N
N

N

HAL

open science

Visual Programming and Music Score Generation with
OpenMusic

Jean Bresson, Carlos Agon

» To cite this version:

Jean Bresson, Carlos Agon. Visual Programming and Music Score Generation with OpenMusic.
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), 2011, Pittsburgh,

United States. pp.247-248, 10.1109/VLHCC.2011.6070415 . hal-01161285

HAL Id: hal-01161285
https://hal.science/hal-01161285
Submitted on 8 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01161285
https://hal.archives-ouvertes.fr

Visual Programming and Music Score Generation
with OpenMusic

Jean Bresson and Carlos Agon
STMS: IRCAM-CNRS-UPMC
Paris, France
{bresson,agon} @ircam.fr

Abstract—We present score programming features in the vi-
sual programming and computer-aided composition environment
OpenMusic. The sheet object allows to build complex scores
and fill or modify their contents algorithmically using visual
programs.

I. INTRODUCTION

OpenMusic is a visual programming environment dedicated
to computer-aided composition [1], [2]. The basic purpose of
this environment is to provide music composers with means
to design processes and develop musical projects using com-
puters with the expressive power of a programming language.

Initially, OpenMusic visual programming tools are used
to generate or process musical objects such as scores or
other symbolic data. Our recent developments extended this
approach by allowing building scores containing their own
internal functional or algorithmic structure under the form of
in-built visual programs.

II. A VISUAL PROGRAMMING LANGUAGE FOR MUSIC

& ¢ & & & B B0

(1/4 1/16 1/12 1/8) .

L
'Y get-chords
PH i
_ P
nth ra:dom length
[<— ©
@ @
repeat-n

@ =30
A A e re [Fl
ﬁ ,l RS 1. —
voice 4 T
voice ==
]]]]]]

Fig. 1. Example of an OpenMusic patch: A voice object at the bottom is
created with rhythmic and harmonic data coming from the computation of
upstream-connected functional boxes.

The main working environment for OpenMusic users is
called a “patch”. A patch is a visual program where functional
components represented by boxes are connected together to
form a graph, eventually evaluated at some points in order to

trigger calculations and output musical structures or other data
(see Fig.1).

Scores are of a major importance in compositional processes
and are critical components in computer-aided composition
frameworks. Several types of objects allow to represent mu-
sical data under the form of score in OpenMusic, using
different temporal or notational conventions. These objects,
used or generated in visual programs, can be manipulated
using graphical editors where more standard musical software
features are available (mouse selection and editing, playback,
export, etc.—see Fig.2)

VOICE

Selection: CHORD ‘

(1/4 1/16 1/12 1/8) .
r J o =
— LY ./ L _rp 0
b 5 e e A
. | B i - e ——
nth raEdnm el -« p[i Lg — T e %
| —s
r...-. -
repanty Duration: 5334 ms
H 1) S
[midic [3] [6200 | Zoom [100 | staff | G H
- % | chord |5 Font size | 20 ¢ Approx | 1/2 %

i =+ = e

IWI‘I
< T T < < T

Fig. 2. Score editors for musical objects in OpenMusic.

III. SHEET PROGRAMMING

The sheet is a special polyphonic score editor developed
recently in OpenMusic, which introduces two important con-
cepts [3]. First, it is meant to gather heterogeneous types of
musical objects in its different voices, which involves specific
and non-trivial handling of mixed time representations such
as rhythmic notation (traditional scores), linear time notation
(e.g. MIDI-like or “piano-roll” notation), or continuous rep-
resentations (e.g. sound files or control curves). Fig.3 shows
a sheet object created in an OpenMusic patch starting from a
set of other musical objects. The sheet editor is visible at the
bottom of the figure.

In the editor each object can be sized or positioned in time.
Objects can also be added or moved between the different
voices of the score. The score display algorithm ensures strict
alignment of simultaneous events or objects depending on
score spacing and other graphical constraints (see [3]).

5 1l |

Gl 5

T e 6 6666 @

o § ¢
e o o ¢
Fi e LI AL
]
Ligi

w T T
F & ¢ ®
© ¢
P

A
L R
l—i
list
SHEET s
—
]]]
o |
. OMSHEET
= - seEml time {ms): 5536 ‘
_1 —5 .
- —_ [J T[] L. 0
= T R
=
T |

0 00 2000 3000 4000 5000 5000 7000 00D B
e S
™ crid (1000 | ms. 1Ds [_] Show Sheet Patches ‘

[Tracks [l onsets

Fig. 3. OpenMusic sheet including four objects: two musical voices (one in
rhythmic, and one in “linear” time notation), a sound and a control curve.

The second important feature in the sheer editor deals
with programming musical objects: A sheet includes a set
of internal programs (or patches) which allow generating the
objects in the score algorithmically or to relate them to one
another. The sheet patches can be shown or hidden from
the editor. When visible (see Fig.4), they can embed some

special boxes called “sheet-access” representing their container
sheet object. A sheet-access box is initialized with a number
corresponding to unique IDs assigned to the musical objects
in the sheet (the selected object then appears highlighted on
the sheet-access box display). The other inlets/outlets of the
sheet-access allow to connect and read or write the contents
or temporal attributes of this object in the patch.

An arbitrary number of patches can be attached to a sheet
object, and evaluated on request in order to compute or update
the score contents.

IV. CONCLUSION

OpenMusic can be a powerful programming framework for
various types of musical (or extra-musical) purposes [2]. It has
been used for the creation of numerous contemporary music
pieces by composers from varied aesthetic and geographical
origins (user experiences in real-size projects and works have
been reported in [4]).

The extensions presented here with the sheet and the general
idea of score programming are examples of how computation
and programming can tightly integrate compositional pro-
cesses. The functional relations set between the heterogeneous
components of such extended scores will hopefully enhance
compositional processes carried out with computer systems
and open new ways of representing and analyzing music.

REFERENCES

[1] G. Assayag, C. Rueda, M. Laurson, C. Agon, and O. Delerue, “Computer
Assisted Composition at IRCAM: From PatchWork to OpenMusic,”
Computer Music Journal, vol. 23, no. 3, 1999.

J. Bresson, C. Agon, and G. Assayag, “Visual Lisp/CLOS Programming
in OpenMusic,” Higher-Order and Symbolic Computation, vol. 22, no. 1,
2009.

J. Bresson and C. Agon, “Scores, Programs and Time Representations:
The Sheet Object in OpenMusic,” Computer Music Journal, vol. 32, no. 4,
2008.

C. Agon, G. Assayag, and J. Bresson, Eds., The OM Composer’s Book
(2 volumes). Editions Delatour / IRCAM, 2006-2008.

(2]

(3]

(4]

2006 OMSHEET
time (ms): 5083 ‘ - » sheet patch #2/2
0 : 5 . 0 I
- =——— |J | L
= = —a— = H 1 - VOICE

aﬁ = o i r s T e 2- SOUND

Ed 3 [[<3 3-BoF

= w w
1 —3 /
5
S e S) ! ‘ — T
EE==s 5 t ; t : .] sheet-access (]
L I & - = * EE = boxes
S

2

3 @

M 0 - VOICE

2 - sounD
3. BoF
T T T T
8 »
Cerid ms. E IDs E Show Sheet Patches

:Tracks : Onsets

‘+— - -

Fig. 4. Programming the contents of the sheet editor. In this example the second voice (object ID=1) is set to be the inverse of the first one (ID=0).

