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Abstract— This article investigates into the estimation of time
varying amplitude and phase trajectories of sinusoidal signal
components. The new algorithm adaptively optimizes the param-
eters of a smoothly connected piecewise polynomial trajectory
model. A mathematical analysis is presented that relates the user
selected meta parameters of the trajectory model (polynomial
order, segment size, and smoothness at the junctions) to the
analysis properties of the adaptive algorithm. It reveals new
insights into the relationships between the meta parameters
and the resulting time/frequency resolution of the estimate.
Moreover, it is shown that for efficient optimization the phase
trajectory needs to be represented in a specific form. A new
approach to address the bias/variance tradeoff of the polynomial
phase trajectory model by means of regularization is presented
and a complete adaptive analysis/synthesis system for sinusoidal
sound components is proposed. The adaptive analysis system
is investigated by means of simple tracking experiments to
demonstrate the effect of the smoothness constraints and compare
the results with a standard STFT base frequency estimation
technique and known Cramer Rao bounds. The potential of the
adaptive strategy for the modeling of sinusoidal transients is
discussed and it is shown that it achieves similar transient quality
as a previously proposed method, however, with considerably
lower model error. Two examples for modeling real world signals
are discussed.

I. I NTRODUCTION

The estimation of the parameters of sinusoidal components
from an observed signal is a major step for many signal
processing applications. One of the main applications in au-
dio signal processing are additive analysis/synthesis systems.
These are trying to represent a given sound signal, or at least
part of it, by means of the superposition of time-varying
sinusoids. Additive analysis/synthesis has been successfully
applied to speech [1], [2], [3], [4] and music [5], [6], [7],
[8]. The analysis of a sound signal in terms of a sinusoidal
model brings up a number of issues related but not confined
to these questions: what is a sinusoidal component, what part
of the signal should be represented by sinusoids, what other
signal models (for example noise) can be combined with the
sinusoids to achieve an efficient representation with mean-
ingful parameters, how are the parameters of the sinusoids
represented and estimated, and how are the meta parameters of
the analysis/synthesis system selected. The present article will
be concerned mainly with the problem of representation and

estimation of the sinusoidal parameters and with the selection
of the meta parameters of the analysis/synthesis system.

Before the investigation is started it is necessary to define
the notion of a sinusoidal component. In the following we
consider a sinusoidal component as a nonstationary sinusoid
of the form

Pk(n) = Ak(n) cos(Φk(n)), (1)

where k is the identifying index of the sinusoid in the
model,n is the discrete time andAk(n) andΦk(n) are the
amplitude and phase trajectory of the sinusoid. The amplitude
trajectory is constrained to be bandlimited. Even with this
constraint the definition of a sinusoidal component is not
sufficiently restrictive, because a simple Fourier transform of
a time limited signal could be interpreted as a collection
of constant frequency sinusoidal components. Likewise a
wideband frequency modulation (FM) [9] of a single sinusoid
using modulation frequency in the audible frequency range
would perfectly match this definition of a single sinusoidal
component. In both cases, however, the parameters of the
sinusoids obtained are not related to the perceived sound
characteristics, such that an intuitively meaningful control of
the signal parameters is difficult. Therefore, the parameters of
a sinusoidal component should obey a simple relation to the
perceived sound characteristics.

The detection of sinusoidal components and the estimation
of their parameters is usually based on the analysis of spectral
peaks in the short time Fourier transformation (STFT) of
the signal. As a result the values of amplitude, phase and
frequency are available only at the frame centers of the STFT
and the problem to connect and interpolate the parameter
trajectories arises [5], [10], [1]. While the use of the STFT
for parameter estimation is computationally effective theneed
to heuristically connect and interpolate the parameters isa
significant drawback.

It has been stated very early [3] that estimation of the
parameters of an additive model by means of minimizing a
meaningful cost function would be a very promising approach.
A first step towards an adaptive algorithm was the QUASAR
signal model [8]. Similar to the model proposed in the fol-
lowing the QUASAR model starts with the specification of
a trajectory model, which is a smoothly connected piecewise
polynomial function. The optimization procedure, however, is
based on an intermediate representation of phase and ampli-
tude trajectories obtained by means of heterodyne filtering, and
requires the sinusoids to stay close in frequency to an initially
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selected nominal (or center) frequency. Because the nominal
frequency of a sinusoidal component can never change this
requirement is quite restrictive and the major benefit of the
continuous phase trajectory model, which is the improved
representation of nonstationary sinusoids, is not exploited.
Because the analysis properties of the adaptive model and their
relation to the polynomial order have been unknown, the size
of the polynomial segments and the polynomial order of the
QUASAR model had to be selected without taking the analysis
properties into account.

A further adaptive approach that has been formulated in
a Bayesian framework has been presented recently in [11].
In this case the model components are quasi-harmonic sets
of sinusoids that are adapted to represent quasi-harmonic
sound sources. The approach appears to be promising to
solve the difficult problem of source separation. However, the
parameter trajectory model that has been used is very limited
and supports sinusoids with fixed frequency, only.

In the following article we will derive a clear understanding
of the analysis properties of analysis/synthesis systems that
are based on the minimization of the mean squared error
(MSE) of sinusoidal functions with piecewise polynomial
parameter trajectories. A detailed mathematical analysisof the
global minimum is presented which proves the need for a
specific representation of the phase trajectory of the model.
Furthermore, the relations between the meta parameters of
the trajectory model (the polynomial order and the segment
size), and the resulting frequency and time resolution are
established. Based on the new theoretical insights an iterative
adaptive estimation procedure is proposed. The goal of this
algorithm is the extraction of the parameter trajectories of the
sinusoidal components of the signal such that it may be used
as an replacement of the sinusoidal module of existing additive
synthesis environments. Because the proposed method will
represent only the sinusoidal components further modeling
of the residual is required [7], [8]. The adaptive analysis
significantly reduces the part of the sinusoidal energy that
leaks into the residual such that the noise model may better
match the residual.

Note, however, that due to the nonlinear adaptation in-
volved the proposed algorithm is computationally much more
demanding than the STFT based parameter estimation pro-
cedures. With the current implementation in MATLAB the
computation required is in the order of 2000 times real-time
such that an application is proposed only if minimization of
the parameter estimation error is crucial

A new means to handle the bias/variance tradeoff for
polynomial trajectory models [12] is proposed. It consistsof
extending the objective function by means of regularization
terms that control the smoothness of the phase parameter
trajectory. By means of simple tracking experiments we will
compare the results obtained by means of adaptive parameter
estimation with a traditional STFT based estimator and will
discuss the relation to the known Cramer Rao bounds of the
frequency estimation error.

The article is organized as follows. In section II we present
the parameter trajectory model that is used and give a short
introduction into the theory of B-splines. In section III wewill
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Fig. 1. A complete set of B-splines and their discrete Fourierspectra for
a trajectory of length 400 samples. The B-splines shown have spline order
o = 4 and segment lengthM = 100. At each side of the trajectory 3 zero
size segments have been inserted to remove any smoothness constraints at
the endpoints of the trajectory. Note that, while the B-splines cover always 4
segments some of the segments may have length0 such that the related B-
spline will be shorter. The smoothness of the B-splines is increasing with the
numberl of nonzero length segments that are covered. For longer trajectories
only the number of maximally smooth B-splines (l = 4) would be increased.

explain, how the meta parameters of the piecewise polynomial
trajectory model affect the time and frequency resolution of
the estimation and in section IV we present a description of
the optimization algorithm that is used and investigate into the
amplitude scale dependency of the adaptive optimization. A
complete algorithm for detection and adaptive optimization of
sinusoidal components is presented in section V. In sectionVI
an experimental investigation into the tracking performance of
the adaptive algorithm is presented and the relation to the
Cramer Rao bounds for frequency estimation is discussed.
In section VII the problem of modeling attack transients is
addressed and a simple yet effective strategy to reduce the pre-
echo of the model is presented. Experimental results obtained
with real world sounds are described in section VIII and
an outlook on future developments concludes the article in
section IX.
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II. T HE PARAMETER TRAJECTORY MODEL

In the following section we present the piecewise polyno-
mial trajectory model that will be used for the amplitude and
phase trajectoriesAk(n) andφk(n) in eq. (1).

Piecewise polynomial trajectories are commonly used in
additive models to interpolate the trajectory parameters that
have been estimated at the center positions of the STFT anal-
ysis frames. In that case, the polynomial order is determined
by the available information and the size of the polynomial
pieces, the segment size, has to be equal to the hop size of
the analysis such that the polynomial pieces start and end at
a frame center of the STFT [1]. For the adaptive model the
parameter trajectory also consists of segments, the piecesof
the piecewise polynomial function. In this case, the segments
are fundamental and can be selected without referring to other
parts of the model. The analysis frames of the STFT obtain
their counterpart in the adaptive model in form of the basic
splines (B-splines) that, as shown below, are implicitly defined
by the user defined segments.

The representation of the piecewise polynomial trajectories
by means of B-splines renders the mathematical treatment sim-
ple and straightforward [13]. A piecewise polynomial function
x(n) of order(o−1) can be expressed by linear superposition
of basic functions, the B-splines of ordero, following

x(n) =
∑

i

Bibi(n). (2)

Here Bi is the weighting parameter of thei-th B-spline of
order o, bi(n). The B-splinesbi(n) are completely defined
by their ordero and the sizes of their segments. Due to the
linear superposition it is obvious that the B-splines have to be
piecewise polynomial of polynomial ordero − 1, too. Every
B-spline coverso segments of the trajectory, some of which
may have size zero. The B-splines are maximally smooth
everywhere, besides at the locations where segments of size
zero are covered. Each zero size segment inserted at a node
position reduces the degree of smoothness at that position
by one. To select a proper trajectory model we note that
the order of smoothness of the parameter trajectories of a
sound signal is generally unknown. There exist sound sources,
e.g. vibrating bars and strings, flutes and pipes, that, besides
during the attack, can be considered to have maximally smooth
parameter trajectories. For others there may exist isolated
points with reduced smoothness. As will become clear later,
the reduction of the smoothness entails a reduction of the
frequency resolution, and renders it time dependent. As a
result, the parameter trajectories may become systematically
modulated which makes parameter interpretation difficult.To
circumvent these problems we will enforce the parameter
trajectories to be everywhere maximally smooth, besides at
the start and the end position. Consequently, the zero size
segments will be present only at the start and the end of a
trajectory.

An example for a complete set of B-splines that is necessary
to represent a piecewise polynomial function with a possible
step at the start and the end and smooth segment junctions for
spline ordero = 4 and segment sizeM = 100 is shown in
fig. 1. The maximally smooth B-spline, coveringo segments

of size M will be used frequently and will be denoted as
BSo(n). According to eq. (2) a single sinusoid with amplitude
and phase trajectory represented by means of B-splines has the
following form

Pk(n) = (
∑

l

(Aklbl(n))) cos(
∑

i

Φkibi(n)). (3)

The free model parameters are the B-spline coefficientsAkl

andΦki. Note that in contrast to most of the known additive
models the trajectory model used here does not restrict the
amplitude to be nonnegative. This is suitable for the case when
the amplitude trajectory to be modeled changes its sign. As
an example one can imagine the case where two unresolved
sinusoids have similar amplitude and need to be represented
by means of a single amplitude modulated model sinusoid.
The representation of the amplitude trajectory can be achieved
either by means of a strictly positive amplitude and a phase
step of sizeπ or by a smooth phase and a smooth amplitude
sign change. While smooth sign changes of the amplitude
trajectory can be naturally expressed in eq. (3) by means
of coefficients with varying sign, the representation of phase
jumps or the restriction of the amplitude to be nonnegative
would require complicated nonlinear extensions of the spline
model and would significantly complicate the mathematical
analysis and the adaptive optimization.

The additive model that is used to represent the sinusoidal
components of a sound signalS(n) is simply a sum of all
sinusoidal componentsPk and in a straightforward approach
the model parameters could be adapted by minimizing the
squared model error

E0 =
∑

n

E(n)2 =
∑

n

(S(n)−
∑

k

Pk(n))
2. (4)

III. M ODEL PARAMETER SELECTION

For existing analysis/synthesis algorithms the properties of
the analysis procedure are characterized by means of the time/
frequency resolution that can be obtained. The time resolution
is determined by the size and shape of the analysis window, the
frequency resolution by its spectral mainlobe width and side-
lobe height. In this section the corresponding characterization
of the properties of the minimum mean squared error solution
of eq. (4) will be established. It will be explained how the
time/frequency resolution of the representation of sinusoidal
components using the piecewise polynomial trajectory model
is determined by the B-splines.

Due to the time varying frequency of the sinusoids the
mathematical analysis is involved. In the appendix we study
the frequency resolution by means of deriving the impact of a
perturbing signal on the minimum error parameters obtained
for the representation of a single target sinusoid. It reveals,
that the impact of the perturbing signal depends on the cor-
relation between different parts of the target sinusoid andthe
perturbing signal. Because the parts of the target sinusoidto be
correlated are determined by means of windowing it with the
different model B-splines it can be deduced that the frequency
resolution that is obtained for the minimum error solution of
eq. (4) is determined by the Fourier transformation of the B-
splines in quite the same manner as it is determined in the
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standard analysis by the Fourier transform of the analysis win-
dow. It is well known that the time resolution of an algorithm
is inversely related to its frequency resolution. Because the
B-splines are the independent objects that are superposed to
construct a trajectory, the size of the B-splines can be usedas
rough indication for the time resolution. This is confirmed by
the results obtained in the appendix concerning the behavior of
the model with respect to model errors. It is shown that these
errors will be distributed over neighboring parameters with
oscillating sign and decreasing amplitude. The trajectoryerror
decreases to less than 10% within±o neighboring segments.
Note that for the modeling of sinusoidal transients a special
post processing will be proposed to significantly reduce the
pre-echo that is due to this distribution of the model errors.
The results discussed so far allow us to draw some important
conclusions for the use of the adaptive algorithm:

1) To derive a fundamental understanding of the spectrum
of the B-splines we consider the maximally smooth B-
splineBSo(n) for a constant segment lengthM . Using
the recurrence relation [13]

BS1(n) =

{

1 for n ∈ [0,M [
0 else

BSo(n) = BS1(n) ∗BSo−1(n)/M,

we find that BSo(n) can be constructed by means
of (o − 1)-times convolving a rectangular window of
width M with itself. Therefore, the Fourier spectrum of
BSo(n) will be the power of ordero of the spectrum
of a rectangular window having mainlobe width of
size 2πrad/(2M) and sidelobe attenuationo · 13dB.
Due to increasing sidelobe attenuation the impact of
distant signal components on the parameters of a model
sinusoid will be lowered with increasing spline ordero.
The price to pay is a decrease in time resolution due
to the extended lengthBSo(n). To achieve sufficient
sidelobe attenuation we generally selecto = 4.

2) The B-splines that affect the frequency resolution during
optimization are defined by their active part, which
is the part that is used to calculate the model error.
Consequently, parameters related to B-splines that are
not fully covered by the analyzed signal segment should
not be adapted because the effective B-spline is cut
which significantly reduces the sidelobe attenuation.

3) It is well known that modeling phase trajectories with
polynomial functions requires a bias/variance tradeoff.
Increasing the polynomial order reduces bias because the
model is less constrained but increases variance because
the model may start to represent noise energy from
the neighborhood of the sinusoid. The investigation in
[12] reveals that phase and frequency estimation with
completely unconstrained polynomial segments results
in position dependent Cramer Rao bounds (CRB). For
polynomials of order 4 the CRB varies by more than
12dB. This result is related to the fact that the B-
splines that have to be used to create an unconstrained
polynomial segment have significantly different fre-
quency resolution. Due to the superposition of the B-
splines, the frequency resolution will vary along the

trajectory. As a result the estimated parameter trajectory
becomes modulated due to the time varying impact of
distant signal components. For the maximally smooth
trajectory model that has been proposed here the B-
splineBSo(n) can be used everywhere, besides at the
start and end of the trajectory (see below). Therefore,
the frequency resolution will be nearly constant and
the systematic parameter variations are significantly
reduced. The experimental investigation showed that
the smoothness constraint reduces the impact of the
polynomial order on the variance because the increased
flexibility is accompanied by increased constraints. By
means of adding regularization terms to the objective
function eq. (4) further smoothness constraints can be
created, that give rise to a continuous control over the
variance of the phase estimation. For a spline order
o = 4 possible constraints affect the second and third
derivative of the phase trajectory1. Constraints of the
first derivative of the phase trajectory are impractical
because they restrict the range of possible frequencies
of the sinusoidal components. For the second derivative,
the frequency slope, we use a regularization term of the
form

R2,k(n) = (
∂2Φk(n)

∂n2

1

F2
)2 with F2 =

2π

M2
. (5)

The regularization of the third derivative of the phase
trajectory, the frequency curvature, is obtained by means
of

R3,k(n) = (
∂3Φk(n)

∂n3

1

F3
)2 with F3 =

2π

M3
. (6)

The slope and curvature limits,F2 andF3, are related
to the segment sizeM to ensure that the effect of the
regularization term does not change with the size of
the polynomial segments. The regularization factors are
added to the objective function to be minimized which
then becomes

ER = E0 +
∑

k

∑

n

(λ2R2,k(n) + λ3R3,k(n)). (7)

4) A problem of the initial version of the adaptive al-
gorithm [14] were the physically unmotivated modu-
lations within the border segments of the trajectories.
As mentioned above these modulations are due to the
fact that an inhomogeneous set of B-splines has to be
used to represent trajectory borders. Some of these B-
splines have significantly reduced frequency resolution
and reduced sidelobe attenuation such that the parameter
trajectories will be heavily affected by distant sinusoidal
components. Remedy is simple for the amplitude trajec-
tories because due to physical constraints the two least
smooth B-splines are not needed to achieve high model
quality. The phase trajectory, however, will generally be
different from zero for both ends of a sinusoid such that
all the B-splines displayed in fig. 1 are required.

1Throughout the article derivative with respect ton is understood to
represent the derivative of the underlying time continuous function with
respect to time at the position of samplen.
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The oscillation of the phase trajectory at the trajectory
borders is a serious problem. In order to track a sinusoid
into a subsequent segment an initialization of the phase
trajectory of the new segment is required that has to
be derived from the phase trajectory of the previous
frames. To improve the reliability of the initialization of
the extension we rely on our analysis of the frequency
resolution of the different B-splines. From fig. 1 we con-
clude that the results for the values at the first inner node
of the trajectory, are only weakly influenced by the two
border B-splines and provide a better basis to initialize
the extended trajectory. Therefore, the extension of the
phase trajectory is obtained by means of extending the
trajectory with constant frequency slope starting from
the last inner node position of the trajectory. While this
procedure ensures reliable extension of sinusoidal pa-
rameter trajectories it cannot avoid the modulations that
remain after adapting the initialized trajectory. To reduce
those modulations the regularization terms mentioned
above may be locally increased for the first and last
polynomial segment.

IV. PARAMETER OPTIMIZATION

To efficiently adapt the model parameters any second order
optimization algorithm may be used. In this section we will
briefly present the optimization algorithm that has been chosen
and discuss a general problem of the optimization process that
is related to amplitude scaling of the sinusoids.

The adaptive algorithm used for the following investigation
is the second order scaled conjugate gradient algorithm pro-
posed in [15]. It is a conjugate gradient algorithm [16] that
has been modified to efficiently adapt nonlinear functions with
many parameters. The basic idea is to avoid the line search
in the conjugate gradient algorithm by means of estimating a
local quadratic approximation of the objective function.

An important requirement for the successful application of
an adaptive algorithm to optimize sinusoidal parameters isthat
the convergence properties do not change when the target sig-
nal is rescaled by means of a constant amplitude factor. Within
audio signals there generally exist sinusoids with amplitudes
covering three orders of magnitude or more and the behavior
of the adaptive estimation should be similar for all of them.
To highlight the problem we study a quadratic approximation
of the global minimum of the objective function eq. (7) for the
case that the target signal is a single sinusoid with parameter
trajectories that can be modeled without error. Accordingly,
the model contains only a single sinusoid(k = 1). The
quadratic approximation of the objective function at the global
optimum is completely described by its Hessian matrixH.
For simplicity and without restriction of the generality ofthe
results we are going to study a subset of two parametersA1i

andΦ1i, only. We obtain

H =

(

H11 H12

H21 H22

)

=

(

∂Eerr

∂A2

1i

∂Eerr

∂A1i∂Φ1i

∂Eerr

∂A1i∂Φ1i

∂Eerr

∂P 2

1i

)

(8)

with

H11 = 2
∑

n

bi(n)
2 cos(Φ(n))2 ≈

∑

n

bi(n)
2 (9)

H12 = H21 ≈ 0 (10)

H22 ≈ 2(
∑

n

(A(n)2bi(n)
2 cos(Φ(n))2

+
∑

I={2,3}

λI(
∂Ibi(n)

FI∂nI
)2) (11)

≈
∑

n

A(n)2bi(n)
2 + 2(

∑

I={2,3}

λI(
∂Ibi(n)

FI∂nI
)2) (12)

The approximations above are related to the fact that we have
used the relations

∑

n

A(n) cos(Φ(n)) ≈ 0

∑

n

A(n) cos(Φ(n)) sin(Φ(n)) ≈ 0,
(13)

that are due to the fact that the amplitude trajectories of the
sinusoids are required to have limited bandwidth which is
always smaller than the frequency of the sinusoid. Inspection
of the equationsH11 and H22 that determine the lengths
of the two principal axis of the contour ellipsoid of the
objective function reveals two problems. The first one is due
to the fact that the relation between the regularization term
and the error term of the phase derivative depends on the
amplitude of the sinusoid. This is disadvantageous because
the impact of the regularization would change after a simple
amplitude scaling of the signal. The second one is due to
the fact that the ratio of the principal axis is affected by
the amplitude of the sinusoid. Note that multidimensional
optimization of a (locally) quadratic objective function is per-
formed most efficiently if all diagonal elements of the Hessian
have similar magnitude. In this case the correct solution can
be obtained in a single step. In the present case, however,
the ratio of the magnitude of the diagonal elements of the
Hessian matrix changes systematically with the amplitude of
the target sinusoid. For large amplitude the gradient descend
will consider adapting the phase parameters more important
while for small amplitude adapting the amplitude parameters
will be favored. To avoid these inconsistencies we modify the
regularization terms by means of multiplying with the squared
model amplitude trajectory

R′
I,k(n) = RI,k(n)Ak(n)

2, (14)

such that the impact of regularization will be independent of
the amplitude of the sinusoid. Moreover, we use scaled B-
splinesb′i(n) given by

b′i(n) = bi(n)

∑

n bi(n)
√

A(n)2(bi(n)2 + 2(
∑

I={2,3} λI(
∂Ibi(n)
FI∂nI )2))

.

(15)
for constructing the phase trajectory in eq. (3). Scaling the
phase B-splines ensures that the contour lines of the error
function are independent of the target amplitude and always
nearly circles. Because the scaling factors are not carrying any
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meaningful information they should be considered fixed during
adaptation. However, they are monitored, and whenever the
optimal scaling factor differs from the current scaling factor
by more than a factor two the scaling is changed and the
conjugate gradient algorithm is restarted. The scaling of the
phase B-splines is important to achieve good convergence for
all sinusoids of the model, however, it does not affect the
theoretical investigation, and therefore, we will ignore the
scaling of the phase B-splines for the ongoing discussion.

V. THE ADAPTIVE ALGORITHM

The theoretic results presented so far have led us to consid-
erably revise our first iterative adaptive additive model [14].
In this section we give an outline of the implementation of the
algorithm that will then be studied with respect to its properties
when estimating the model parameters.

The algorithm is iterative which means it adapts only a
single sinusoid at a time. The reasons for this decision are:

• the difficulty to correctly handle the multiple solutions
that exist when sinusoids close to each other are adapted
together,

• the difficulty to correctly initialize the weak sinusoids
from the signal spectrum without first removing the
strong ones,

The phase trajectories use a full set of B-splines such that
the sinusoidal phase function can start and end with arbitrary
values. The amplitude trajectory is constrained to have 1st
order smooth boundaries such that the two least smooth B-
splines are not used. As objective function we minimize eq.
(7) with the modified regularization terms given in eq. (14)
and using scaled phase trajectory B-splines according to eq.
(15). The signal segment that is used for training is a sliding
window covering a maximum ofK polynomial segments,
where K > o is a user selected parameter. For largerK
the estimation results will be closer to the global optimum,
however, at the expense of increased computational costs. As
a reasonable compromise one may considerK = 2o. This will
allow any parameter oscillations due to model insufficiencies
to decay sufficiently before the parameters will be fixed. As
discussed in section III only parameters related to B-splines
that are fully covered by the current segment are adapted.

An overview over the basic steps of the algorithm is pro-
vided in the flowchart in fig. 2. The algorithm is implemented
in a pseudo code listing in listing (I). As shown there the
algorithm starts considering a signal segment of the size of
BSo(n). This segment coverso polynomial segments. The
main loop of the algorithm makes use of a STFT peak picking
technique to detect and initialize new sinusoids using the stan-
dard analysis method described for example in [7]. To obtain
consistently initialized sinusoids we useBSo(n) as analysis
window. Because the adaptive algorithm will only produce
reasonable results if the sinusoid is sufficiently covered we
start by classifying the spectral peaks into transient and non-
transient ones. As described in [17] this can be achieved by
means of calculating the mean time [18] for each spectral peak.
If the mean time of a single peak is above a threshold it is
marked as transient. Because peak based processing is used
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Fig. 2. Flowchart overview of adaptive algorithm.

only for partial initialization the transient detector considers
only onset transients. The possible abrupt ending of sinusoids
will be properly handled by the sinusoidal validation module
(section V-A).

Using the maximum peak of the spectrum we initialize a
new sinusoid with fixed frequency and all amplitude coeffi-
cients besides the one related to the center B-spline to zero.
The center amplitude coefficient is initialized according to
the standard additive analysis procedure. The new sinusoidis
adapted and after convergence is subtracted from the signal.
It is checked for its validity as described in section V-A
and marked according to the decision. Sinusoids that have
been initialized from transient peaks are a priori invalid
and are adapted with respect to amplitude coefficients only.
Invalid sinusoids are subtracted from the signal to preventan
infinite loop when selecting the next sinusoid. These temporary
components, however, will not become part of the model and
are deleted after the adaptation of the current segment has
been finished.

After subtraction the current error signal is calculated and
used to select and initialize the next sinusoid. To ensure that
the iterative algorithm will not use more than a single sinusoid
for each spectral peak, the residual spectrum is masked by the
existing sinusoids as described in section V-B. The iterative
selection of new sinusoids repeats until the maximum number
of active sinusoids requested by the user has been collected
or a new sinusoid does not exceed a user supplied limit for
its mean absolute amplitude.

After the current segment has been modeled the algorithm
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K = number of segments to adapt
signal = signal to model
model = empty
bslen = length of smoothest B-spline
sigseg = first bslen samples of signal
numparts = max number of sinusoids in model
minamp = minimum amplitude for a sinusoid to stay alive
dcmodel = adapt sinusoid with fixed phase==0 to remove dc
signal = signal - dcmodel
while sigsegnot at end of signal

modsort= sort model sinusoids according to mean amplitudes
for all extsin in modsort

extend amplitude trajectory by changing B-splines
keeping old coefs and add new zero value coef.

extend and adapt trajectory ofextsin (see section III)
determine validity ofnewsine(see section V-A)
mark invalid sinusoids as stopped

end
cont := true
while cont

errsig := sigseg- model
ffterr := FFT of lastbslen samples inerrsig
mark transient peaks inffterr
determine masking thresholds inffterr (see section V-B)
select maximum non masked peak inffterr
newsine = new and initialized sinusoid
if new peaknot transient

adapt amplitude and phase ofnewsineuntil convergence
determine validity ofnewsine(see section V-A)

else
adapt amplitude ofnewsineuntil convergence
mark newsineas invalid

endif
if number of alive sinusoids< numparts

addnewsineinto model
else

minsine = model sinusoid with minimum mean amplitude
if ( meanamp(newsine) > minamp

and meanamp(newsine) > meanamp(minsine))
mark minsine stopped, addnewsineinto model

else
cont = false

endif
endif

end
remove all newly born invalid sinusoids frommodel
movesigsegto the nextM samples

end

LISTING I

PSEUDO CODE DESCRIBING THE ORGANIZATION OF THE ALGORITHM.

extrapolates all valid sinusoidal components of the model
into the next polynomial segment. The extended sinusoids are
adapted in the order of their mean absolute amplitude using
no more than the lastK polynomial segments to adapt the
parameters. All parameters of B-splines not covered by these
lastK segments are considered to have converged and will no
longer be adapted. Extended sinusoids that do not match the
validity criterion described below are marked as stopped and
reset with the parameters they had prior to extension.

After the extension of all model components has been
performed the selection loop restarts using the lasto segments
to select and initialize new sinusoids. Old sinusoids are
stopped if the maximum allowed number of active sinusoids
exists in the model and their average absolute amplitude over
the lasto segments is smaller then the corresponding value
for a newly selected sinusoid. Due to the fact that newborn
sinusoids are initialized using the lasto polynomial segments

they overlap the dead sinusoids of the last cycle by exactly
(o− 1) polynomial segments.

A. Determining the validity of a sinusoidal component

Most additive analysis schemes include a mean to determine
the end of a sinusoid. The correct detection of the end
of a sinusoid is important because otherwise the parameter
trajectory will be used to model unrelated sinusoids which may
give rise to artifacts because the target parameter trajectories
are inconsistent. In this section the criterion that is usedto
determine the validity of a sinusoid in the adaptive algorithm
will be described.

The validity of a sinusoidal component is checked by
comparing its amplitude trajectory to the amplitude trajectory
obtained by heterodyne filtering the signal. The heterodyne
filtering is done using the phase trajectory of the model
sinusoid to be validated and applyingBSo(n) as lowpass filter
as follows:

ac(n) = BSo(n) ∗ (s(n) cos(Φ(n))) (16)

as(n) = BSo(n) ∗ (s(n) sin(Φ(n))). (17)

Here s(n) is the signal segment to model andΦ(n) is the
phase trajectory of the model sinusoid. Note that the use of
BSo(n) as a filter is motivated by the fact that the DFT
of BSo(n) determines the impact of distant energy on the
trajectory parameters. Fromac(n) andas(n) a time dependent
complex phasor can be derived

aref (n) =
√

(ac(n)2 + as(n)2)e
j atan2(as(n),ac(n))) (18)

which is used as the reference amplitude trajectory. The
reference trajectory has an amplitude and a phase component.
If the model has managed to track a sinusoidal component of
the signal, the reference amplitude should match the magnitude
of the amplitude of the sinusoid and the phase should be
either 0 or π according to the sign of the amplitude of the
model sinusoid. The comparison is done by subtracting the
two amplitude trajectories and calculating a running absolute
normalized MSE according to

v(k) =

∑k+M−1
n=k (aref (n)−A(n))2
∑k+M−1

n=k A(n)2
(19)

Whenever the maximum ofv(k) is larger than a threshold the
sinusoid is considered to be invalid. The threshold has to be
selected such that modulated sinusoids will not be cut. In all
our experiments we have selected the threshold to be 3%.

B. Masking the residual spectrum

Due to the large energy difference between different parts
of an audio signal it is common that the residual energy in a
dominant audio band has larger amplitude than the sinusoids
in weak audio bands. Due to masking effects, however, the
residual energy will not be perceived. Because the proposed
algorithm uses the DFT of the residual signal to initialize new
sinusoids, proper masking is essential to prevent the addition
of sinusoids that are irrelevant from a psycho-acoustical point
of view. The basic idea proposed in [4] is to exclude all those
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peaks in the residual from further modeling that are due to
modeling errors of the sinusoids already present in the model.
For the locally stationary sinusoidal model presented in [4]
this masking can be simply achieved by means of excluding
all those peaks in the residual that are closer to the model
sinusoids than half the bandwidth of the mainlobe of the
analysis window. In our case with time-varying amplitude and
frequency trajectories of the model sinusoids a slightly more
complex masking procedure is required.

In the following we denote the mainlobe of the spectrum of
BSo(n) asΓ(w). Because we are mainly interested to mask
the residual close to each model sinusoid we useΓ(w) as
the basic masking function. For stationary model sinusoids
with amplitudeAi and frequencywi we can obtain a nearly
equivalent masking effect as the one proposed in [4] by means
of usingAiΓ(w−wi) as masking function related to the model
sinusoidi.

To take into account the nonstationary amplitude and fre-
quency evolution we need to redistribute the mask accordingto
the effective impact of each instantaneous value of the ampli-
tude and frequency trajectory. This impact will be controlled
by the analysis window such that a sensible generalization
computes a weighted average of the masking related to the
instantaneous frequency and amplitude of sinusoidi using the
analysis window as weighting function as follows

Θi(w) =

∑

n |Ai(n)|BSo(n)Γ(
w−wi(n)

β
)

∑

n BSo(n)
. (20)

The masking threshold for frequencyw and for the complete
set of model sinusoids is simply the maximum value of the
individual masking thresholdsΘi(w). The scaling factorβ
allows to adapt the size of the masking range. For stationary
sinusoids and with scaling factorβ = 0.75, the masking
threshold will be similar to the one proposed in [4]. For non-
stationary sinusoids the masking will be lowered and spread
over a larger frequency band. Note that for the following
experiments the scaling factor is set toβ = 1.

VI. T RACKING SINUSOIDS

In the following section we experimentally compare the
frequency estimation error of the standard additive parameter
estimator and the adaptive estimator described so far. The tasks
consists of tracking single sinusoids in noise and the target
frequency trajectories simulate important cases for real world
sound signals. It will be demonstrated how the regularization
parameters can adapt the trajectory model to specific trajectory
characteristics.

For the following investigation we use analytic signals
according to

x(n) = s(n) + r(n) = eiφ(n) + r(n). (21)

The signals comprise40000 samples and the variance of
the noise sequencer(n) is adapted to achieve an SNR of
0dB within an analysis frame. The reference for frequency
estimation is a standard additive approach using peak picking
of the maximum in a 32768-point DFT and applying 3-
rd order polynomial interpolation to obtain the frequency

estimates [7]. The analysis window contains2000 samples
and the hop size is500 samples. For the adaptive algorithm
we use the segment sizeM = 500 and 4-th order splines as
phase and amplitude trajectory model. The adaptive algorithm
follows the description in section V using only a single model
sinusoid and selectingK = 15. Note that the sinusoidal
evaluation described in section section V-A has been switched
off. To achieve a comparable setup we useBSo(n) as analysis
window for the additive model. The standard method does
not provide any reasonable estimates if the analysis window
does not fully cover the signal, therefore, these estimatesare
not used. The CRB for frequency estimation of unconstrained
polynomial phase signals have been derived according to
[12]. The frequency error is specified in dB relative to the
samplerate, and frequency values are specified as normalized
frequencies such that the samplerate corresponds to frequency
1.

The first experiment is dealing with the case of a constant
frequency sinusoid. This experiment simulates the frequency
evolution that is common for example in plugged strings or
vibrating bars. The frequency estimation errors obtained for
the standard additive analysis and for the adaptive model
with varying regularization parameters are displayed in fig. 3
(top). Due to the fact that an analysis window has been used,
a common mean to reduce any bias from other sinusoidal
components in the signal, the standard method is about5dB
above the CRB for constant frequency estimation. The CRB
for the frequency error using a piecewise 3rd order polynomial
phase function with segment size 500 and no smoothness
constraints on the segment borders significantly depends on
the position within the polynomial segment. The minimum
is 26dB above the CRB for constant frequency estimation
[12]. Due to the inherent smoothness constraints, the adaptive
frequency trajectory achieves a frequency error which is well
below the CRB of the unconstrained piecewise polynomial
model even without regularization. For this case the error
variance is about14dB below the CRB of the unconstrained
polynomial model and is only7dB worse than the standard
algorithm.

It is instructive to study how increasing the regularization
according to eq. (7) will affect the results. The regularization
reduces the degree of freedom of the model trajectory and,
for the signal at hand, does not introduce any bias. As shown
in fig. 3 for λ2 and/or λ3 being significantly larger than
10−2, the smoothness constraints due to regularization start
to dominate the inherent constraints of the spline model and,
consequently, the estimation error decreases. For sufficiently
large regularization the frequency estimation error dropswell
below the CRB of the standard analysis, which is possible
because the adaptive method can make use of a larger part of
the signal without introducing additional bias. For the situation
at hand the lower limit of the error variance is given by the
CRB of a constant frequency estimator that uses the data of
the whole signal. For the given signal length the CRB is
about−146dB. Due to the fact that the adaptive algorithm
does not work globally but incrementally tracks the sinusoid
never using a signal segment larger than 7500 samples to adapt
the parameters this limit cannot be achieved. However, in the
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Fig. 3. Frequency error as a function of the regularization parameters for the
cases: slope only(λ2 = λ, λ3 = 0), curvature only(λ3 = λ, λ2 = 0), and
both (λ2 = λ3 = λ). Target is a sinusoid with constant (top), linear (center)
and sinusoidal (bottom) frequency law in white Gaussian noise (SNR=0dB).
The error obtained with a STFT based analysis algorithm and its Cramer Rao
bound for frequency estimation are given for reference.

practical experiments the frequency estimation error comes
rather close to this limit and saturates forλ ≈ 105 at about
−135dB.

In the center of fig. 3 the frequency error for tracking of a

constant amplitude chirp signal is shown. The frequency slope
is ∆f = 4e−6 such that the frequency variation within the
analysis window is not negligible. Accordingly, the normalized
frequency changes from0.16 to 0.32. The example has been
selected to simulate sinusoids with considerable non periodic
variation of the frequency trajectory. Note that the CRB for
estimating chirp frequency trajectories with an unconstrained
piecewise polynomial model is the same as for constant fre-
quency signals. Due to the mismatch between the basis func-
tions of the STFT and the chirp signal the frequency estimation
error of the standard method is considerably increased. The
adaptive model does not introduce any bias when modeling
a chirp signal, and therefore the error variance is close to
the previous case as long as no regularization is applied.
Accordingly, for curvature regularization and increasingλ3

we obtain approximately the same results as in the previous
experiment. For slope regularization, however, increasing λ2

above10−2 results in increasing estimation error because the
model is no longer capable to represent the target trajectory.

In the experiment shown at the bottom of fig. 3 the target
sinusoid has a phase trajectory with sinusoidal frequency
modulation. The center frequency of the sinusoid is0.25 and
the modulation frequency is1.2421e−4. The extent of the
sinusoidal modulation is a half tone, such that the sinusoid
is resembling a sinusoidal component of a sound signal with
vibrato. As shown in the figure, the frequency error of the
standard additive model is further increased. If no regulariza-
tion is applied the adaptive model still keeps approximately
the same frequency estimation error that has been obtained
in the previous experiments. We conclude that for the given
parameters the B-spline polynomial model introduces only
a negligible bias. Increasing the regularization, however, in-
creases the bias such that first the models with regularized
slope and atλ3 = 1e−1 the curvature regularized model can
no longer track the signal. In this case the model degenerates
into a nearly constant frequency sinusoid with mean frequency
somewhere in the range of the frequency values of the target
sinusoid.

From the results we conclude that the regularized adap-
tive frequency estimation with piecewise polynomial phase
trajectories allows to adjust the properties of the trajectory
model such that low variance of the frequency estimation
can be achieved without restricting the polynomial order.
The examples demonstrate that a wide range of common
frequency laws can be handled by means of adapting the
smoothness constraints for different orders of derivatives. The
inherent smoothness constraints of the polynomial model did
not introduce a significant bias in any of the cases that have
been studied. For the sinusoidal FM the polynomial order of
the model should probably be increased to be able to establish
higher order smoothness constraints which would allow us to
reduce the variance with less bias.

VII. M ODELING SINUSOIDAL ATTACK TRANSIENTS

The representation of attack transients of resolved sinusoids
is straightforward if rapid changes of the sinusoidal parame-
ters are allowed. The analysis of fast changing parameters,
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Fig. 4. Amplitude parameter trajectories obtained with different additive
models (standard, reassigned, adaptive model with and without removal of
pre-oscillations) for modeling a sinusoid with a step function as amplitude
trajectory. To facilitate comparison only the amplitude trajectories are shown.

however, poses special problems for the parameter estimation
algorithm because the high time resolution that is necessary
to follow quickly changing parameters will compromise the
frequency resolution. Due to the inherent conflict between
time and frequency resolution it is common practice to use
noise components to recreate the perceived attack [7]. The
characteristics of spectrally shaped noise, however, are only
suitable if the number of sinusoids that form the attack is
rather large, which is not the case for example for string or bell
sounds. Up to now, only few alternative approaches have been
put forward to improve the representation of transients in an
additive model. In the following some of the recent proposals
will be discussed and will be compared with the representation
obtained with the adaptive model. A simple trick is suggested
that considerably improves the transient representation of the
proposed model.

A recent approach to improve transient representation con-
sists of extending the standard sinusoids plus noise model by
means of a component that is especially dedicated to represent
transients. In the sinusoidal model proposed in [19], [20]
transients are directly represented by means of their spectra.
The advantage of the spectral representation of transientsis
the high quality that will be obtained for simple re-synthesis
and the fact that the model can be applied to represent noise
transients as well. Because the transient representation does
not provide sinusoidal parameters, however, it is difficultto
compare it with the adaptive method such that it will not be
discussed further.

The second approach to improve transient representation in
a sinusoidal model is based on the relocation of the additive
parameters using the reassignment operator [21]. The reas-
signment operator has originally been developed to increase
the readability of the signal spectrogram [22]. It uses the
phase spectrum to estimate the time frequency location of
the signal component that is present at the time frequency
location of the STFT. Time reassignment is closely related to

the estimation of the mean time, the center of gravity of the
signal energy, of the signal related to the current spectralpeak
[18]. For stationary signal components the time reassignment
operator will be0 such that sinusoidal parameters will be
assigned to the frame center. For attack transients the emerging
peaks in the STFT will initially be reassigned to the far right
end of the analysis window and the reassignment offset will
decrease with the window moving over the attack. In the early
stage of an attack the analysis window does hardly cover the
sinusoid such that the estimated parameters will suffer from
reduced frequency resolution and can be simply discarded.
Because later frames will provide better estimates for the same
attack no information is actually lost [21]. Using parameter
reassignment for the representation of attack transients of
sinusoidal signals significantly increases the maximum slope
of the amplitude trajectory which results in a perceptuallyvery
convincing attack representation. The drawback is, however,
that the center of gravity of the signal energy has a systematic
offset compared to the real amplitude trajectory, and therefore,
the price that has to be payed for increased perceptual quality
is a systematical increase of the residual energy of the time
reassigned model.

A comparison of the amplitude trajectories obtained with
the standard additive model with and without reassignment
and the adaptive model is shown in fig. 4. The target sinusoid
has an attack transient of the form of a simple step function
with exponential decay. The model and analysis parameters
are the same that have been used in the last section. The
amplitude trajectory obtained with the standard additive model
is maximally smooth with insufficient slope and starts nearly
half a window before the step function. The amplitude tra-
jectory of the reassigned model has increased slope but lies
completely within the target amplitude trajectory such that
the residual compared to the standard model is increased
by 2.5dB. The amplitude trajectory of the adaptive model
achieves a slope that is similar to the one obtained with
reassignment, however, at the same time reduces the residual
energy. The reduction of the residual energy depends on the
position of the transient relative to the segment boundaries and
for the current example ranges from−1.54dB to −3.65dB
compared to the standard additive model. The figure shows
an average situation achieving an reduction of the residual
error by2.3dB. The figure also demonstrates the effect of the
transient detection which delays the initialization of thenew
sinusoid until it is sufficiently covering the newly initialized
model sinusoid. Note the initial negative oscillation of the
amplitude trajectory of the adaptive model, which prepares
the model such that it eventually achieves a high slope. If
the adaptive model would be restricted to positive amplitude
values it would produce a trajectory similar to that of the
standard model.

Making further use of the knowledge that the sinusoid just
started a simple trick can be applied to partly suppress the pre-
oscillations after the parameters have been optimized. Starting
with the amplitude trajectory that results from the optimization
we construct at most(o− 1) further amplitude trajectories by
means of removing initial parts that extend up to the first,
second and third zero crossing. From this set of at mosto
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different amplitude trajectories (including the originalone) we
select the one that achieves minimum error for the trained
segment. As is shown in fig. 4 the resulting trajectory has
its pre-oscillation removed without affecting the slope ofthe
attack transient. The total reduction of the residual energy
still varies with the transient position and now ranges from
−1.74dB to −4.0dB. Due to the fact that this treatment is
only applied for the initial part of a sinusoid and that it will
only remove parts of the sinusoid that increase the model error
there is no risk that parts of a real sinusoidal component may
be removed.

VIII. M ODELING REAL WORLD SIGNALS

The algorithm described so far has been applied to many
real world sound data files and has proven to be a favorable
choice for signal representation when small model error is the
main objective. As an example for a practical application we
mention the development of a virtual replacement of a real
acoustic pipe organ by means of an additive sampler [23] that
has been carried out at our institute. To demonstrate that the
algorithm works reliably with real world sound signals we will
discuss the results obtained for two sounds from a database
that had been collected to compare additive signal models
using the Sound Description Interchange Format (SDIF) [24].

The two sounds have been selected to represent the two
main problems for additive modeling that have been discussed
in the current article: transients and nonstationary frequency
trajectories. The transient sound example is a low pitch piano
note with fundamental frequency of65Hz. It can be found
at [25] under the namepiano.aiff. The sinusoidal part of the
signal is difficult to represent with additive models due to the
fact, that a long window is needed to resolve the sinusoids.
However, to represent the attack the window should be short.
The example concerned with tracking of frequency evolutionis
a singing voice signal that contains considerable pitch changes.
This sound is accessible from the above mentioned database
under the nameshafqat-derbari.aiff

The initial segment of the piano signal and the residual
signals of the sinusoidal model using an inharmonic standard
STFT based parameter estimator and the adaptive method are
depicted in fig. 5. For both additive models we allow the same
maximum number of active sinusoids per time instant and
have optimized the meta parameters such that they achieve
minimum error. For the STFT based analysis procedure using
a Hanning window the optimal window size is0.041s while
for the adaptive model with polynomial ordero = 4 a segment
length of M = 0.0147s has been selected. Based on the
findings described in the present article this value could have
been selected a priori because for all the values ofM that
have been tried the optimum one has the first zero of the B-
spline spectrum located closest to the fundamental frequency
such that the bias introduced by the neighboring sinusoids will
be minimal. Knowing that the sinusoids have nearly constant
frequency the regularization has been set toλ3 = λ2 = 0.25.
The optimal window length of the standard model is shorter,
however, in spectral domain the resulting mainlobe of the
Hanning window and the B-spline are quite similar. The
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Fig. 5. Comparing the error of a standard additive model with the adaptive
model when modeling a transient of a piano signal. Note that scales are
different by a factor 5 for the original and the error signals.

residual energy of the complete segment shown is−20dB
below the original signal for the standard additive algorithm
(center) and−25.6dB for the adaptive model (bottom). The
reduction of the residual error that is achieved by the adaptive
model for the transient part in the first100ms is 6.4dB
while in the remaining part it still achieves2.6dB reduction.
The reduction in the stationary part is due to the fact that
the Hanning window used for the STFT based model has
less sidelobe rejection and that all sinusoidal parametersare
estimated in a single analysis step which increases the biasfor
the multi-component signal. Note that, despite the increased
precision, the re-synthesized signals are perceptually hardly
distinguishable. The residual signal, however, is audiblyeasily
distinguishable. First, because the attack part of the residual
of the standard estimator has a slight tonal quality and second,
because its stationary part contains significant beating due
the fact that some low amplitude sinusoids have not been
sufficiently resolved.

The second example, shown in fig. 6, demonstrates the
tracking of time varying frequency trajectories in a singing
voice signal. The sinusoidal frequency trajectories that have
been found are laid over the spectrogram. In the spectro-
gram darker gray represents lower amplitude and the line
thickness roughly represents amplitude. The long sinusoidal
trajectories that represent stable sinusoids in the sourcesignal
are easily distinguished from the short ones that are due to
noise. To improve the tracking of the nonstationary frequency
trajectories the regularization has been slightly reducedto
λ2 = 0.07, λ3 = 0.2. At the bottom of fig. 6 the original signal
and the residuals of an harmonic additive model with STFT
based analysis and the adaptive model are presented. The
analysis window that provides best results with the harmonic
model is a Blackman window of length16ms. For the adaptive
model best results have been obtained with a segment size of
5.7ms. For both models a maximum of 80 sinusoids is allowed



12

T/s

F
re

q/
kH

z
Singing voice model 

0.15 0.2 0.25 0.3 0.35 0.4

1

2

−5

0

5

original and residual signals

A target signal

−2

0

2A residual of standard model

0.15 0.2 0.25 0.3 0.35 0.4
−2

0

2A

T/s

residual of adaptive model

Fig. 6. Frequency trajectories of the additive signal model for the singing
voice sound (top). The residual of the adaptive model is significantly smaller
than the residual of the standard additive model.

at each time instant. The residual of the adaptive method is
on average2.1dB below the residual of the harmonic model.
The comparison of the residual signals with the spectrogram
reveals that the advantages are mostly related to improved
tracking of sinusoids with fast changing frequency. An auditive
comparison of the results shows that again the re-synthesized
signals can not be distinguished. The tonality of the residual
that is obtained with the adaptive model, however, is clearly
reduced.

IX. CONCLUSIONS ANDFUTURE WORK

A detailed investigation into adaptive estimation of sinu-
soidal parameters has been presented. The new insights into
the analysis properties, notably the time and frequency reso-
lution, of the adaptive optimization of a piecewise polynomial
parameter trajectory model that have been derived, allow a
straightforward selection of reasonable meta parameters of
the model. The optimization procedure has been investigated

and it has been shown that to achieve high efficiency the
representation selected for the phase trajectory should be
chosen as a function of the amplitude of the sinusoid under
adaptation. We have proposed a new approach to handle the
bias/variance tradeoff of piecewise polynomial phase trajectory
models by means of regularization and have shown that the
proposed regularization scheme allows to tune the model
characteristics such that a variety of real world situations
can be handled. It has been demonstrated that compared to
STFT based parameter estimation the adaptive model achieves
considerably improved representation of the transient part of
sinusoids and considerably lower frequency estimation errors
when tracking nonstationary sinusoids in noise.

Due to space constraints the current article has been limited
to deal with resolved sinusoids. As has been show in [26]
the regularized adaptive model has favorable properties for
modeling limited numbers of unresolved sinusoids, too. The
investigation into noise components, however, requires further
discussion and will be the subject of an forthcoming article.

An interesting extension of the method would be the adap-
tive estimation of the parameters of quasi harmonic sets of
sinusoids. If the complete, quasiharmonic set of sinusoids
of a single instrument would be adapted simultaneously, ad-
vanced and physically motivated regularization of the different
parameter trajectories with respect to their deviation from
the harmonic model could be established. This could lead
to significant improvements for the tracking of high order
partials of harmonic sounds. Moreover, in combination with
recently improved algorithms for the estimation of fundamen-
tal frequencies from polyphonic signals, this research direction
will establish a new approach to separation of quasiharmonic
sources from polyphonic signals similar to the Bayesian ap-
proach proposed in [11].
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APPENDIX

To determine the frequency resolution of the adaptive algo-
rithm we study the impact of a stationary perturbing cosine
on the optimal model parameters for a single nonstationary
sinusoidal component. Hence, the signal to be studied is

Ŝ(n) = A(n) cos(Φ(n)) + ∆cos(wsn). (22)

The parameter trajectories of the target sinusoidA(n) and
Φ(n) are assumed to match the trajectory model according to
eq. (3) such that the trajectories can be represented without

error. Using this signal, the influence of the disturbing cosine
on the optimal partial parameters of a model comprising a
single partial

P̂ (n) = Â(n) cos(Φ̂(n)) = (
M
∑

k=1

Akbk(n)) cos(
M
∑

i=1

Φibi(n)).

(23)
can be studied as a function of the frequency of the disturbance
ws. Here bi are the B-splines used for amplitude and phase
trajectories, which for simplicity are supposed to be of the
same order andAl and Φl are the free parameters of the
respective parameter trajectories. Note that the use of fixed
frequency and amplitude for the disturbing cosine imposes no
restriction for the application of the result because any time
limited signal can be replaced with arbitrary small error by
means of a superposition of stationary cosines.

The minimum of the squared error eq. (4) is found by means
of setting the gradient of the quadratic form with respect to
the free parameters to zero

0 = 2
∑

n

(Ŝ(n)− P̂ (n))
∂P̂ (n)

∂Ai

∀ i ∈ {1, 2, . . . ,M} (24)

0 = 2
∑

n

(Ŝ(n)− P̂ (n))
∂P̂ (n)

∂Φi

∀ i ∈ {1, 2, . . . ,M} (25)

For ∆ = 0 the global minimum is achieved if̂A(n) = A(n)
and Φ̂(n) = Φ(n). We now want to establish the relation
between the parametersAi andΦi and∆ 6= 0. To simplify
the nonlinear relations betweenΦi andAi and the amplitude
of the perturbing signal and to obtain a fundamental idea
about these relations we are linearizing eq. (24) and (25)
around the optimum for∆ = 0. The linearized equations will
approximately describe the change ofAi andΦi for ∆ 6= 0 as
long as the changes are sufficiently small. When linearizing the
conditions in eq. (24) and (25), we perform all differentiations,
make use of the fact that the error model error for∆ = 0 is
zero and that the bandwidth of the amplitude trajectory is small
(eq. (13)). That leads us to the two separated linear systems

∆
∑

n

cos(wsn)bi(n) cos(Φ(n))

≈
∑

k

∆Ak

∑

n

bi(n)bk(n) cos
2(Φ(n))

≈
1

2

∑

k

∆Ak

∑

n

bi(n)bk(n) ∀ i ∈ {1, 2, . . . ,M},

(26)

∆
∑

n

cos(wsn)A(n)bi(n) sin(Φ(n))

≈−
∑

k

∆Φk

∑

n

A(n)2bi(n)bk(n) cos
2(Φ(n)))

≈
−1

2

∑

k

∆Φk

∑

n

A(n)2bi(n)bk(n)

∀ i ∈ {1, 2, . . . ,M},

(27)

that approximately describe the relations between the per-
turbing signal and the changes in the amplitude and phase
parameter vectors denoted as∆Ak

and∆Φk
. The coefficient
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matricesCA andCΦ that are related to the linear amplitude
and phase equations in eq. (26) and eq. (27) have band-
diagonal form with the coefficientscik given by the crosscor-
relation between the B-splinesbi(n) and bk(n). For CΦ this
correlation is additionally weighted by means of the amplitude
trajectory of the target sinusoid. Accordingly, only the(2o−1)
inner diagonals are non zero and are monotonically decreasing
with the distance from the main diagonal. The solution of
these equations can be obtained by means of inversion of
the coefficient matrices. Using notation{∆Ai

}i to represent a
column vector with elements∆Ai

we obtain

{∆Ai
}i = C−1

A ∆{
∑

n

cos(wsn)bk(n) cos(Φ(n))}k (28)

{∆Φi
}i = C−1

Φ ∆{
∑

n

cos(wsn)bk(n)A(n) sin(Φ(n))}k.

(29)

For every parameter we may describe the impact of the
perturbation by means of a superposition of injected errors
EAk

respectivelyEΦk
given by the three respectively four

term products

EAk
=
∑

n

cos(wsn)bk(n) cos(Φ(n)) (30)

EΦk
=
∑

n

cos(wsn)bk(n)A(n) sin(Φ(n)). (31)

These equations can be interpreted as the real part of the
Fourier transform of a signal derived from the target sinusoid
that is evaluated at frequencyws and uses the B-splinebk(n)
as analysis window. In eq. (30) the transformation is applied to
the target sinusoid having the amplitude set to be constant 1.
In eq. (31) the transformation is applied to the target sinusoid
after shifting its phase byπ2 . Becausebk(n) is used as analysis
window its spectrum defines how the injected error depends
on the frequency distance between the perturbing signal and
the target sinusoid. We may conclude that the B-spline spectra
define the frequency resolution of the adaptive algorithm.

The weighting factors for superimposing the injected errors
to obtain the parameter change∆Ai

and∆Φi
are given by the

coefficients in thei-th row of the inverted coefficient matrices.
Due to the effects at the borders of the parameter trajectories
and the fact that the target amplitude affects the coefficent
matrices it is difficult to give general analytic expressions for
these coefficients. Some insight can be obtained, however,
if we restrict the analysis to the case of constant amplitude
(A(n) = A0) and suppose that the target sinusoid is infinitely
long. According to the theory described in [27] we can then
approximate the inverted coefficent matrices by means of
circular matrices that can be calculated from a single row
in the center of the infinite coefficient matrix. The sequence
of coefficients of the circular inverted matrix is then given
by means of the inverse Fourier transform of the inverted
Fourier transform of the original sequence of coefficients in the
center row of the infinite coefficient matricesCA andCΦ. The
resulting sequences that approximate the coefficients in the
center of the matricesC−1

A andC−1
Φ for different polynomial

orders are depicted in fig. 7. As expected the impact of injected
error decreases with the distance between the position of the
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Fig. 7. Approximate coefficientscik of the column vectork of the inverted
coefficient matrix for different polynomial orders and matrix size N → ∞.
The coefficients are maximal on the main diagonal at rowi with k − i = 0.

B-spline coefficienti and the location of the injected error
k. According to fig. 7 the injected error at positionk is
significant for the B-spline coefficients in a neighborhood of at
least±o segments. Note that the results related to the spread
of perturbing energy hold similarly true when the frequency
distance is0. This is the case when modeling transients, where
the perturbing signal is part of the sinusoid to be modeled,
however, due to model insufficiencies cannot be expressed
within the model.

Due to the linear approximation the results obtained above
are valid only in case of small deviations from the optimal
parameter vector. For most situations, however, the sidelobes
of the B-spline are sufficiently small such that the impact ofa
perturbing signal outside the frequency range of the mainlobe
can be described using the above relations.
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