
HAL Id: hal-01161294
https://hal.science/hal-01161294

Submitted on 8 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distance Mapping for Corpus-Based Concatenative
Synthesis

Diemo Schwarz

To cite this version:
Diemo Schwarz. Distance Mapping for Corpus-Based Concatenative Synthesis. Sound and Music
Computing (SMC), Jul 2011, Padova, Italy. pp.1-1. �hal-01161294�

https://hal.science/hal-01161294
https://hal.archives-ouvertes.fr


8th Sound and Music Computing Conference (SMC), July 2011, Padova, Italy

DISTANCE MAPPING FOR CORPUS-BASED CONCATENATIVE SYNTHESIS

Diemo Schwarz
UMR STMS

Ircam–CNRS–UPMC
schwarz@ircam.fr

ABSTRACT

In the most common approach to corpus-based concaten-
ative synthesis, the unit selection takes places as a content-
based similarity match based on a weighted Euclidean dis-
tance between the audio descriptors of the database units,
and the synthesis target. While the simplicity of this
method explains the relative success of CBCS for interac-
tive descriptor-based granular synthesis—especially when
combined with a graphical interface—and audio mosaic-
ing, and still allows to express categorical matches, cer-
tain desirable constraints can not be formulated, such as
disallowing repetition of units, matching a disjunction of
descriptor ranges, or asymmetric distances. We therefore
propose a new method of mapping the individual signed
descriptor distances by a warping function that can express
these criteria, while still being amenable to efficient multi-
dimensional search indices like the kD-tree, for which we
define the preconditions and cases of applicability.

1. INTRODUCTION

Corpus-based concatenative synthesis matches snippets of
sounds in a database of sound segments labeled by audio
descriptors, to a target also given by descriptors [1]. We
call the segments of sound with their description units, and
the database of units the corpus.

In its many incarnations 1 [2], corpus-based concatenat-
ive synthesis is most often based on finding the units clos-
est to the target in a multi-dimensional descriptor space,
with the most frequently used approach being a weighted
Euclidean distance, where the weight wi is expressing the
relative importance of each descriptor 1 ≤ i ≤ D in
the match. This means finding the units closest to the
current position x in the descriptor space in a geometric
sense, on appropriately scaled dimensions by calculating
the weighted square Euclidean distance Ct between x and
all 1 ≤ j ≤ N units with

Ct(j) =

D∑
i=1

wi di(j) (1)

1 A constantly updated overview of the many different approaches,
applications, and related work concerning CBCS can be found on http:
//imtr.ircam.fr/imtr/Corpus-Based Sound Synthesis Survey.

Copyright: c©2011 Diemo Schwarz et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

based on the per-descriptor distance di

di(j) =

(
x(i)− µ(j, i)

)2
σ(i)2

(2)

where µ is the (N,D) matrix of unit descriptor data and
σ the standard deviation of each descriptor over the cor-
pus. Either the unit with minimal Ct is selected, or one
randomly chosen from the set of units with Ct < r2, when
a selection radius r is specified, or, third, one from the set
of the k closest units to the target.

This paradigm of similarity for unit selection is simple,
easy to understand, especially when coupled with a 2D
or 3D representation of and interaction with the data, as
in the CATART system 2 for real-time interactive corpus-
based concatenative synthesis [3], and can be efficiently
implemented using tree-based search indices [4].

The distance-based paradigm can also be applied to cat-
egorial descriptors, e.g. a class-based selection like “start
a new sequence of sounds with a unit in the attack class,
then continue with units from the sustain class” can be ex-
pressed by giving integer class-index values as a descrip-
tor, and a sufficiently high weight that pushes any non-
matching class far enough away.

The same goes for boolean descriptors that can be used
to include or exclude specific units from the selection by
giving a binary descriptor and target value and assuring
that a non-match will effectively remove the unit from the
result set by a high weight.

However, it is difficult to express combined matches of
classes (e.g. “play units from the trumpet or trombone
class”), and certain additional constraints, for instance that
all units played in the last p seconds should be different.

Unit Selection by Constraint Resolution Alternative
methods based on constraint resolution formulate the unit
selection as a CSP (constraint satisfaction problem) [5].
While promising to be more expressive and flexible, the
drawback of these methods is that for each new constraint
type, code has to be written that integrates it into the con-
straint solver, and that the CSP itself is NP-complete, such
that local search strategies have to be applied to make it
computationally tractable, without guarantee to find the
best match in a given amount of time. This also means
that scalability to larger databases is not assured. Addi-
tionally, the CSP approach has only rarely been applied
to real-time interactive corpus-based concatenative synthe-
sis [6, 5], and needs a full constraint solver, which is not

2 http://imtr.ircam.fr/imtr/CataRT

1

mailto:schwarz@ircam.fr
http://imtr.ircam.fr/imtr/Corpus-Based_Sound_Synthesis_Survey
http://imtr.ircam.fr/imtr/Corpus-Based_Sound_Synthesis_Survey
http://creativecommons.org/licenses/by/3.0/
http://imtr.ircam.fr/imtr/CataRT


8th Sound and Music Computing Conference (SMC), July 2011, Padova, Italy

usually integrated in common real-time interactive sound
processing systems.

The aim of this article is thus to reformulate some of
the abovementioned additional constraints as a distance-
based match, in order to integrate them in commonly used
real-time synthesis systems [3, 7]. In section 2 we’ll in-
troduce a method of mapping the Euclidean per-descriptor
signed distances in order to express unit selection con-
straints such as avoiding repetition, selecting pitch inter-
vals and chords, and introducing asymmetric distances, de-
tailed in section 3. Section 4 will examine the two cases of
how these mapped distances can still be used in conjuction
with the efficient kD-tree multi-dimensional search index
[4], distinguishing the cases of static and dynamic distance
mapping functions.

2. DISTANCE MAPPING FUNCTIONS

Our solution to obtaining more flexibility for expressing
various selection criteria while still staying in the distance-
based paradigm of unit selection, is to map each individual
signed descriptor distance calculation through a distance
mapping function fi(d,P) : R → R for descriptor i with
parameter setP , before calculating the sum in equation (1),
replacing di from equation (2) by d′i:

d′i =

(
fi
(
x(i)− µ(j, i)

))2
σ(i)2

(3)

This allows to pull units in a certain relation to the target
closer or push them further away, creating “shortcuts” and,
in a sense, folding the descriptor space. Mapped distances
can also introduce asymmetry in the distance space, which
allows to express lower or upper bounds for selection, as
detailed in the following section.

3. APPLICATION EXAMPLES

We will now show several examples of applying distance
mapping functions to express unit selection criteria that
were not possible using a linear distance alone.

3.1 Range Queries and Note Filtering

For music composition or performance (see for example
the applications detailed in [3]), often, the most important
criterion is to select precise pitches from a corpus of in-
strument sounds. Secondary selection criteria could then
be, for instance, a certain brilliance, loudness, etc.

With unmapped distances, a given brilliance and loud-
ness target might have been best satisfied with a pitch not
matching the given target. Increasing the weight on pitch
might also not help here in the general case.

In order to express the priority of the pitch selection, a
binary distance mapping function is introduced as

frange(d, r) =

{
0 if − r ≤ d ≤ r
1 otherwise (4)

This mapping, associated with a high weight, will effec-
tively exclude all pitches outside range r around the target

from selection. If the most precise choice within the given
range should be favoured, a composite linear and binary
distance mapping function can be used:

frange+(d, r) =

{
d if − r ≤ d ≤ r
∞ otherwise (5)

Here, we use infinity (in practice, a very high real value)
for the non-matching case, in order to still be able to adapt
the weights of the within-range match of pitch, or actually
any descriptor. See figure 1 for a plot of the range distance
mapping functions.

−r 0 r

1

d

f

−r 0 r

inf

d

f

Figure 1. The frange (left) and frange+ (right) distance
mapping functions.

This principle can be extended to multiple pitch or cate-
gory matches by defining a multi-range distance mapping
function with notches of size r at distances δi as

fnotch(d, r, δ) =

{
0 if ∃ {i | δi − r ≤ d ≤ δi + r}
1 otherwise

(6)
Again, in order to favour precise matches in the notch

centres, we can use

fnotch+(d, r, δ) =

{
d− δ if ∃ {i | δi − r ≤ d ≤ δi + r}
∞ otherwise

(7)
Figure 2 shows the notched distance functions applied to

an octave match, supposing pitch in half-tones. Any chord
chould be given here.

−12 0 12

1

d

f

−12 0 12

inf

d

f

Figure 2. The fnotch (left) and fnotch+ (right) distance
mapping functions.

2



8th Sound and Music Computing Conference (SMC), July 2011, Padova, Italy

3.2 Asymmetric Distances

Let’s turn now to a case of automated collage or audio
mosaicing on a non-uniformly segmented corpus. Here,
a given target unit is to be replaced by a unit selected from
the corpus. If a continuous output sound is desired, the
selected unit should not be shorter than the target unit. It
can be longer, however, because a longer database unit can
always be cut on playback.

Therefore, we define an asymmetric duration distance
mapping function as

fasym(d) =

{
∞ if d < 0
d otherwise (8)

See figure 1 for a plot of the asymmetric distance map-
ping function which still prefers a unit matching the exact
target duration, to avoid a too large discrepancy between
the description of the original unit and the shortened unit.

0

inf

d

f

Figure 3. The fasym asymmetric duration distance map-
ping function.

3.3 Dynamic Taboo Lists

While the above applications were mostly static, and thus
could have been implemented by a pre-transformation of
descriptor values, we now turn to a dynamic application,
where the CSP formulation, or specific programming, 3

used to be the only available solutions: the avoidance of
repetitions of played units within a certain temporal win-
dow p.

We can formulate this within our distance-based selec-
tion paradigm by the introduction of a new descriptor last
played time, initialised to −∞. When a unit is played, its
value is set to the current time. We then keep the target
value for this descriptor set to the current time, and intro-
duce an asymmetric distance mapping function for it as

ftaboo(d, p) =

{
0 if d > p
∞ otherwise (9)

3 As one reviewer correctly remarked, avoiding repetitions could be
realised by a time-ordered queue of last played units. However, this
wouldn’t provide the three following advantages:

First, expressing non-repetition as linear distance allows to express a
soft criterion that can be balanced with the distances expressing other
selection criteria by weighting, as mentioned for equation (10).

Second, the computational complexity of maintaining and searching
the queue for the k units at each selection would add to the kD-tree search,
which can already remove the taboo units without additional complexity.

Third, for modular programming environments such as MAX/MSP,
an important design criterion is the generality of the modules. Regarding
CBCS, this means having a general distance-calculation module that ex-
presses all needs is preferable to a specifically programmed unit selection
module.

This allows to calculate in one integrated step the selec-
tion criteria on the static database, and the dynamic and
history-dependent constraint of avoiding repetitions.

We could now introduce a less strict taboo by allowing
to repeat units earlier, when no better choices are available
in the corpus, by giving a minimum window pmin and a
maximum penalty dmax for a distance mapping function
like

ftaboo+ (d, p, pmin, dmax)

=


0 if d > p

(d− p) dmax

pmin − p
if d > pmin

dmax otherwise

(10)

Figure 4 shows the two taboo distance functions.

0 p

inf

d

f

0 p_max p

d_max

d

f

Figure 4. The ftaboo (left) and ftaboo+ (right) distance
mapping functions.

4. INTEGRATION INTO SEARCH INDICES

To perform our distance-based unit selection, and in fact in
any application of content-based retrieval, finding the da-
tabase unit that minimises the target distance Ct is solved
most efficiently by a branch and bound search algorithm
based on the tree-structured index provided by the kD-tree,
representing a hierarchical decomposition of the descrip-
tor space by hyperplanes sn. Details of the indexing and
search algorithms are given in previous work [4].

During search, whole subtrees are pruned, i.e. discarded
from the search, by applying an elimination rule based on
the farthest neighbour found so far. This removes a large
amount of the distance calculations between feature vec-
tors needed otherwise, resulting in a sublinear time com-
plexity. Several variants of the algorithm are compared by
D’haes et al. [8].

We will argue here that our introduction of distance map-
ping functions does not invalidate the applicability of the
kD-tree search index, as soon as certain conditions are met.

First of all, any static distance mapping function that is al-
ready applied when building the search index, and whose
parameters don’t change when searching the tree, is evi-
dently integrated in the index structure.

For the case of dynamically changing distance mapping
functions such as in equations (6) or (9), we can define

3



8th Sound and Music Computing Conference (SMC), July 2011, Padova, Italy

as necessary condition that the function only increases the
distance, i.e. iff

∀
P
∀
d
f(d,P) ≥ d (11)

This works, because the elimination rule states that any
subtree that lies on the opposite side of its splitting hyper-
plane sn when seen from the target point t, and where the
distance from t to sn is greater than the distance dkmax

of the farthest neighbour found so far, does not need to
be searched. By increasing the mapped distance, we push
points further away from the query point, so that the elim-
ination rule still holds. (If we’d decrease the distance and
pull points closer, the elimination rule might have already
pruned these points from the search, although they might
now be part of the nearest neighbours.)

This condition is met for equations (5), (7), and (8),
but equations (4) and (6) do not qualify. There is, how-
ever, a workaround to make any distance mapping func-
tion amenable to the kD-tree search index, which is to start
from an all zero distance di = 0 while building the in-
dex, so that any mapped distance will be greater than the
original distance. This actually means that descriptor iwas
excluded from building the search tree, and that the query
will use the index on all but descriptor i, and then using the
mapped d′i to sift the result list.

4.1 Influence on the computational complexity

As to the question how the distance mapping influences on
the performance of search in the kD-tree, our tests showed
only a slight deterioration, with an increase in the num-
ber of vector-to-vector comparisons relative to the number
of distance mapped descriptors and the parameters of the
distance mapping functions.

A detailed evaluation that measures the number of com-
parisons for a certain number of test cases and situates
them between the baseline of brute force search and the
optimal kD-tree without distance mapping is planned for
future work.

5. IMPLEMENTATION

The distance mapping algorithm described here is imple-
mented as C-libraries and within the mnm.mahalanobis
and mnm.knn externals within the free MAX/MSP exten-
sion library FTM&CO [9] at http://ftm.ircam.fr, providing
real-time optimised data structures, and thus available in
the CATART real-time interactive CBCS system [3], and
within the MUBU externals [7] at http://imtr.ircam.fr.

In FTM&CO, the distance mapping functions are con-
veniently and flexibly represented as break-point function
(BPF) objects, which also allows to edit them manually in
the graphic externals ftm.editor and IMTR Editor [7].

6. CONCLUSIONS

We have seen in this article a simple and efficient way to
formulate many additional criteria, that are desirable for

musical use of interactive corpus-based concatenative syn-
thesis. These criteria go beyond multi-dimensional prox-
imity and were not possible to be expressed in the habitual
framework of unit selection based on Euclidean distances.

Our formulation of distance mapping by a warping func-
tion integrates these criteria in the distance calculation
while still keeping efficient selection methods based on
kD-trees and branch and bound search applicable, with
only little loss of efficiency.

The functional formulation of the constraints means that
different distance mapping functions could be interpolated
to smoothly crossfade from one solution space to another.

Acknowledgments

The work presented here is partially funded by the Agence
Nationale de la Recherche within the project Topophonie,
ANR-09-CORD-022, http://topophonie.fr.

7. REFERENCES

[1] D. Schwarz, “Corpus-based concatenative synthesis,”
IEEE Signal Processing Magazine, vol. 24, no. 2, pp.
92–104, Mar. 2007, special Section: Signal Processing
for Sound Synthesis.

[2] ——, “Concatenative sound synthesis: The early
years,” Journal of New Music Research, vol. 35, no. 1,
Mar. 2006, special Issue on Audio Mosaicing.

[3] D. Schwarz, R. Cahen, and S. Britton, “Principles
and applications of interactive corpus-based concaten-
ative synthesis,” in Journées d’Informatique Musicale
(JIM), GMEA, Albi, France, Mar. 2008.

[4] D. Schwarz, N. Schnell, and S. Gulluni, “Scalability in
content-based navigation of sound databases,” in Proc.
ICMC, Montreal, QC, Canada, 2009.

[5] J.-J. Aucouturier and F. Pachet, “Jamming With Plun-
derphonics: Interactive Concatenative Synthesis Of
Music,” Journal of New Music Research, vol. 35, no. 1,
Mar. 2006, special Issue on Audio Mosaicing.

[6] J.-J. Aucouturier, F. Pachet, and P. Hanappe, “From
sound sampling to song sampling,” in Proceedings of
the International Symposium on Music Information Re-
trieval (ISMIR), Barcelona, Spain, Oct. 2004, pp. 1–8.

[7] N. Schnell, A. Röbel, D. Schwarz, G. Peeters, and
R. Borghesi, “MuBu & friends – assembling tools for
content based real-time interactive audio processing in
Max/MSP,” in Proc. ICMC, Montreal, 2009.

[8] W. D’haes, D. van Dyck, and X. Rodet, “PCA-based
branch and bound search algorithms for computing
K nearest neighbors,” Pattern Recognition Letters,
vol. 24, no. 9–10, pp. 1437–1451, 2003.

[9] N. Schnell, R. Borghesi, D. Schwarz, F. Bevilacqua,
and R. Müller, “FTM—Complex Data Structures for
Max,” in Proc. ICMC, Barcelona, 2005.

4

http://ftm.ircam.fr
http://imtr.ircam.fr
http://topophonie.fr

	 1. Introduction
	 2. Distance Mapping Functions
	 3. Application Examples
	3.1 Range Queries and Note Filtering
	3.2 Asymmetric Distances
	3.3 Dynamic Taboo Lists

	 4. integration into Search Indices
	4.1 Influence on the computational complexity

	 5. Implementation
	 6. Conclusions
	 7. References

