
HAL Id: hal-01161262
https://hal.science/hal-01161262

Submitted on 8 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Frequency-Slope Estimation and Its Application to
Parameter Estimation for Non-Stationary Sinusoids

Axel Roebel

To cite this version:
Axel Roebel. Frequency-Slope Estimation and Its Application to Parameter Estimation for Non-
Stationary Sinusoids. Computer Music Journal, 2008, 32 (2), pp.68-79. �hal-01161262�

https://hal.science/hal-01161262
https://hal.archives-ouvertes.fr


 

 
Frequency slope estimation and its application for 
 non-stationary sinusoidal parameter estimation 

Preprint 

final article appeared in: Computer Music Journal, 32:2, pp. 68-79, 2008 

copyright Massachusetts Institute of Technology. 

 

Axel Röbel 

IRCAM, 1, place Igor-Stravinsky, 75004 Paris, France. 

 

Sinusoidal models are often used for the representation, analysis or 

transformation of music or speech signals (Amatriain et al 2002, Quatieri and 

McAulay 1986). An important step that is necessary to obtain the sinusoidal model 

consists of the estimation of the amplitude, frequency and phase of the sinusoids 

from the peaks of the discrete Fourier transform. The estimation is rather simple as 

long as the signal is stationary. A standard method for this estimation is the 

quadratically interpolated FFT estimator, in short the QIFFT estimator (Abe and 

Smith 2005). The QIFFT estimator uses the bin at the maximum of each spectral peak 

together with its two neighbors to establish a 2nd order polynomial model of the log 

amplitude and unwrapped phase of the peak. The amplitude and frequency 

estimates of the sinusoid that is related to the spectral peak are then derived from the 

height and frequency position of the maximum of the polynomial. The evaluation of 

the phase polynomial at the frequency position provides the estimate of the phase of 

the sinusoid. 

For non-stationary sinusoids the parameter estimation becomes more difficult 

because the QIFFT algorithm is severely biased whenever the frequency is not 

constant. The term bias refers to the systematic estimation error, that is, the error of 

the estimator that exists even if no measurement noise is present. For the partials in 



natural vibrato signals the estimation bias of the QIFFT estimator accounts for a 

significant amount of residual energy. It is the major reason for the perceived voiced 

energy in the residual of vibrato signals. A number of algorithms with low 

estimation bias for non-stationary sinusoids have been proposed. Algorithms that try 

to implement a maximum likelihood estimate (MLE) are generally assuming that the 

amplitude of the sinusoids is constant. As example we refer to an algorithm that is 

based on signal demodulation employing an initial search over a grid of frequencies 

and frequency slopes and a final fine-tuning of the parameters using an iterative 

maximization of the amplitude of the demodulated signal (Abatzoglou 1986). Similar 

to multi-component signals with stationary sinusoids the MLE of sinusoidal 

parameters for multi-component signals with FM modulated sinusoids is rather 

costly, because a highly nonlinear and high dimensional cost function needs to be 

maximized  (Saha and Kay 2002). Due to the computational savings and despite the 

fact that windowing reduces the estimator efficiency (Offelli and Petri 1992) the 

windowing technique is generally preferred if the signal contains more than a single 

sinusoid. Most of the algorithms that employ analysis windows for the parameter 

analysis of AM/FM modulated sinusoids rely on the fact that the analysis window is 

approximately Gaussian, such that a mathematical investigation becomes tractable. 

Marques and Almeida (1986) developed this approach for sinusoids with linear FM 

and constant amplitude and Peeters and Rodet (1999) extended it to sinusoids with 

linear FM and AM. Abe and Smith (2005) present a version for sinusoids with linear 

FM and exponential AM. The method presented in (Abe and Smith 2005) is special in 

that it tries to extend its range to other analysis windows by means of a set of linear 

bias correction functions. The resulting estimator is computationally rather efficient 

and achieves small bias for standard windows as long as the zero padding factor is 

sufficiently large (

€ 

> 3) and the modulation rates are relatively small. 

In the following paper we present a bias correction scheme for sinusoidal 

parameter estimation of sinusoids with linear AM/FM modulation. As a first step we 

provide a mathematical foundation for the conjecture that linear amplitude 



modulation does not create any additional bias for the QIFFT estimator. With respect 

to bias reduction we may therefore ignore the amplitude modulation of the signal. 

Then we extend an initial version of our bias reduction method that has been 

proposed originally in (Röbel 2006). The basic ideas of the algorithm are similar to 

those in (Abatzoglou 1986) in that the algorithm is based on signal demodulation and 

maximization of the amplitude of the demodulated signal to find the sinusoidal 

parameters. In contrast to (Abatzoglou 1986), however, the algorithm allows the use 

of an analysis window and the demodulation is obtained directly in the frequency 

domain. As a result, it can be applied if the signal contains more than a single 

sinusoid. Moreover, the initial 2-dimensional grid search of the algorithm used by 

Abatzoglou is avoided due to the facts that first, a simple and efficient initial estimate 

of the frequency slope estimate is used, and second, the frequency and frequency 

slope estimation have been decoupled. After demodulating the frequency slope the 

standard QIFFT estimator is applied to obtain an estimate of the sinusoidal 

parameters. Due to the fact that the QIFFT estimator has small bias for constant 

frequency sinusoids the resulting estimate is significantly improved. The results 

described in (Röbel 2006) suggest that the demodulation of individual sinusoidal 

components by means of spectral deconvolution using only the observable part of 

the spectral peak to be analyzed and a properly selected and scaled demodulation 

kernel creates only a small amount of additional bias in the QIFFT estimator. 

 

The version to be presented here is a refined version of the original demodulation 

algorithm. The enhancements include a new procedure to improve the initial 

estimate of the frequency slope reducing the remaining bias for large frequency 

slopes. Furthermore, the constraint to use the same analysis window for the signal 

spectrum and the demodulation kernel has been removed. Accordingly, it becomes 

possible to trade-off bias against noise sensitivity. A computationally efficient 

implementation of the algorithm using precomputed and linearly interpolated 

demodulation kernels is presented. We experimentally compare the new estimator 



with its previous version and the algorithm presented recently by Abe and Smith 

(2005) as well as the algorithm proposed by Peeters and Rodet (1999) using synthetic 

signals as well as a real world vibrato signal.  

The organization of the article is as follows. First we will show how the bias of the 

standard estimators is related to the frequency slope. Second we will describe the 

demodulation scheme and the improved frequency slope estimator. Then we present 

experimental results for the frequency slope estimation algorithm as well as for the 

bias reduction scheme by means of comparing the results of different algorithms. 

Furthermore we compare different bias reduction methods by means of comparing 

the residual energy of the sinusoidal model of a real world vibrato signal. We 

conclude with an outlook on further improvements. 

 

Estimation bias 
 

The signal model that will be used in the following assumes a linear evolution for 

amplitude and frequency trajectories. Accordingly, a complex discrete time sinusoid 

can be represented as 

 

 

€ 

s(n) = (A + an)e i(ϕ +2πω0n+πDn 2 )   (1) 

 

Here 

€ 

A  is the mean amplitude of the signal and 

€ 

a is the amplitude slope. 

€ 

ϕ  is the 

phase of the sinusoid at time 

€ 

n = 0 , 

€ 

ω0 is its mean frequency and 

€ 

D is the frequency 

slope. Note, that all frequency values are normalized with respect to the samplerate. 

The center of the analysis window is located at time 

€ 

0 such that an ideal estimator 

should provide 

€ 

(A,ω0,ϕ) as estimates for amplitude, frequency, and phase. The 

model in Eq. 1 is necessarily time limited due to the fact that we assume 

€ 

A + an > 0 

for all sample positions 

€ 

n  that are used in a signal analysis. 

 



As introduction into the problem we will summarize the sources of bias that are 

known to exist for the standard QIFFT estimator and discuss their implications in the 

context of parameter estimation for sinusoids with linear AM/FM. 

 

First, there is the use of a second order model for interpolating the spectral bins. 

For all but an infinitely long Gaussian window the amplitude of the spectral does not 

follow a second order polynomial. Accordingly, the interpolation is already 

systematically wrong for stationary sinusoids and therefore we will not discuss this 

source of bias here. Nevertheless, as will become clear later, it is important to reduce 

this type of bias as far as possible. This can be achieved by means of zero padding the 

analysis window or, as demonstrated recently, by means of simple bias correction 

functions (Abe and Smith 2004). 

Second, there is the cross component bias that is due to other sinusoidal 

components. The technique that is generally used to reduce this bias is windowing. 

The analysis window reduces the sidelobes of the sinusoidal components such that 

the cross component bias of distant sinusoidal components can be effectively 

reduced. Note however, that the reduction of the sidelobe amplitudes is always 

accompanied by an increased mainlobe width. Therefore, the windowing technique 

will slightly increase the cross component bias for nearby components. Moreover, 

due to the tapering of the signal at the frame borders the noise sensitivity of the 

parameter estimation is slightly increased. In the following we will assume that the 

sinusoidal components are resolved such that the frequency distance between two 

sinusoids is always larger than the width of the mainlobe of both components. In this 

case the cross component bias will stay nearly the same for stationary and non-

stationary components such that the cross component bias will only change 

marginally with the modulation of the sinusoids. 

Third, there is the bias due to the non-stationary parameters. This bias has been 

analyzed mathematically for the sinusoidal model in Eq. 1 and a Gaussian analysis 

window in (Peeters and Rodet 1999). The result shows that the QIFFT algorithm 



suffers from additional bias due to parameter variation only if the frequency slope 

€ 

D ≠ 0 . In this case, the estimation of all three basic parameters is biased and the bias 

increases with the absolute value of 

€ 

D.  

 

To study the dependency of the estimation bias on the frequency slope for 

arbitrary analysis windows we split the sinusoidal model in Eq. 1 into two parts, a 

sinusoid with constant amplitude 

€ 

A  and a sinusoid with mean amplitude 0 and 

amplitude slope

€ 

a. Then we investigate into the properties of the spectra of the 

individual parts and use the linearity of the Fourier transform to draw conclusions 

for the complete spectrum. We first write the DFT of the signal Eq. 1 using a 
normalized analysis window 

€ 

W (n) with 

€ 

W (n) =1
n
∑  as follows 

 

 

€ 

S(ω) = W (n)
n=−∞

∞

∑ (A + an)ei(ϕ +2πω0n+πDn 2 )e− i(2πωn ) .  (2) 

 

Assuming the analysis window to be even symmetric we can make use of the 

symmetry relations and remove all parts of the sum in Eq. 2 that are odd symmetric 

in 

€ 

n . As a result the DFT in Eq. 2 simplifies into 

 

 

€ 

S(ω) = Sc (ω) + Sl (ω)    

with 

 

€ 

Sc (ω) = Aeiϕ W (n)cos(2π (ω0 −ω)n)e
iπDn 2

n=−∞

∞

∑ , (3) 

 

€ 

Sl (ω) = aeiϕ W (n)nisin(2π (ω0 −ω)n)e
iπDn 2

n=−∞

∞

∑ . (4) 

Here 

€ 

Sc  represents the spectrum of the constant amplitude part and 

€ 

Sl  represents the 

spectrum of the linear amplitude part of the sinusoid. 

 



For the discussion of Eq. 3 and Eq. 4 we assume the coordinate system of the 

amplitude and phase spectra to be shifted using the translation 

€ 

ʹ′ ω =ω −ω0 . 

Accordingly, the frequency origin of 

€ 

ʹ′ ω  is located at the sinusoidal frequency

€ 

ω0. 

For 

€ 

D = 0  the amplitude of 

€ 

Sc ( ʹ′ ω )  and 

€ 

Sl ( ʹ′ ω )  are even functions having a local 

maximum respectively minimum at the origin. The amplitude of 

€ 

Sl ( ʹ′ ω )  is zero at the 

origin. The phase of

€ 

Sc ( ʹ′ ω ) is constant with value 

€ 

ϕ  within the mainlobe. The phase of 

€ 

Sl ( ʹ′ ω )  is odd. It consists of two constant parts (with value 

€ 

ϕ ± π /2) with a phase jump 

of 

€ 

π  right at the origin. The sum of 

€ 

Sc ( ʹ′ ω )  and 

€ 

Sl ( ʹ′ ω )  has even amplitude and strictly 

increasing or decreasing phase with the value 

€ 

Aeiϕ at the origin. Depending on the 

ratio of 

€ 

A  and 

€ 

a  the spectrum may present either a local maximum or minimum at 

the origin. Due to the fact that 

€ 

(A + an)  in the sinusoidal model in Eq. 1 is constraint 

to be positive the resulting spectrum has a maximum for all common analysis 

windows. Because for all parameters 

€ 

a the sum of the 2 spectra keeps its maximum 

at the origin and because the phase at the origin does not depend on the value of 

€ 

a 

the QIFFT estimator will provide unbiased estimates for amplitude, frequency and 

phase. As our first result we may conclude that for 

€ 

D = 0  the QIFFT estimator 

provides results that are biased only by the first two sources of bias mentioned above 

and that the time varying amplitude 

€ 

a ≠ 0 does not add any additional bias. 

 

For 

€ 

D ≠ 0  the factor 

€ 

eiπDn
2

 adds an even phase to the elements of the sum. As a result 

the magnitude of

€ 

Sc ( ʹ′ ω )  and 

€ 

Sl ( ʹ′ ω )  does keep all the characteristics discussed above, 

notably even symmetry and extreme value characteristics (maximum and minimum). 

The unwrapped phase spectra, however, are no longer piecewise constant. Both 

phase spectra have an additional even phase function superimposed. The phase 

offset of 

€ 

Sc ( ʹ′ ω )  does not vanish at the origin and by consequence the phase is biased 

already for 

€ 

a = 0. For 

€ 

a ≠ 0 the even symmetric phase offset that is applied to 

€ 

Sl ( ʹ′ ω )  

will destroy the even symmetry of the magnitude of 

€ 

S( ʹ′ ω ) such that the peak 

maximum moves away from the origin, and therefore, the amplitude and frequency 

estimates of the QIFFT estimator are no longer correct. Accordingly, the QIFFT 



estimator suffers from additional bias quite similar as has been shown for the 

Gaussian window in (Peeters and Rodet 1999). 

 

Reducing the bias 
 

In the previous section we saw that the source of the bias of the QIFFT estimator is 

the frequency slope of the sinusoid. A conceptually simple approach to estimate the 

parameters 

€ 

(A,ϕ,ω)  of a sinusoid related to a spectral peak requires two steps: 

 

1. estimate the frequency slope, 

2. demodulate the sinusoid and use the QIFFT estimator to find the sinusoidal 

parameters. 

 

Note, that this approach is in principle equivalent to the MLE for constant amplitude 

linear FM signals described in  (Abatzoglou 1986). Because the demodulation 

technique is used for the frequency slope estimation we will first discuss the 

frequency domain demodulation algorithm. In the following section the frequency 

slope estimation is described. 

 

Demodulation 

 

The main objective of the present algorithm is to provide a means to demodulate the 

sinusoid using only the part of the spectral peak that is accessible for analysis. 

Because the sinusoidal component is contaminated by noise this part will generally 

be the part of the mainlobe exceeding the noise level. Initially, we assume we are 

given a frequency slope estimate 

€ 

ˆ D = D  for a peak that is part of a signal spectrum. 

 

In time domain the demodulation can be achieved simply by multiplication with a 



demodulator signal 

 

 

€ 

y(n) = e− iπ ˆ D n 2 . 

 

Multiplication of the demodulator signal with the input signal in Eq. 1 will remove 

the frequency slope and keep all other parameters unchanged such that the QIFFT 

algorithm can be applied without additional bias. However, because other sinusoids 

may be present in the signal, we cannot apply time domain demodulation directly. 

 

The demodulation algorithm that uses only the observed part of the spectral peak 

to approximately demodulate the sinusoidal component will be described in the 

frequency domain. Assume 

€ 

S(k)  is the N-point DFT of the sinusoid to be analyzed 

and 

€ 

Y (k) the DFT of the demodulator signal. All DFT spectra are calculated such that 

the origin of the DFT basis functions is in the center of the analysis window. The 

signal analysis window is 

€ 

ws(n)  and the demodulator signal is windowed using 

€ 

wy (n) . To obtain the demodulated sinusoid spectrum 

€ 

X(k) we would need to 

compute the circular convolution 

 

 

€ 

X(k) = C S(k)⊗Y (k)
N

, (5) 

 

where 

€ 

C  is a normalization factor taking into account windowing effects. As a result 

of this operation we obtain the spectrum of the product between the demodulator 

and sinusoidal component windowed by the product window 

€ 

wy (n)ws(n). Therefore, 

proper normalization would be achieved by means of setting  

 
 

€ 

C =1/ wy (n)ws(n)
n
∑ . 

 

Due to the fact that only part of the sinusoid spectrum is available the normalization 



factor needs to be adapted. Assume the peak under investigation is denoted by 

€ 

P(k).  

€ 

P(k) is part of the spectrum 

€ 

S(k)and covers 

€ 

B bins. To be able to take into account 

the impact of the missing part of the spectrum we create a spectral model of the 

observed sinusoid assuming the initial slope estimate 

€ 

ˆ D  is correct 

 

 

€ 

Pm (k) = ws(n)eiπ ˆ D n 2

e
−

2πi
N

kn

n
∑  

 

and select a subset 

€ 

P m (k)  of 

€ 

B bins around the center frequency 

€ 

k = 0 (Note that in 

case that B is even the resulting model is not symmetric) .The required normalization 

factor can now be approximately estimated as 

 

 

€ 

ʹ′ C =
1

maxk (|P m (k)⊗Y (k) |)
  (6) 

 

Accordingly, if we replace 

€ 

S(k)  in Eq. 5 by 

€ 

P(k) we should demodulate using the 

corrected normalization factor 

€ 

ʹ′ C . Some remarks are in order:  

 

• The correction factor will be more precise (lower bias) for demodulator 

windows that concentrate more energy in the 

€ 

B-bin wide band around 

frequency 0 of the spectrum. This calls for higher order windows with low 

sidelobes. The demodulator window, however, will be applied to the signal, 

such that according to (Offelli and Petri, 1992) the noise sensitivity of the 

analysis is increased. This calls for low order windows with larger sidelobes. 

Accordingly, the demodulator window allows to trade-off noise sensitivity 

and bias. The experimental investigation suggests that the use of the Hanning 

window as demodulator window 

€ 

wy  is a favorable choice for all analysis 

windows 

€ 

ws. 

• The compensation of the normalization factor assumes that the amplitude 

slope 

€ 

a = 0 and that the peak model is cut symmetrically with respect to the 



peak center. To achieve a good match between the normalization factor and 

the missing part of the spectrum of the sinusoidal component that creates the 

peak 

€ 

P(k) the peak that is extracted from the spectrum should be as close as 

possible to the peak model that is used to derive the compensation factor. A 

number of strategies to extract the observed peak from the spectrum have 

been compared. Experimentally we found that cutting the peak such that its 

left and right magnitude have approximately the same value creates the 

smallest bias. Besides the fact that this method achieves perfect compensation 

for 

€ 

a = 0 there is a second advantage of this method that is related to the 

impact of the background noise. Assuming the background noise energy to be 

locally constant and understanding the maximum border amplitude of the 

peak as a very rough indicator of the background noise level we may conclude 

that cutting the peak at its maximum border level could be beneficial because 

it avoids the parts of the signal where the background noise is dominant. 

• For parameter estimation from demodulated peaks with the QIFFT estimator 

it is essential to use the bias correction functions proposed in (Abe and Smith 

2004) with correction factors adapted to the effective window 

€ 

wy (n)ws(n) . 

 

Our experimental investigation shows, that the spectra of the demodulation kernels 

€ 

Y (k) and the related observed peak models 

€ 

Pm (k)  can be precalculated for a fixed 

grid of frequency slopes and then linearly interpolated to obtain an approximate 

spectral peak for any given slope. If the length of the analysis windows is 

€ 

M  a 

frequency slope grid with step size 

€ 

0.025 /M 2  is sufficient to produce estimates that 

are nearly indistinguishable from the results produced with the non-interpolated 

kernels. To use the complete information that is available in the observed peak we 

use deconvolution kernels of length 

€ 

2B +1 centered around the maximum of the 

deconvolution spectrum.  

 

The implementation of the deconvolution can be done in the frequency domain (as 



described) or in the time domain. Time domain implementation would probably be 

more efficient if at least the demodulation kernel could be directly stored in the time 

domain. The possibilities of time domain interpolation of the demodulation kernels 

have not yet been studied, we believe however, that time domain interpolation 

would require on the fly generation of the complex kernels from interpolated phase 

functions. Due to the linearly modulated frequency of the demodulation kernels this 

will most likely be less efficient than the frequency domain implementation that has 

been described above. 

 

Frequency slope estimation 

 

As mentioned above the maximum likelihood (ML) frequency slope estimator for 

constant amplitude linear FM sinusoids maximizes the amplitude of a demodulated 

peak (Abatzoglou 1986). Accordingly, the maximization of the amplitude of the 

demodulated peak using the demodulation algorithm described above can be 

considered as an approximate MLE as long as the amplitude slope is sufficiently 

small. 

To avoid the search of a large grid of frequency slopes we propose to use an 

approximate initial estimate of the frequency slope 

€ 

ˆ D , and then to use the frequency 

slope estimate and two slopes with 

€ 

ˆ D ± Do  to create three different demodulations of 

the observed peak. From the amplitudes of these demodulated peaks a 2nd order 

polynomial model of the relation between frequency slope and demodulated 

amplitude can be derived. The maximum of this polynomial is expected to provide a 

refined estimate of the frequency slope. 

The open question we need to address is: how do we get an approximate estimate 

of the frequency slope? Given the highest order coefficients 

€ 

αϕ  and 

€ 

αA  of the QIFFT 

polynomial for amplitude (

€ 

A ) and phase (

€ 

ϕ ) of the peak under investigation the 

frequency slope estimate for a Gaussian analysis window is (Abe and Smith 2005, 

Peeters 2001) 



 

 

€ 

ˆ D =
αϕ

αϕ
2 +αA

2  (7) 

 

Note the remarkable fact that the same estimator has been obtained for exponential 

amplitude evolution by Abe and Smith (2005) and for a first order approximation of 

the spectrum of a sinusoid with linear amplitude evolution by Peeters (2001). The 

fact that the amplitude evolution function does not affect the frequency slope 

estimator leads us to suppose that Eq. 7 will provide useful estimates for other 

windows than the Gaussian window as well. The argument here is that the signal, 

that is obtained after the analysis window has been applied, can always be 

considered to be equivalently generated by means of a Gaussian analysis window 

and a sinusoid with appropriately modified amplitude evolution. Because the 

desired frequency estimate does not change with the amplitude evolution of the 

sinusoid and because the estimator in Eq. 7 appears to be rather insensitive to small 

changes of the amplitude evolution of the sinusoid it will be considered as 

approximate estimator for the frequency slope for arbitrary analysis windows. 

The free parameter to select is the frequency slope offset 

€ 

Do . In general a 

polynomial approximation improves when the approximation range is decreased. 

This would call for a small 

€ 

Do . In the present case, however, the relation between 

demodulation slope and amplitude of the demodulated peak is covered by 

measurement noise (due to estimation errors of the amplitude of the demodulated 

peak, due to the partially observed sinusoidal spectrum, and due to the sampling of 

the Fourier spectrum by the DFT) such that a larger value of 

€ 

Do  might be beneficial. 

The selection of the 

€ 

Do  parameter will be discussed further in the light of the 

experimental results.  

The precision of the frequency slope estimate that is obtained from the maximum 

of the polynomial is slightly, but consistently improved if the polynomial model is 

not constructed for the demodulated amplitudes 

€ 

ˆ A i  but for 

€ 

ˆ A i / ʹ′ C i  where 

€ 

ʹ′ C i  is the 



normalization factor from Eq. 6. Up to now a theoretical explanation of this 

experimental finding has not yet been obtained. Using 

€ 

ʹ′ C  to calculate the 

polynomial model of the demodulated amplitudes will obviously create biased 

amplitude estimates. For the problem of slope estimation it appears to improve the 

fit of the polynomial model such that it is preferred here. After the slope has been 

determined from the maximum of the polynomial a re-normalization can be 

performed if the unbiased amplitudes of the supporting points are required. 

 
 Experimental evaluation 
 

The proposed parameter estimation procedure will be evaluated by means of 

comparing it to a number of recent parameter estimation algorithms that have been 

proposed to estimate parameters for non stationary sinusoids. Notably, we use the 

bias correction algorithm proposed in (Abe and Smith 2005) and the algorithm of 

Peeters and Rodet (1999). The results of these algorithms are denoted as AS and PR 

respectively. Furthermore we use the original version of the demodulation estimator 

according to (Röbel 2006) (denoted as DE) and the new version that includes the 

slope enhancement and uses the Hanning window for all demodulation kernels 

(denoted as DS). 

 

All experiments are performed with Gaussian and Hanning analysis windows if 

the algorithms support this. The window type that is used will be indicated by 

adding the letter G for Gaussian, H for Hanning, or X for both, to the estimator 

shortcut. In performance comparisons of the estimators we will use the expression 

DSX is better than ASX to express the fact that DSH and DSG are better than ASH 

and ASG respectively. The window applied to the demodulation kernels will be 

equal to the analysis window for DEX and Hanning for DSX. The Gaussian analysis 

window is cut such that it has a length of 

€ 

8σ  with 

€ 

σ  being the standard deviation of 

the Gaussian. To facilitate orientation we display the results of the QIFFT estimator 



as well as the Cramer-Rao bounds for second order polynomial phase estimation that 

have been described in (Ristic and Boashash 1998). Note however, that these bounds 

have been derived for constant amplitude polynomial phase signals, such that they 

can only be used to provide an approximate idea of the estimator efficiency. 

 

In the experiments we use synthetic test signals with a single sinusoid according to 

Eq. 1 with 

€ 

A =1, 

€ 

ω0 randomly sampled from a uniform distribution over the 

normalized frequency range 

€ 

0.2,0.3[ ] , 

€ 

ϕ  randomly chosen from a uniform 

distribution between 

€ 

−π,π[ ] , and varying slopes 

€ 

a  and 

€ 

D. The analysis window 

covers 

€ 

M =1001 samples in all cases. The frequency slope 

€ 

D is selected from a 

uniform distribution over interval 

€ 

[−Dmax,Dmax ]. Similarly the amplitude slope 

€ 

a is 

sampled from a uniform distribution over the range 

€ 

[−amax,amax ]. The slope ranges are 

considered realistic for real world signals. Note, that in harmonic signals the 

frequency slope scales with the partial number such that for high partials extreme 

slopes may arise. The implementation of the algorithm used for the experimental 

investigation uses linearly interpolated demodulation kernels as proposed above. 

 

Frequency slope estimation 

 

In the first experiment we investigate into the frequency slope estimation. In Figure 1 

we show the results obtained with the enhanced demodulator DS and with the AS 

method according to Eq. 7. Because the DE and PRG estimators use exactly the same 



 

 

 
 

Fig 1. Frequency slope estimation errors for the DS estimator with slope offset 

€ 

Do = 0.5 /M 2  and the AS estimator. Window size is 

€ 

M =1001 samples and sinusoids 

with weak (a, b) and strong (c, d) amplitude and frequency modulation are 

considered. DFT size is 

€ 

N =1024  samples (a, c), and 

€ 

N = 4096  samples (b, d). The 

CRB for constant amplitude polynomial phase signals is displayed as lower limit. 

Algorithms using a Gaussian/Hanning window are distinguished by means of 

solid/dashed lines. See text form more details. 

 

 

 

frequency slope estimate as the AS estimator we don't consider those estimators here. 

We use two different zero padding factors (FFT size 

€ 

N =1024  and 

€ 

N = 4096) and two 

different sets of modulation ranges, the strong modulation is using 

€ 

Dmax = 4 /M 2  and 



€ 

amax =1/M , while for weak modulation we select 

€ 

Dmax = 0.5 /M 2  and 

€ 

amax = 0.15 /M . 

Note, that the weak modulation range approximately covers the interval for that the 

ASH bias correction has been derived in (Abe and Smith 2005). The DSX estimator 

has been tested with a set of demodulation offsets 

€ 

Do ∈ [0.2,0.4,0.5,0.6,0.8]/M
2. The 

results demonstrate that the selection of this parameter is rather uncritical. It has a 

notable effect only for the DSH estimator, very small zero padding factor, and strong 

modulation. This is related to the fact that the initial frequency slope estimate of the 

ASH that is the basis of the slope refinement in DSH is rather bad. If 

€ 

Do  is smaller 

than the error then the correction with the polynomial model becomes less precise. 

Even for smallest offset the DSH estimator was never worse than the ASH estimator. 

The smallest offset that works close to the optimum for all of the experiments was 

€ 

Do = 0.5. Accordingly, we selected this value for the following experiments. 

 

A number of conclusions can be drawn from the experimental results in Figure 1. 

First, we find that for strong modulation the DSX methods have significantly lower 

bias than the ASX methods respectively. Second, we observe that for the Hanning 

window the DSH estimator compared to the ASH estimator achieves a reduction of 

the estimation bias by 

€ 

2 − 30dB. The smallest improvement is achieved for weak 

modulation and large zero padding factor. The only case where the AS estimator 

significantly outperforms the DS estimator is weak modulation with small zero 

padding factor and Gaussian analysis window. This could have been expected 

because the ASG estimator is close to optimal for the Gaussian analysis window and 

the small zero padding factor does not influence this estimator. As expected the 

Hanning window has larger bias than the Gaussian window but at the same time it is 

less sensitive to noise by about 

€ 

4dB. In general the DSX estimators are more sensitive 

to noise than the ASX estimators by about 

€ 

2 − 3db. 

 



 

 

 
Fig 2. Comparison of the estimation errors for the different parameter estimators 

using window size 

€ 

M =1001 and FFT size 

€ 

N = 4096  and (strong) linear AM/FM with 

€ 

Dmax = 4 /M 2  and 

€ 

amax =1/M  (a-c). Figures (d-f) show phase estimation errors for 

different modulation limits and FFT sizes. The CRB for constant amplitude 

polynomial phase signals is displayed as lower limit. Algorithms using a 

Gaussian/Hanning window are distinguished by means of solid/dashed lines. See 

text for more details.  



 

Bias correction 

 

After having discussed the properties of the frequency slope estimation we now 

investigate into the main topic of this paper, the bias reduction. Due to space 

constraints we will present only a few of the experiments we have conducted. We 

will discuss the results for all parameters for strong modulation with 

€ 

Dmax = 4 /M 2  

and 

€ 

amax =1/M , and an FFT size of 

€ 

N = 4096 . Furthermore we select the phase bias 

reduction as an example and discuss the bias reduction for the phase estimate for 

weak and strong modulation and FFT sizes 

€ 

N =1024  and 

€ 

N = 4096   

 

The results of the bias reduction for strong modulation and 

€ 

N = 4096  are displayed in 

Figures 2 (a.-c.). As expected the amplitude estimate (see a.) of ASX is strongly biased 

due to the fact that the amplitude trajectory model does not match the signal. The 

PRG estimator, that is based on linear AM, performs much better, but still cannot 

achieve the performance of either the DE or the DS algorithm. The DE and DS 

algorithms perform similar and better then PRG even when using a Hanning 

window. Note, that the improved frequency slope estimate of the DSX estimator 

yields only a minor improvement for the amplitude estimate compared to DEX and 

that the increase of the noise sensitivity of DEX and DSX is negligible. For frequency 

(see b.) and phase estimation (see c.) DSX has by far the smallest bias (compared to 

the other estimators using the same analysis window). DEH and ASH perform 

approximately similar for both for frequency and phase estimation. Given that DEX 

and ASX estimators both use the same frequency slope estimate this shows that the 

bias of these two estimators is due to the error in the frequency slope estimate, which 

is improved by the refined slope estimate of DSX. Note, that the PRG estimator 

performs slightly worse than the ASG estimator. This seems remarkable given the 

fact that the ASG estimator has been derived for exponential AM. 

The increase of the noise sensitivity for the demodulation algorithms is negligible for 



phase estimation.  

 

The right column of Figure 2 (d.-f.) shows the effect of the phase bias removal for 

all the experimental settings that were used in the evaluation of the frequency slope 

estimation above. A close inspection of the results reveals that the performance of the 

bias removal is directly related to the performance of the frequency slope estimation. 

This is as expected because any error in the frequency slope estimate will translate 

into an error in the bias correction algorithm. With respect to algorithms using the 

Hanning window we can see that the DSH achieves the best results in all cases. The 

ASH algorithm comes rather close only for large zero padding factor and weak 

modulation. For Gaussian analysis windows the DSG estimator is always the best, 

besides for the smallest zero padding factor and small modulation, where the better 

frequency slope precision gives an advantage of about 10dB to the DEH estimator. 

For this case the DSG estimator performs about 2-4dB worse close than the ASG and 

PRG estimators. 

 

As a summary of the experimental investigation of the algorithm using synthetic 

signals we conclude that compared to the QIFFT estimator all the bias reduction 

algorithms dramatically reduce the estimation bias. Compared to the recent ASX 

estimator the simple and enhanced demodulation algorithm both provide a 

significant reduction of the estimation bias especially if the range of the modulation 

is not confined to the rather limited range of values that has been considered in (Abe 

and Smith 2005). Besides for the case of amplitude estimation there do not exist any 

remarkable differences between the ASG and PRG estimators. Comparing the DEX 

and DSX algorithms we have demonstrated that the enhanced slope estimation has a 

direct and significant impact on the bias of the sinusoidal parameters. Due to the fact 

that the frequency slope bias of the DEX algorithm increases with the modulation we 

expect that the DSX estimator is especially advantageous if the modulation is strong.  

 



A real world example 

 

To demonstrate that the advantages of the proposed estimator are effective in real 

world situations we have implemented the bias reduction methods in a complete 

additive modeling system. The theoretical investigation has been restricted to cover 

the case of resolved sinusoids, only. For real world applications, however, the 

algorithm has to prove that it will act gracefully when the underlying model no 

longer holds (transients, unresolved sinusoids due to reverberation, ...). The major 

problem in real world signals is related to the fact that the enhanced frequency slope 

estimation (DEX) described above may produce extreme values whenever the 

underlying signal model does not match the observed peak. In these cases the 

method may for example try to model the transient or nearby sinusoids by means of 

extreme slopes.  

To prevent the degeneration of the estimator we use a number of conditions that are 

designed to allow us to detect the cases for that the signal model that is used to 

analyze the peak does not hold. The conditions that are used to verify the reliability 

of the second order polynomial model of the relation between demodulation slope 

and amplitude are: verification that the extremum of the polynomial model is a local 

maximum, verification that the amplitude that is obtained with the optimal 

demodulation slope is larger than the amplitude obtained with the initial slope 

estimate, verification of that the slope offset to reach the optimal slope is within 

€ 

±2Do. If one of these tests fails the polynomial representation of the slope and 

amplitude relation is considered unreliable and the DEX estimator is used as a 

fallback. 

 

The test that is used to verify the validity of the linear AM/FM sinusoidal 

representation is based on the center of gravity of the energy (the mean time) of the 

signal related to the spectral peak under investigation. If the mean time is larger then 

the maximum mean time that can be expected for the signal model Eq. 1 then we can 



assume that the peak is related to a sinusoid with transient amplitude evolution 

(Röbel 2003). In this situation the exponential amplitude evolution used by the ASX 

estimator is more appropriate than the linear AM and therefore the ASX estimator is 

used. Note, that the ASX and DEX estimators are sub modules that are required for 

the DSX estimator anyway such that the fallback solutions do not require additional 

costs in terms of implementation or calculations. 

 

freq band ASH DEH DSH 

Full -4.19 dB -4.72 dB -5.04 dB 

0-2kHz -3.13 dB -3.75 dB -4.05 dB 

2-4kHz -7.32 dB -8.40 dB -9.33 dB 

4-6kHz -5.78 dB -6.90 dB -7.32 dB 

Table 1: The reduction of the energy of the residual signal obtained with the different 

bias reduction algorithms. The performance of the algorithms varies with the 

frequency band. 

 

For the last experiment we compare the estimators by means of the energy of the 

residual signal of an harmonic model of a tenor singer. The signal contains strong 

vibrato, and therefore, the bias due to the non-stationary parameters is expected to be 

significant. The harmonic models contain a maximum of 30 sinusoids at each time 

instant. We calculate the variance of the residual signal for the QIFFT, DEH, DSH, 

and ASH methods for a signal window of 800 samples and a FFT size of 4096 

samples. The variance of the residual signal is compared to the QIFFT estimator and 

the reduction of the residual energy in different frequency bands that can be 

achieved with each estimator is listed in Table 1. 

 

From Table 1 we can conclude that all bias reduction methods achieve significant 

improvements of the residual energy. It is interesting to compare the performance in 



the different frequency bands. In the low band the improvement is in the range from 

3-4dB. The improvement is less pronounced because the FM modulation extend is 

low. In the mid band range the FM modulation becomes stronger and the reduction 

methods achieve residual energy reduction from 7.3-9.3dB. For the highest band the 

FM modulation is still stronger, but the noise level is higher as well such that the 

reduction of the residual energy is not as strong. 

 

 

 
 

Fig 3. Residual signal of a vibrato tenor singer using QIFFT estimator (top) and the 

enhanced demodulation method DSH (bottom). 

 

The advantage of the demodulation methods over ASH is clearly visible. The 

DEX estimator improves the reduction of the ASH estimator by 0.5-1.2dB. The DSX 

estimator is clearly the best with an improvement compared to the ASH estimator by 

0.8-2dB. The residual signals for the QIFFT and DSH estimator are shown in Figure 3. 

The reduction of the residual energy is easily visible. 



 

Conclusions 
 

In the present paper we have shown that an efficient bias reduction strategy for 

estimation of sinusoidal parameters consists of a frequency slope estimation and 

demodulation prior to application of the standard QIFFT estimator. The procedure 

significantly reduces the bias of the standard estimator. It does not require the use of 

a Gaussian analysis window and does work for a much larger range of modulation 

depths than a recently proposed algorithm. The computational costs are significantly 

higher then those for the standard estimator (~ factor 8). However, they are 

sufficiently low such that real time estimation of some tenth of sinusoids from audio 

signals can be achieved. By means of investigation into the reduction of the residual 

energy that can be obtained for a real world vibrato signal we have shown that the 

proposed enhanced demodulation estimator is effectively working in real world 

situations. It has been shown that compared to the standard QIFFT estimator the 

reduction of the residual error depends on the frequency range and can be as large as 

6-9dB. 
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