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Abstract. This article reports on the exploration of a method based
on canonical correlation analysis (CCA) for the analysis of the relation-
ship between gesture and sound in the context of music performance
and listening. This method is a first step in the design of an analysis tool
for gesture-sound relationships. In this exploration we used motion cap-
ture data recorded from subjects performing free hand movements while
listening to short sound examples. We assume that even though the re-
lationship between gesture and sound might be more complex, at least
part of it can be revealed and quantified by linear multivariate regres-
sion applied to the motion capture data and audio descriptors extracted
from the sound examples. After outlining the theoretical background,
the article shows how the method allows for pertinent reasoning about
the relationship between gesture and sound by analysing the data sets
recorded from multiple and individual subjects.

Key words: Gesture analysis, Gesture-Sound Relationship, Sound Per-
ception, Canonical Correlation Analysis

1 Introduction

Recently, there has been an increasing interest in the multimodal analysis of
the expression of emotion as well as expressivity in music. Several works reveal
that motor expression components like body gestures are always accompany-
ing other modalities [23]. For instance, human face-to-face communication often
combines speech with non-verbal modalities like gestures. In this context, mul-
timodal analysis reveals co-expressive elements that play an important role for
the communication of emotions. In a similar way, we’d like to explore the rela-
tionship between gestures and sound in the context of music performance and
listening.

We are particularly interested in the relationship between sound and the
movements of an individual or a group in a listening situation as well as the
movements of a music performer that are related primarily to the production of
sound, in addition to the musical intention and the expression of emotion ([16]).

In our current project, we develop a set of methods for the analysis of the
relationship between different aspects of gestures and sound. We would like to be
able to apply these methods to a variety of contexts, covering the performance



of traditional and electronic (virtual) instruments as well as different music lis-
tening scenarios. The goal of this work reaches the creation of tools for the study
of gesture in musical expression and perception. In a greater context, these tools
contribute to the development of novel paradigms within the intersection be-
tween music performance and music listening technologies.

In this paper, we present a new approach to the quantitative analysis of
the relationship between gesture and sound. The article is organized as follows.
We first present a review of related works. Then we introduce in section 3 the
multivariate analysis method called canonical correlation analysis. In section 4
we present the experimental context including our data capture methods and
we show results on feature selection and correlation analysis of collected data.
We discuss these results in 5. Finally, we conclude and give the implications on
further works in section 6.

2 Related Work

The concept of embodied cognition has been adopted by a wide community
of researchers. In this context, the relationship between gesture and sound has
come into interest to interdisciplinary research on human communication and
expression.

Some recent researches in neurosciences ([13], [25]) and others in perception
([26], [2], [18]) have shown that action plays a predominant role in perception
insisting on the inherently multimodal nature of perception. In [12], [14], [1]
the authors show that gesture and speech are to some extent complementary
co-expressive elements in human communication.

Research in the domain of music and dance has studied the embodiment of
emotion and expressivity in movement and gesture. Leman ([16]) has widely ex-
plored various aspects of music embodiment based on the correlation between
physical measurements and corporeal articulations in respect to musical inten-
tion. Camurri et al. in [4] show that emotion can be recognized in a dancing
movement following dynamic features such as quantity of motion extracted from
motion capture data. Dahl et al. in [5] show to what extent emotional inten-
tions can be conveyed through musicians’ body movements. Moreover, Nusseck
and Wanderley in [19] show that music experience is multimodal and is less de-
pend on the players’ particular body movements than the player’s overall motion
characteristics.

Several recent works have studied gestures performed while listening to music
revealing how an individual perceives and imagines sound and sound production
as well as music and music performance. In [6], [10] and [7] the authors explore
the relationship between gesture and musical sound using qualitative analysis
of the gestural imitation of musical instrument performance (air-instruments)
as well as free dance and drawing movements associated with sounds (sound-
tracing). For instance, [6] shows that air-instrument performance can reflect how
people perceive and imagine music highly depending on their musical skills.



On the other hand, only a few works have taken a quantitative approach and
are mostly focussing on the synchronisation between gestures and music. In [15],
Large proposes a pattern-forming dynamical system modelling the perception of
beat and meter that allows for studying the synchronisation and rhythmic corre-
spondence of movement and music. Experiments in which subjects were asked to
tap along with the musical tempo have revealed other pertinent characteristics
of the temporal relationship between movement and music ([22], [17], [24]) such
as negative asynchrony, variability, and rate limits. In [17], the authors give a
quantitative analysis of the ensemble musicians’ synchronization with the con-
ductor’s gestures. The authors have used cross-correlation analysis on motion
capture data and beat patterns extracted from the audio signal to study the
correspondence between the conductor’s gestures and the musical performance
of the ensemble. Lastly, Styns ([24]) has studied how music influences the way
humans walk analysing the correspondence between kinematic features of walk-
ing movements and beat patterns including the comparison of movement speed
and walking tempo in addition to the analysis of rhythmic synchronicity. He
shows that walking to music can be modelled as a resonance phenomenon (with
resonance frequency at 2Hz).

In our work we attempt to introduce a method for the quantitative multi-
modal analysis of movement and sound that allows for the selection and anal-
ysis of continuous perceptively pertinent features and the exploration of their
relationship. It focuses on free body movements performed while listening to
recorded sounds. The mathematical approach is a general multivariate analysis
method that has not been used yet in gesture-sound analysis, but that has given
promising results in the analysis of multimedia data and information retrieval
([11]).

3 Canonical Correlation Analysis: an Overview

Proposed by Hotelling in [9], Canonical Correlation Analysis (CCA) can be seen
as the problem of measuring the linear relationship between two sets of variables.
Indeed, it finds basis vectors for two sets of variables such that the correlations
between the projections of the variables onto these basis vectors are mutually
maximised. Thus, respective projected variables are a new representation of the
variables in directions where variance and co-variance are the most explained.

Let us introduce some notations: bold type will be used for matrices (X, Y,
etc...) and vectors (u, v, etc...). The matrix transpose of X will be written as
XT . Finally, an observation of a random variable v will be written as vi at time
i.

Consider two matrices X and Y where the rows (resp. columns) are the
observations (resp. variables). X, Y must have the same number of observations,
denoted m, but can have different numbers of variables, denoted nx resp. ny.
Then, CCA has to find two projection matrices, A and B, such as

max
A,B

[corr (XA,YB)] (1)



Here corr denotes the correlation operator between two matrices. Usually,
the correlation matrix of a matrix M of dimension m×n is the correlation matrix
of n random variables (the matrix columns m1, ...,mn) and is defined as a n×n
matrix whose (i, j) entry is corr (mi,mj). The correlation between two matrices
is the correlation between the respective indexed columns. Therefore XA and
YB must have the same number of variables. A and B are nx×min (nx, ny) and
ny ×min (nx, ny) matrices. Let h be one arbitrary variable index in XA (as in
YB), equation (1) can be written as finding ah and bh, ∀h = 1...min (nx, ny),
that maximize:

corr (Xah,Ybh) (2)

We remind the reader that the correlation coefficient between two random
variables is computed as the quotient between the covariance of these two ran-
dom variables and the square root of the product of their variance. Let denote
C(X,Y) the covariance matrix. It is a positive semi-definite matrix and can be
written as

C(X,Y) = Ê

[(
X
Y

)T (X
Y

)]
=
[
Cxx Cxy

Cyx Cyy

]
Thus we can formulate the problem from equation (2) using the previous

notations: find A,B such that the following quotient is maximized

corr (Xah,Ybh) =
cov (Xah,Ybh)√

var (Xah) var (Ybh)
=

aT
h Cxybh√

aT
h CxxahbT

h Cyybh

(3)

One can show that equation (3) leads to a generalized eigenproblem of the
form (see [8]):

M1v = λM2v

Efficient methods can be implemented to find interesting projection matrices.
The key terms for an understanding of CCA are: canonical weights (coefficients
in A and B); canonical variates (projected variables, XA and YB); canonical
function (relationship between two canonical variates whose strength is given by
the canonical correlation).

Interpreting canonical correlation analysis involves examining the canonical
functions to determine the relative importance of each of the original variables
in the canonical relationships. Precise statistics have not yet been developed to
interpret canonical analysis, but several methods exist and we have to rely on
these measures. The widely used interpretation methods are: canonical weights,
canonical loadings and canonical cross-loadings. In this paper we use the sec-
ond one because of its efficiency and simplicity. Canonical Loadings measure the
simple correlation between variables in each set and its corresponding canoni-
cal variates, i.e. the variance that variables share with their canonical variates.
Canonical Loadings are computed as:

Gesture loadings : LG = corr (X,U)

Sound loadings : LS = corr (Y,V)



4 Cross-Modal Analysis

We applied the method based on CCA to some examples of data collected in
an experiment with subjects performing free body movements while listening to
sound recordings imagining themselves producing the sound. Given the setup of
the experiment, gesture and sound can be assumed as highly correlated without
knowing their exact relationship that may be related to the subjects’ sound
perception, their intention of musical control, and their musical and motor skills.
In this sense, the collected data sets have been a perfect context to explore the
developed method and its capability to support reasoning about the relationship
between gesture and sound.

4.1 Collected Data

The data has been collected in May 2008 in the University of Music in Graz. For
the experiment 20 subjects were invited to perform gestures while listening to a
sequence of 18 different recorded sound extracts of a duration between 2.05 and
37.53 seconds with a mean of 9.45 seconds. Most of the sound extracts were of
short duration. Since the experience was explorative, the sound corpus included
a wide variety of sounds: environmental and musical of different styles (classical,
rock, contemporary).

For each sound, a subject had to imagine a gesture that he or she performed
three times after an arbitrary number of rehearsals. The gestures were performed
with a small hand-held device that included markers for a camera-based motion
capture system recording its position in Cartesian coordinates. A foot-pedal
allowed to synchronise the beginning of the movement with the beginning of the
playback of the sound extract in the rehearsal as well as for the recording of the
final three performances.

4.2 Gesture Data

As input of the analysis method, a gesture is a multi-dimensional signal stream
corresponding to a set of observations. The most basic kinematic features are
the position coordinates x, y, z, velocity coordinates vx, vy, vz and acceleration
coordinates ax, ay, az derived from the motion capture data. These features give
a basic and efficient representation of postures and body movements describ-
ing their geometry and dynamics. For instance, Rasamimanana in [21] shows
that three types of bow strokes considered in the paper are efficiently charac-
terized by the features (amin, amax). In order to abstract from absolute position
and movement direction, we calculate vector norms for position, velocity, and
acceleration. To also consider movement trajectories, we additionally represent
the gestures in an adapted basis using Frenet-Serret formulas giving curvature
and torsion in the coordinate system (t,n,b). In the same coordinate system,
we add normal and tangential accelerations denoted by accN and accT (that
replace previous acceleration).



Finally, at the input of the method a gesture is represented by a finite se-
quence of observations of the following variables:

{position, velocity, accN , accT , curvature, radius, torsion}

The CCA here permits to select the most pertinent features used in further
calculations eliminating non-significant parameters.

4.3 Sound Features

The perception of sound has been studied intensively since one century and it is
now largely accepted that sounds can be described in terms of their pitch, loud-
ness, subjective duration and “timbre”. For our exploration, we extract a set
of audio descriptors from the audio files used in the experiment that have been
shown to be perceptively relevant (see [20]). While we easily can rely on loud-
ness and pitch the perceptual relevance of audio descriptors for timbre and its
temporal evolution is less assured. Nevertheless, we have chosen to use sharpness
corresponding to the perceptual equivalent to the spectral centröıd. Pitch has
been discarded since in musical performance it generally requires high precision
control associated to expert instrumental gestures (defined as selection gestures
in [3]).

At the input of the method a sound is represented by a finite sequence of
observations of the following variables:

{loudness, sharpness}

Their perceptual characteristic allows the easy interpretation of gesture-sound
relationship analysis.

4.4 Results

For free body movements performed while listening to recorded sound extracts,
we are interested in investigating how gesture can explain sound through sound
features and how sound can highlight important gesture characteristics. Among
the whole set of sounds we chose two: the sound of an ocean wave and a solo flute
playing a single note with strong timbre modulation (extract from Sequenza I
for flute (1958), by Luciano Berio). These two sounds appeared to be the most
pertinent extracts given the selection of audio descriptors discussed in 4.3. The
set of two perceptual audio descriptors computed on each sound can be seen in
figure 1.

The wave sound is characterized by a spectral distribution similar to a white
noise passing through a specific filter. It leads to a sharpness feature highly corre-
lated with the loudness (correlation coefficient of 0.814). Since the flute example
characteristic resides in a continuous transformation of its spectrum without
significatively changing the fundamental frequency, its computed loudness and
sharpness are less correlated (its correlation coefficient is -0.61).
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Fig. 1. Loudness and Sharpness. On the left, feature values are plotted for the wave
sound. The line corresponds to loudness, and the gray line sharpness. The same features
for the flute timbre example are plotted on the right.
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Fig. 2. Relevant gesture parameters. Each parameter is analysed together with the
audio descriptors using CCA for 42 gestures. Results for the wave sound are plotted
on the left side while flute results can be seen on the right.

First, gesture parameters considered as pertinent in the context cannot be
chosen arbitrarily. Our analysis method can be applied to select a subset of per-
tinent gesture parameters using one gesture and many audio descriptors. In this
way, the method operates as a multiple regression: the gesture parameter is pre-
dicted from audio descriptors. Each analysis returns one correlation coefficient
corresponding to the canonical function strength between the current gesture pa-
rameter and the audio canonical component. 42 gestures are considered landing
42 canonical analysis iterations for each gesture parameter and each sound. Fig-
ure 2 shows two box plots corresponding to this process as applied to the wave
and flute sounds. Three principal features are emphasized: position (index 1),



velocity (index 2), and normal acceleration (index 3). Since these features have
the highest correlation means among those in the set of gesture parameters, they
constitute a set of pertinent parameters related to the wave and flute sounds.
Nevertheless, selection based on correlation means returns more significant re-
sults for the wave sound. For both cases, torsion has been discarded because the
data derived from the motion capture recordings were very noisy.

Therefore, the selected subset of gesture parameters is {position, velocity, accN}.
Canonical correlation analysis has been used as a selection tool; now we apply
this method in our search for the intrinsic relationships between the two sets
of data. In the first step, we discard outliers related to the first and the second
canonical component. This leads to two subsets: 14 gestures among 42 for the
wave example and 10 gestures for the flute example. Following the previous no-
tations, CCA returns two projection matrices A,B whose dimensions are 3× 2
and 2 × 2 for each gesture, respectively. Loadings are computed at each step;
figure 3 and 4 illustrate their statistics. The figures show the variance shared by
each original variable with its canonical component for all gestures. Canonical
gesture loadings are on the left side of the figures while audio descriptors respec-
tive canonical loadings are on the right. The first component is placed above the
second one.

The wave case is illustrated by figure 3 and can be interpreted as follows.
Gesture parameter velocity and normal acceleration are the most represented
in the first canonical component: around 90% of their variance is explained.
In the audio space, one original variable is clearly highlighted: the loudness
(at the top of figure 3). In other words, the first canonical function correlates
{velocity, accN} to {loudness}.

Position contributes the most to the second canonical component in the ges-
ture space while the sharpness descriptor is predominant in this case. So second
canonical function correlates {position} to {sharpness} (at the bottom of figure
3).

One can remark that analysis reveals that loudness and sharpness descriptors
can be separated when considering sound with gesture while they were highly
correlated (figure 1).

A similar interpretation can be given for the flute timbre sound showed in
figure 4. In this case, we have:

first function : {position} → {loudness}
second function : {velocity, accN} → {sharpness}

5 Discussion

To analyse the cross-modal relationship between gesture and sound, a multi-
variate analysis method is used in two ways: first for the selection of pertinent
gesture features, then for the analysis of the correlation between the selected
features with the audio descriptors. In the first step, the selection yields a subset
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Fig. 3. Canonical loadings for the wave sound. Each row is a canonical component.
Gesture parameter loadings are plotted on the left while audio descriptors can be seen
on the right. Top: velocity and accN are correlated to loudness. Bottom: position is
correlated to sharpness.

of movement features that best correlate with the audio descriptors. The low
correlations obtained for some of the features have been discarded for further
exploration. This seems to be coherent with kinematic studies of human gestures:

– Tangential acceleration is the acceleration component which is collinear to
the velocity vector. If we consider the two-thirds power law by Viviani and
Flash (A = K.C2/3 where A is the angular velocity, C the curvature and K
a constant), normal acceleration is related to curvature by accN = K ′.C1/3,
where K ′ is a constant. In this case, tangential acceleration does not convey
relevant information.

– The fact that curvature is no longer pertinent means there is no linear re-
lation either between curvature and the audio descriptors or between the
curvature and other gesture parameters. This result is in agreement with
the previous kinematic law and can be also applied to the radius of curva-
ture.
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Fig. 4. Canonical loadings for the flute sound. Each row is a canonical component.
Gesture parameter loadings are plotted on the left while audio descriptors can be seen
on the right. Top: position is correlated to loudness. Bottom: velocity and accN are
correlated to sharpness.

The next step of the analysis explores the correlation of selected movement
features with the audio descriptors. The results of this analysis are correlations
highlighting pertinent aspects of the gesture-sound relationship. Without sur-
prise the subjects seem to favour gestures correlating with perceptual audio
energy (loudness).

In the case of the wave sound, velocity or normal acceleration are highly
correlated to loudness. Confronting this result with performance videos, one
can see that the subjects are concerned about sonic dynamics and continuity.
Increasing audio energy implies increasing velocity, i.e. increasing kinetic energy.
Here the analysis reveals that the subjects tend to embody sound energy through
the energy of their movement.

On the other hand, for the gestures performed on the flute sound we observe
a high correlation between the norm of the position and the loudness. Instead of
embodying the sound dynamic the subjects rather tend to transcribe its temporal
evolution tracing the modulation of the sound feature over time. As the variation



of audio energy in the flute example is rather subtle compared to the wave sound,
the subjects seem to adapt their strategy for the imagined sound control.

At last, we have started to inspect data of particular subjects that may reveal
individual strategies and skills. For instance, considering the velocity feature,
defined as velocity2 = v2

x + v2
y + v2

z , one can bring directional information to
the analysis splitting velocity2 into three specific variables: v2

x, v
2
y, v

2
z . Canonical

correlation analysis is no longer constrained to a uniform weight equal to 1 in
the resulting linear combination but finds an optimal set of weights favouring
directions. In other words, the analysis method takes into account the movement
asymmetries. For the selection of movement parameters among a redundant set
of extracted features, a trade-off has to be found between achieving a complete
description of the movement and avoiding redundancies.

6 Conclusion and Future Works

Our goal was to study the relationship between gesture and sound. Gesture
was considered as a set of kinematic parameters representing a free movement
performed on a recorded sound. The sound was considered as a signal of feature
observations. The method used in the paper arises from multivariate analysis
research and offers a powerful tool to investigate the mutual shared variance
between two sets of features. Objective results inferred from the application of
CCA as a selection tool was presented. In addition, more subjective conclusions
concerning mapping from the gesture parameter space to the audio descriptor
space was highlighted. Thereby, we saw in this paper that gestural expression
when relating to sounds can be retrieved considering gesture-sound as a pair
instead of as individual entities.

However, the method suffers from some restrictive limitations. First of all,
canonical functions correspond to linear relations so CCA cannot exhibit non-
linear relations between variables. Besides, since we must restrict the variable
sets to finite sets that encode only a part of the information contained in both
gestures and sounds, the correlation (i.e. variance) as an objective function is not
always relevant when real signals are analysed. The correlation involved in CCA
could be replaced by the mutual information. By arising the statistical order
of the multivariate relation, the main idea is to find canonical variates that are
maximally dependent. It should lead to a more complete semantic interpretation
of gesture-sound relationships in a musical context. To summarize, the method
presented in this paper has given promising results and further works will consist
in refining the method using information theory.
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