modeling of the sound source’s typical state transitions (sec-
tion 3.4).

3.1. Segmentation of Source Sounds

3.1.1. Onset Detection

O’Modhrain and Essl [65] describe a granular analysis method
they call grainification of the interaction sounds with actual grains
(pebbles in a box, starch in a bag), in order to expressively control
granular synthesis (this falls under the use case of expressive tex-
ture synthesis in section 1.3): By threshold-based attack detection
with a retrigger limit time, they derive the grain attack times, vol-
ume (by picking the first peak after the attack), and spectral content
(by counting the zero-crossings in a 100 sample window after the
attack). These parameters control a granular synthesizer’s trigger,
gain and transposition. See also Essl and O’Modhrain [28].

Lee et al. [48] estimate contact events for segmentation of rolling
sounds on a high-pass filtered signal, on which an energy threshold

8Sound examples can be heard on http://imtr.ircam.fr/imtr/Sound_
Texture_Synthesis.
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is applied. Segments are then modeled by LPC filters on several
bands for resynthesis.

3.1.2. Spectral Change Detection

Lu et al. [50] segment sounds based on a novelty score on MFCCs,
in the form of a similarity matrix. This also serves to model tran-
sition probabilities (see section 3.4). The analysis has been im-
proved upon by Strobl [84].

Finney [33] (see also sections 2.6 and 4) uses a method of seg-
menting environmental recordings using the Bayesian Information
Criterion (BIC) on MFCCs [2], while enforcing a minimum seg-
ment length dependent on the type of sounds: The segment length
should correspond to the typical event length.

3.1.3. LPC Segmentation

Kauppinen and Roth [44] segment sound into locally stationary
frames by LPC pulse segmentation, obtaining the optimal frame
length by a stationarity measure from a long vs. short term predic-
tion. The peak threshold is automatically adapted by the median
filter of the spectrum derivative.

Similarly, Zhu and Wyse [94] detect foreground events by fre-
quency domain linear predictive coding (FDLPC), which are then
removed to leave only the ’din’ (the background sound). See also
section 2.1 for their corresponding subtractive synthesis method.

3.1.4. Wavelets

Hoskinson and Pai [42, 43] (see also section 2.5) segment the
source sounds into natural grains, which are defined by the min-
ima of the energy changes in the first 6 wavelet bands, i.e. where
the sound is the most stable.

3.1.5. Analysis into Atomic Components

Other methods [49, 50, 59, 60, 67] use an analysis of a target sound
in terms of event and spectral components for their statistical re-
combination. They are linked to the modelisation of impact sounds
by wavelets by Ahmad et al. [1].

Bascou [5], Bascou and Pottier [6] decompose a sound by Match-
ing Pursuit into time-frequency atoms from a dictionary manually
built from “characteristic” grains of the sound to decompose.

3.2. Analysis of Statistical Properties

Dubnov et al. [22], El-Yaniv et al. [26] apply El-Yaniv et al.’s [25]
Markovian unsupervised clustering algorithm to sound textures,
thereby constructing a discrete statistical model of a sequence
of paths through a wavelet representation of the signal (see sec-
tion 2.4).

Zhu and Wyse [94] estimate the density of foreground events, sin-
gled out of the texture by LPC segmentation (see section 3.1.3).
Masurelle [52] developed a simple density estimation of impact
events based on O’Modhrain and Essl [65], applicable e.g. to rain.
For the same specific case, Doel [20] cites many works about the
statistics of rain.

McDermott et al. [53] (see section 2.4) propose a neurophysically
motivated statistical analysis of the kurtosis of energy in subbands,
and apply these statistics to noise filtering synthesis (later also ap-
plied to classification of environmental sound [27]).

3.2.1. Analysis not for Synthesis

There is work concerned with analysis and classification of sound
textures, which is not relevant for synthesis, like Dubnov and
Tishby [21], who use higher-order spectra for classification of en-
vironmental sounds, or by Desainte-Catherine and Hanna [16],
who propose statistical descriptors for noisy sounds.

In the recent work by Grill [37] for an interactive sound instal-
lation, a corpus-based synthesis system plays back samples of
soundscapes matching the participants’ noises. While the synthe-
sis part is very simple, the matching part is noteworthy for its use
of fluctuation patterns, i.e. the modulation spectrum for all bark
bands of a 3 second segment of texture. This 744-element fea-
ture vector was then reduced to 24 principal components prior to
matching.

3.3. Analysis of Timbral Qualities

Hanna et al. [40] note that, in the MIR domain, there is little work
about audio features specifically for noisy sounds. They propose
classification into the 4 sub-classes coloured, pseudo-periodic, im-
pulsive noise (rain, applause), and noise with sinusoids (wind,
street soundscape, birds). They then detect the transitions between
these classes using a Bayesian framework. This work is gener-
alised to a sound representation model based on stochastic sinu-
soids [39, 41].

Only corpus-based concatenative synthesis methods try to char-
acterise the sonic contents of the source sounds by perceptually
meaningful audio descriptors: [24, 78–80, 82, 83]

3.4. Clustering and Modeling of Transitions

Saint-Arnaud [74] builds clusters by k-means of their input sound
atoms (filter band amplitudes) using the Cluster based probability
model [72]. The amplitudes are measured at the current frame and
in various places in the past signal (as defined by a neighbourhood
mask) and thus encode the typical transitions occuring in the sound
texture. Saint-Arnaud’s master’s thesis [74] focuses on classifica-
tion of sound textures, also with perceptual experiments, while the
later article [75] extends the model to analysis by noise filtering
(section 2.1).

Lu et al. [50] model transition probabilities based on a similarity
matrix on MFCC frames. Hoskinson and Pai [42, 43] also model
transitions based on smoothness between their wavelet-segmented
natural grains (section 3.1.4). Both methods have been studied in
detail and improved upon by Strobl [84].

4. AVAILABLE SOFTWARE

Freely or commercially available products for sound textures are
very rare, and mostly specific to certain types of textures. The
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only commercial product the author is aware of is the crowd sim-
ulator CROWD CHAMBER9, that takes a given sound file to multi-
ply the sources, probably using PSOLA-based pitch shifting, time-
stretching and filtering effects. That means, it is not actually a tex-
ture synthesiser, but an effects processor that adds a “crowd” effect
on an existing voice recording. The provided example sounds are
very unconvincing.

Finney [33] presents a full soundscape synthesis system based
on concatenative and sample-based playback (see sections 2.6
and 3.1.2). The synthesis and interaction part is integrated into
Google Street View.10 Notable and related to sound textures is the
precise modeling of traffic noise with single samples of passing
cars, categorised by car type and speed, that are probabilistically
recombined according to time of day, number of street lanes, and
with traffic lights simulated by clustering. The evaluation also re-
ported in [34] concentrates on the immersive quality of the gener-
ated sound scapes in a subjective listening test with 8 participants.
Interestingly, the synthetic sound scapes rate consistently higher
than actual recordings of the 6 proposed locations.

The PHYA framework [54, 55] is a toolbox of various physically
motivated filter and resonator signal models for impact, collision,
and surface sounds.11

The author’s CATART system [83] for interactive real-time corpus-
based concatenative synthesis is implemented in MAX/MSP with
the extension libraries FTM&CO.12 and is freely available.13 It
allows to navigate through a two- or more-dimensional projection
of the descriptor space of a corpus of sound segments in real-time
using the mouse or other gestural controllers, effectively extend-
ing granular synthesis by content-based direct access to specific
sound characteristics. This makes it possible to recreate dynamic
evolutions of sound textures with precise control over the resulting
timbral variations, while keeping the micro-event structure intact,
as soon as the segments are long enough, described in section 2.6.
One additional transformation is the augmentation of the texture
density by triggering at a faster rate than given by the segments’
length, thus layering several units, which works very well for tex-
tures like rain, wind, water, or crowds.8

The descriptors are calculated within the CATART system by a
modular analysis framework [81]. The used descriptors are: fun-
damental frequency, periodicity, loudness, and a number of spec-
tral descriptors: spectral centroid, sharpness, flatness, high- and
mid-frequency energy, high-frequency content, first-order autocor-
relation coefficient (expressing spectral tilt), and energy. Details
on the descriptors used can be found in [77] and [68].

5. DISCUSSION

Concerning the dependency on a specific model, we can see that
the presented methods fall clearly on one of two sides of a strong
dichotomy between rule-based and data-driven approaches: The
methods using a low-level signal or physical model (sections 2.2–
2.3) are almost all based on a very specific modeling of the sound
texture generating process, except the first three methods using

9http://www.quikquak.com/Prod_CrowdChamber.html
10http://dev.mtg.upf.edu/soundscape/media/StreetView/

streetViewSoundscaper2_0.html
11Available at http://www.zenprobe.com/phya/.
12http://ftm.ircam.fr
13http://imtr.ircam.fr/imtr/CataRT

noise filtering by statistical modeling. The methods using seg-
ments of signal or wavelet coefficients (sections 2.4– 2.6) are, by
their data-driven nature, more generally applicable to many dif-
ferent texture sounds, and far more independent from a specific
texture model.

Also, physical models do not provide a direct link between their
internal parameters, and the characteristics of the produced sound.
As Menzies [55] notes:

In principle, sound in a virtual environment can
be reproduced accurately through detailed physi-
cal modelling. Even if this were achieved, it is not
enough for the Foley sound designer, who needs to
be able to shape the sound according to their own
imagination and reference sounds: explicit physi-
cal models are often difficult to calibrate to a de-
sired sound behaviour although they are controlled
directly by physical parameters.

Physically-informed models allow more of this flexibility but still
expose parameters of a synthesis model that might not relate di-
rectly to a percieved sound character. What’s more, the physi-
cal and signal models’ parameters might capture a certain vari-
ety of a simulated sound source, but will arguably be limited to a
smaller range of nuances, and include to a lesser extent the context
of a sound source, than the methods based on actual recordings
(wavelets and corpus-based concatenative synthesis).

5.1. Perception and Interaction

General studies of the perception of environmental sound textures
are rare, with the exception of [53, 57, 86], and systematic evalua-
tion of the quality of the synthesised sound textures by formal lis-
tening tests is only beginning to be carried out in some of the pre-
sented work, e.g. [52, 63]. Only Kokaram and O’Regan [46, 66]
have taken the initiative to start defining a common and compara-
ble base of test sounds by adopting the examples from El-Yaniv
et al. [26] and Dubnov et al. [22] as test cases.

Finally, this article concentrated mainly on the sound synthesis
and analysis models applied to environmental texture synthesis,
and less on the way how to control them, or the interactivity they
afford. Gestural control seems here a promising approach for in-
teractive generation of sound textures [3, 31, 52].

5.2. Recommended Reading

While this article strove to give a comprehensive overview of ex-
isting methods for sound texture synthesis and analysis, some of
the work stands out, representing the state of the art in the field:

• Finney [33] for the introduction to sound scapes, the ref-
erence to the MFCC+BIC segmentation method, and the
precise traffic modeling.

• Verron [93] and Farnell [30] for the detailed account of
physically informed environmental sound synthesis that
gives an insight about how these sounds work.

• Kokaram and O’Regan [46, 66] and Schwarz and Schnell
[80] for the most convincing results so far.
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6. CONCLUSION

We have seen that, despite the clearly defined problem and ap-
plication context, the last 16 years of research into sound texture
synthesis have not yet brought about a prevailing method that satis-
fies all requirements of realism and flexibility. Indeed, in practice,
the former is always the top priority, so that the flexibility of auto-
mated synthesis methods is eschewed in favour of manual match-
ing and editing of texture recordings in post-production, or simple
triggering of looped samples for interactive applications such as
games.
However, the latest state-of-the-art results in wavelet resynthe-
sis [46, 66] and descriptor-based granular synthesis [80] promise
practical applicability because of their convincing sound quality.
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