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ABSTRACT

In this paper we propose a divergence measure which is
applied to the analysis of the relationships between gesture
and sound. Technically, the divergence measure is defined
based on a Hidden Markov Model (HMM) that is used to
model the time profile of sound descriptors. We show that
the divergence has the following properties: non- negativ-
ity, global minimum and non-symmetry. Particularly, we
used this divergence to analyze the results of experiments
where participants were asked to perform physical gestures
while listening to specific sounds. We found that the pro-
posed divergence is able to measure global and local differ-
ences in either time alignment or amplitude between ges-
ture and sound descriptors.

1. INTRODUCTION

Our research is concerned with the modelling of the re-
lationships between gesture and sound in music perfor-
mance. Several authors have recently shown the impor-
tance of these relations in the understanding of sound per-
ception, cognitive musical representation and action-oriented
meanings ([1], [2], [3]), which constitutes a key issue for
expressive virtual instrument design ([4], [5]).

A gesture is described here as a set of movement pa-
rameters measured by a motion capture system. In turn,
a sound is described as a set of audio descriptors repre-
senting musical properties such as audio energy, timbre or
pitch. Specifically, our goal is to propose a computational
model enabling the measure of the similarities between the
gesture parameters and sound descriptors.

Previous works on the quantitative analysis of the gesture-
sound relationship often deal with variance-based statisti-
cal methods as principal correlation analysis (PCA) ([6])
or canonical correlation analysis (CCA) ([7]). PCA allows
for the determination of principal components that models
the variation of the gesture parameters. Analyzing these
components together with musical features (as tempo or
metric) enabled to understand how listeners try to synchro-
nize their movements on music beats ([6], [8]). In [7] the

Copyright: c©2010 Baptiste Caramiaux et al. This is an open-access article dis-

tributed under the terms of the Creative Commons Attribution License, which per-

mits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

CCA method is used as a selection tool for mapping anal-
ysis. In this work, the authors showed that this method can
return the gesture and sound predominant features. How-
ever, both variance-based methods suffer from a lack of
temporal modeling. Actually, these models assume as sta-
tionary both gesture parameters and audio descriptors, in
the sense that statistical moments (mean, variance, etc.) do
not depend on the ordering of the data. As a matter of
fact, these models return a global static similarity measure
without considering intrinsic dynamic changes.

To overcome these limitations, it is necessary to model
the time profiles of the parameters. A large number of
works dealing with time series modelling are based on hid-
den Markov models. HMM-based methods indeed allow
for the temporal modeling of a sequence of incoming events,
and have been used in audio speech recognition [9], ges-
ture recognition ([10], [11]) and multimodal audio-visual
speech recognition [12]. The common classification task
generally considers a sequence as a unit to be classified
and returns a decision once completed based on the com-
putation of likelihood values. In [11] the authors present
a HMM method designed for continuous modeling of ges-
ture signals, that allows for the real-time assessment of the
recognition process. Moreover, this method allows for the
use of a single example for the learning procedure.

We propose to use in order to provide a measurement
tool in a cross-modal fashion. HMM were already em-
ployed in cross-modal contexts [13], [14]. Here the nov-
elty is to use HMM methods to model relationships be-
tween non-verbal sounds and hand gesture of passive lis-
teners. More precisely, we propose here to use this method
to further define a statistical distance between two time
profiles, typically called a divergence measure (see for in-
stance [15]) in information processing. Specifically, we
report here that this HMM-based divergence measure has
properties, induced by its underlying Markov process [16],
that makes it suitable to study the time evolution of the
similarity between gesture parameters and sound descrip-
tors.

This paper is structured as follows. First, we describe
the general method and context of this work. Second, we
present the theoretical framework of hidden Markov mod-
eling (section 3). In section 4 we detail the divergence
measure based on this framework and a specific learning
process. Third, we report an experiment and the results
that illustrate a possible use of our method (section 5). Fi-

mailto:baptiste.caramiaux@ircam.fr


nally, we conclude and present future works in section 6.

2. CONTEXT AND GOAL

Consider the following experiment: a participant listens to
a specific sound several times, and then proposes a phys-
ical gesture that “mimics” the sound. The gesture is then
performed (and captured) while the participant listens to
the sound. Our general aim is to answer the following
question: how can we analyse the gesture in relation to
the sound ?

In this experiment, the gestures can be considered as a
“response” to a “stimulus”, which is actually the sound.
In our framework, we will thus consider the sound as the
“model” and the gestures as the “observations”, as if they
were generated by the model.

For each participant’s gestures, as illustrated in figure 1,
our model should allow us to compute a divergence mea-
sure between each gesture and the corresponding sound (or
in other words, to quantify similarity/dissimilarity between
the gesture and sound). In the next section, we describe the
mathematical framework enabling the computation of such
a divergence measure.

Gesture Gesture...

Participant 1 Participant N

Sound HMM-based Divergence measure

...

...

Observation Observation

Model

D1 DN

Figure 1. Methodology: Each participant’s trials are taken
as input and a selected sound is taken as model. We mea-
sure the divergence between each trial and the sound.

3. HIDDEN MARKOV MODELING

In this section we briefly report the theoretical HMM frame-
work used to further define the divergence measure in sec-
tion 4.

3.1 Definition

Hidden Markov modeling can be considered as two statisti-
cally dependent families of random sequences O,X ([17],
[16], [9]). The first family corresponds to the observations
tOtutPN which represent measurements of a natural phe-
nomenon. A single random variable Ot of this stochas-
tic process takes value in a continuous finite dimensional

space O (e.g Rp). The second family of random process
is the underlying state process tXnunPN. A state process
is a first-order time-homogenous Markov chain and takes
values in a state space denoted by X � t1, 2, . . . , Nu. If
we note T the length of O, statistical dependency between
the two processes can be written as

P pO1 . . . OT |X1 . . . XT q �
T¹
t�1

P pOt|Xtq (1)

We define a hidden Markov model as

λ � pA,B, πq

Where A is the time-invariant stochastic matrix, or tran-
sition matrix, P pXt�1 � j1|Xt � j2q, pj1, j2q P X 2;
B is the time invariant observation distribution bjpoq �
P pOt � o|Xt � jq, j P X ; and π is the initial state proba-
bility distribution P pX0 � jq, j P X . The HMM structure
is reported in figure 2.

Xt−1 Xt Xt+1

Ot+1OtOt−1

Xt ∈ X

Ot ∈ O

Figure 2. A general schema of HMM. tXtutPN is the
model state random process where each state emits an ob-
servation Ot with a probability defined by B

In our case, tX0 . . . XT u corresponds to an index se-
quence of audio descriptor samples and tO1 . . . OT u a se-
quence of vector of samples from gesture parameter sig-
nals.

3.2 Topology

A and π have to be fixed according to a modeling strat-
egy. π describes where in the sequence model we start
to decode. A is dedicated to constrain the neighborhood
of state j, taken at time t, in which a model state must be
taken at the next time step t�1. This data has a great influ-
ence on the resulting decoding computation. Lets consider
two extreme situations for the Markov chain topology as
illustrated in figure 3.

In the first case, if current state is j we constrain to look
forward until j�1 for the best state emittingOt�1 whereas
in the second case we allow to look forward until the last
state N to find this closest state. The first situation is more
discriminative but occults possible fine corrections permit-
ted by the stochastic modeling.

3.3 Learning

Here we present how λ is learned using a new approach
presented in [11]. The parametersA (transition probability
matrix) and π (initial probability) are fixed according to
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Figure 3. Two extreme cases of topology. First, one step
forward is permitted in the state space. Second, each state
from the current to the last one can be caught

user’s choice of topology. B is such that time invariant
observation distributions are gaussians, i.e

bjpoq � 1
σ
?

2π
exp

��1
2
po� µjq2

σ2

�
(2)

Gaussian functions are centered on the model signal sam-
ples and the standard deviation σ can be adjusted by the
user (see figure ??). In our case, model signal samples
are the audio feature samples computed from the chosen
sound. A single example, namely the model, is needed for
the learning procedure.
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Figure 4. Learning phase. Gaussian functions are centered
on the model signal samples and the standard deviation σ
is a priori defined as a tolerance parameter.

3.4 Decoding

Given an input sequence O and a HMM λ, one of the in-
teresting problems is to compute the probability P pO|λq.
As mentioned in [9], in practice we usually compute the
logarithm of this probability as

log rP pO|λqs �
Ţ

t�1

log

�
Ņ

j�1

αtpjq
�

(3)

Where αtpiq is called the forward variable and is defined
as αtpiq � P pO1O2 . . . Ot, Xt � i|λq, namely the proba-
bility of having the observation sequenceO1 . . . Ot and the
current state i. Also, this variable can be computed recur-
sively providing an incremental method to find the desired
probability [9], i.e @j P v1, Nw

t � 1 α1pjq � πjbjpO1q

t ¡ 1 αtpjq �
�

Ņ

i�1

αt�1piqaij
�
bjpOtq

(4)

This forward inference allows for real time applications
in which input signal is decoded inductively.

4. DIVERGENCE MEASURE

In this section we define the divergence measure based on
the HMM framework and the learning method described
in section 3.3. Three main properties of this divergence
are proved below: non-negativity; global minimum; non-
symmetry.

4.1 Divergence Measure Definition

We consider two uniformly sampled signals: a modelM �
tM1, . . . ,MNu and an observation O � tO1, . . . , OT u.
We define here the divergence measure between the obser-
vation O and a HMM learned from signal M as in section
3.3, based on decoding presented in section 3.4. We de-
note λM � pAM , BM , πM q the HMM learned from M .
As mentioned in 3.3, we fix AM and πM for the diver-
gence independently to M . Observation distributions bMj
are defined as equation (2) with µj �Mj . Hence we have
λM � pA,BM , πq. We define the divergence measure as

DA,πpO||Mq � � log rP pO|λM qs (5)

In the following, for convenience DA,π will be noted D.
Divergence measure corresponds to the logarithm of the
likelihood of having the sequence of observations O given
a model λM learned from a signal M . More precisely,
DpO}Mq measures the divergence between the input ob-
servation and a sequence of model states generating the
observations. This sequence respects temporal structure
of the model thanks to the underlying Markov chain. The
result is a temporal alignment of model states on obser-
vations with a probabilistic measure evaluating how the
alignment fits the observation sequence in terms of time
stretching and amplitude (cf figure 5).
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Figure 5. The HMM takes as input the sequence of ob-
servations O1 . . . Ot. A sequence of model states (whose
likelihood of emitting observations is maximum) approx-
imates the observations. The quality of modeling is re-
turned and defines DpO}Mq.

4.2 Divergence Properties

In this section, we present that divergence measure be-
tween observation O and model M defined by (5) satisfies
important properties. We refer the reader to the appendix
for more details.



Non-negativity Divergence DpO}Mq is always positive.
Theoretically, the divergence measure does not have to be
finite. Actually, DpO}Mq is finite because signals consid-
ered have a finite length (T,N   �8) and infinite values
are theoretically impossible, due to numerical precision.
The log of very small values can be either considered as
zero or disregarded.

Lower bound. The most important corollary of non-negativity
is the existence of a lower bound i.e a global minimum for
our divergence measure which varies according to param-
eters A, π, σ. Moreover, the global minimum is explicit.
Depending on A and π, the minimum DpM}Mq is not
necessarily zero. Minimum analysis returns how close the
HMM learned from M can generate O. In section 5.3 we
will show that extremum analysis is pertinent in the anal-
ysis of the similarities between a sound and a gesture per-
formed while listening to it.

For brevity, explicit global minimum is not reported
here and its analytic formulation will not be explicitly used
in the following.

Non-symmetry. The measure is not symmetric. Strategies
to symmetrize divergence measures can be found in the lit-
erature (see for instance [18] for the well known Kullback-
Liebler divergence), but we are interested here in the anal-
ysis of the divergence from an observed gesture to a fixed
sound model and there is a priori no reason why their re-
lation should be symmetric.

4.3 Temporal evolution of the measure

The considered sample-based learning method trains an
HMM that closely models the time evolution of the sig-
nal. Moreover, from forward decoding we can find at each
time t which model state emits the considered observation.
Thus, at each time step the model can inform us on the
close relation between both signals in terms of time evo-
lution and amplitudes. This aims to an explicit temporal
evolution of the divergence measure. Let any truncated
observation signals be denoted by O|t � tO1 . . . Otu and
the whole model λM . Hence D is defined as a function of
time by,

DpO|t}Mq � �
ţ

k�1

log

�
Ņ

j�1

αkpjq
�

(6)

5. EXPERIMENTS

In this section we present an evaluation of the previously
defined divergence measure to gesture and sound data. The
measure returns an overall coefficient of the similarity be-
tween descriptors of both sound and performed gesture.
Temporal evolution of this measure allows for the analy-
sis of temporal coherence of both signals. We discuss the
results at the end of this section.

5.1 Data Collection

The data was collected on May 2008 in the University of
Music in Graz. For the experiment 20 subjects were invited

to perform gestures while listening to a sequence of 18 dif-
ferent recorded sound extracts of a duration between 2.05
and 37.53 seconds with a mean of 9.45 seconds. Most of
the sound extracts were of short duration. Since the expe-
rience was explorative, the sound corpus included a wide
variety of sounds: environmental and musical of different
styles (classical, rock, contemporary).

For each sound, a subject had to imagine a gesture that
he or she performed three times after an arbitrary number
of rehearsals. The gestures were performed with a small
hand-held device that included markers for a camera-based
motion capture system recording its position in Cartesian
coordinates. The task was to imagine that the gesture per-
formed with the hand-held device produces the listened
sound. A foot-pedal allowed the beginning of the move-
ment to be synchronized with the beginning of the play-
back of the sound extract in the rehearsal as well as for the
recording of the final three performances.

5.2 Data Analysis

We refer the reader to the previously introduced method in
figure 1. We first select a sound as a model. This sound is
waves. It is a sequence of five successive rising and falling
ocean’s waves at different amplitudes and durations. Ac-
cording to the sound model, we consider the three trials
performed by each candidate while listening to it.

The divergence measure parameters are set as follows.
The chosen transition matrix corresponding to the Markov
chain topology is illustrated in figure 6 (see [11] for further
explanations). The initial probability distribution π is such
that π1pO1q � 1 and @i � 1, πipO1q � 0. The states of the
Markov chain are the index of the audio descriptor samples
(see section 3.3).

k k+1 k+2

0.25

0.5

0.25

Figure 6. The chosen topology gives the predominant
weight to a transition to the next state. An equal weight
is given to the self-transition and to the transition above
the next state.

The choice of audio description and gesture variables
are based on our previous works (cf. [7]). We have shown
that the predominant features when participants have per-
formed gestures while listening to a wave sound is the au-
dio loudness and gesture velocity. As we present some
results based on the same data, we consider these two uni-
dimensional signals for describing the data.

In the whole set of data captured, some trials had data
missing; for others gesture and sound were not synchro-
nized and finally some trials were missing for some par-
ticipants. A selection is performed based on these criteria.
Among the 20 participants, a set of 14 are kept. For all



of the 14 participants, we measure the divergence between
each trial and the selected sound. Gesture sequence for
participant s and trial p is noted Os,p, loudness signal is
noted M . Figure 7 reports the results.

Result analysis is divided into three main points illus-
trating the contribution of applying divergence measure be-
tween gesture and sound data.

1. Divergence Extrema. Participant performances for
which the divergence measure is the lowest and the
highest

arg min
Os,p

rDpOs,p}Mqs
arg max

Os,p
rDpOs,p}Mqs

2. Temporal Evolution. Evolution of divergence mea-
sure for the same selected participant performances
as above.

DpOs,p|t }Mq

3. Gesture Variability. Participant performances for which
the standard deviation of resulting divergences is low
or high.

5.3 Results and Discussion
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Figure 7. The figure reports statistics on divergence mea-
sures between each participant’s trial and the sound waves.
The figure reports each quartile.

Divergence Extrema. Consider first the global mini-
mum and maximum for divergence results obtained on the
whole set of data (cf. figure 7). It reveals that participant 7
holds the minimum 2.44 for the second trial. In the same
way, participant 9 holds the maximum 9.20 for the second
trial. As reference for the reader, the global minimum is:
DpM}Mq � 0.01. Lets see more precisely the data that
return these extrema. In figure 8, the gesture trial mini-
mizing the divergence measure is plotted on the top-left
together with the model. On the top-right of figure 8, we
report the gesture trial maximizing the divergence together
with the model. It reveals that participant 7’s gesture is
more synchronized to the sound than participant 9’s and
the variations in velocity amplitude fit the best loudness
proper variations. Actually, participant 7 tends to increase

his arm’s velocity synchronously with each wave falling.
Otherwise, participant 9’s gesture performance is less syn-
chronized with sound and the velocity curve shows vari-
ations in amplitude between high variations in loudness
meaning that he used in-between hand movements with
lower velocity variations which are not directly linked to
sound but reflect subjective body control.
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Figure 8. At the top, both gesture velocity signals are plot-
ted in dashed line for both participant 7 (left) and partici-
pant 9 (right). The model (waves loudness) is also plotted
in solid gray line. The bottom is divergence measure at
each t between the respective signals above the plot.
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Temporal Evolution. As explained in section 4.3, the
quality of model state sequence according to observation
signal can be measured at each time t. At the bottom of
figure 8 is the divergence measures evolving over time for
the second trial of both participant 7 (left) and participant
9 (right). On the one hand, lets analyze bottom left plot
corresponding to participant 7’s performance (see figure 10



for a better view of the divergence curve). The first samples
ofO are different from those ofM so divergence increases
until a better matching between both signals (less than 1
second). During the next 4 seconds, divergence decreases
meaning that signals are synchronous and amplitudes are
close (relatively to σ). Around 6 seconds, an interesting
peak occurs (of magnitude 0.6). It happens during a raise
in the sound loudness (wave falling). A velocity raise also
occurs but its amplitude and its duration are lower than for
loudness. Such a peak informs us at which time a diver-
gence occurs and its magnitude permits us to evaluate the
degree of mismatching. In this example, a magnitude of
0.6 does not involve a huge mismatching as illustrated in
figure 8 (top-left part). Thanks to the underlying stochas-
tic structure, the state sequence corrects itself according to
the new inputs. Indeed, the divergence measure is then de-
creasing but not abruptly since the sum over time (from
1 to t, see equation 3) of the log-probabilities induces a
memory of the past signals’ mismatching. Global shape
presents sawtooth-type variations interpreted as local mis-
matching (peak) and correction (release) (see figure 10)
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Figure 10. Zoom on divergence measure curve for partic-
ipant 7. Zooming into this curve illustrates sawtooth-type
behavior of the divergence.

Consider now gesture performed by participant 9, shown
in the right part of figure 8. The global evolution of the
divergence measure is increasing indicating that they glob-
ally diverge, contrary to the previous behavior, and its mag-
nitude is higher. The temporal shape shows constant parts
(as around 4sec, 7sec, 12sec, 17sec and 21sec). During
these intervals, mismatching has less impact because am-
plitude of both signals is lower. The peaks occur for non-
synchronized peaks meaning highly divergent amplitude
values. Contrary to the respective bottom-left plot, no de-
creasing can be seen due to the overall past divergence val-
ues that are not good enough to involve a decrease in the
divergence: as seen before, the sum propagates past mis-
matching.

Thereby, two different dynamic behaviors for the diver-
gence measure have been highlighted. Locally mismatch-
ing induced a saw shape for DpO|t}Mq whereas globally
mismatching induced an ascending temporal curve which
can roughly be approximated as piecewise constant. These
behaviors give us useful hints to understand dynamic re-
lationships between gesture and the sound which was lis-
tened to highlighting relevant parts of the signals where
both signals are coherent or really distinct. Otherwise,
since the method considers a global model correspond-

ing to the whole sound signal, we hypothesize from this
discussion that it should be interesting to analyze gesture-
sound relationship at an intermediate temporal scale be-
tween the sample and the global signal.

Gesture Variability. Illustration of standard deviation
between trial divergences in figure 8 reflects the tendency
of each participant to perform similar trials in terms of tem-
porality and amplitude. Participant 4 performed very con-
sistent trials compared to participants 5 or 6. Their respec-
tive divergence medians suggest that participant 5 has per-
formed three different gesture performances whereas par-
ticipant 6 has only one divergent gesture compared to the
remaining two. Figure 11 illustrates this result reporting
the three trials performed by participants 4, 5, and 6.
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Figure 11. At the top are the trials for which variance
in divergence measure is the lowest. Below we plot tri-
als performed by participant 5 and 6 corresponding to the
highest variance. Divergence median for participant 5 is
roughly the mean (three different trials) of divergence val-
ues whereas divergence median for participant 6 is very
low (one very different trial from the others)

6. CONCLUSIONS

In this paper we have presented a divergence measure based
on a HMM that is used to model the time profile of sound
descriptors. Gestures are considered as observations for
the HMM as if they were generated by the model. The di-
vergence measure allows similarity/dissimilarity between
the gesture and sound to be quantified. This divergence has
the following properties: non-negativity; global minimum;
non-symmetry. Experiments on real data have shown that
the divergence measure is able to analyze either local or
global relationships between physical gesture and the sound
which was listened to in terms of time stretching and am-
plitude variations. Some constraints (changing parameters
A, π or σ) could be added in order to reinforce or relax
softness of the measure.

Otherwise, this theoretical work could easily be used in



several applications. For instance, it permits us to design
a gesture-driven sound selection system whose scenario is
as follows. First, we build a corpus of distinct sounds with
specific dynamic, timbre or melodic characteristics. Then
we choose an interface allowing physical gesture captur-
ing. Finally one can perform a gesture and the system will
automatically choose the sound for which the divergence
measure returns the minimal value. Such application could
be useful for game-oriented systems, artistic installations
or sound-design software.

Finally, we have introduced a suitable future direction
in section 5.3 that proposes the design of computational
models focusing on in-between temporal scale analysis as
curve segments.
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A. APPENDIX
DIVERGENCE MEASURE PROPERTIES

Non-negativity Divergence DpO}Mq is always positive.

@t P v1, T w,
Ņ

i�1

αtpiq � P pO1 . . . Ot|λM q P r0, 1s

Hence,

DpO}Mq � �
Ţ

t�1

log

�
Ņ

j�1

αtpjq
�
P r0,�8s (7)

Theoretically, the divergence measure does not have to be
finite. Actually, DpO}Mq is finite because signals consid-
ered have a finite length (T,N   �8) and infinite values
are theoretically impossible, due to numerical precision.
The log of very small values can be either considered as
zero or disregarded.



Lower bound. The most important corollary of non-negativity
is the existence of a lower bound i.e a global minimum for
our divergence measure which varies according to param-
eters A, π, σ. Moreover, the global minimum is explicit.

Function bMj poq holds a global maximum in Rp for

@j P v1, Nw, Mj � arg max
x

bMj pxq

For brevity, the whole demonstration is not reported here,
but it can be shown that this global maximum aims to a
global maximum for αtpjq leading to a global minimum
for the divergence measure DpO}Mq considering any in-
puts different from the model.

@O �M,DpO}Mq ¥ DpM}Mq (8)

Depending on A and π, the minimum DpM}Mq is not
necessarily zero. Minimum analysis returns how close the
HMM learned from M can generate O. In section 5.3 we
will show that extremum analysis is pertinent in the anal-
ysis of the similarities between a sound and a gesture per-
formed while listening to it.

For brevity, explicit global minimum is not reported
here and its analytic formulation will not be explicitly used
in the following.

Non-symmetry. From equation (4), let αtpjq be rewritten
as

@t ¥ 1, αtpjq � Ct,jbjpOtq
Where C1,j � πj and Ct,j � °N

i�1 αt�1piqaij . From
respective expression of DpO}Mq and DpM}Oq, we have
@t ¥ 1,

Ņ

j�1

Ct,j

σ
?

2π
e

�pOt �Mjq2
2σ2 �

Ņ

j�1

Ct,j

σ
?

2π
e

�pMt �Ojq2
2σ2

Meaning that the divergence is not symmetric.

DpO}Mq � DpM}Oq (9)

Strategies to symmetrize divergence measures can be found
in the literature (see for instance [18] for the well known
Kullback-Liebler divergence), but we are interested here in
the analysis of the divergence from an observed gesture to
a fixed sound model and there is a priori no reason why
their relation should be symmetric.
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