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ABSTRACT

This work deals with the physical modelling of acoustic gipe
for real-time simulation, using the “Digital Waveguide MWerk”
approach and the horn equation. With this approach, a piece o
pipe is represented by a two-port system with a loop which in-

volves two delays for wave propagation, and some subsystems

without internal delay. A well-known form of this system Iset
“Kelly-Lochbaum” framework, which allows the reduction thfe
computation complexity. We focus this work on the simulatio
of pipes with a convex profile. But, using the “Kelly-Lochimalu
framework with the horn equation, two problems occur: fesgn

if the outputs are bound, some substates have their valuiehi wh
diverge; second, there is an infinite number of such sulsstatee
system is then unstable and cannot be simulated as suchollire s
tion of this problem is obtained with two steps. First, wewslhibat
there is a simple standard form compatible with the “Wavegui
approach, for which there is an infinite number of solutiorsol
preserve the input/output relations. Second, we look fer smiu-
tion which guarantees the stability of the system and whieken
easier the approximation in order to get a low-cost simottati

1. INTRODUCTION

Contrarily to some accepted ideas, the case of convex Bfes-i

quent for wind instruments. We can meet this case at the end of
some resonators: e.g. the oboe d’amore (cf. Fih. 1), the En-

glish horn, the bassoon, the recorder, and some primitivenr
western instruments. Besides, the vocal tract has someexonv
parts. Hence, for the application of musical sound synshesi
artificial speech production it is useful to study this partar case.

In [T and [Z], the physical modelling of acoustic wave prop-
agation in convex pipes has been studied, and these stualies h
shown the presence of trapped modes. Similarly to the mddel o
cone connections with a negative change of slope (cf. €, [3
some problems of stability occur. Nevertheless theseliigies

* This work has been realized at the IRCAM during the Ph.D.ishes
of Rémi Mignot. It has been supported by the CONSONNES ptojec
ANR-05-BLAN-0097-01.
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have no influence in global point of view, and for the simula-
tion some solutions have consisted in considering the syste

a global point of view, using for example a modal approach or a
digital convolution with finite impulse response filters.

But, for digital simulations with low-cost computation$yet
modal approaches need the truncation of modes, which iavolv
some problems of realism. And because of some long memory ef-
fects (of the diffusive type for visco-thermal losses foaeple)
the convolution methods are not adapted because the impilse
sponses decrease very slowly.

In [4], flared pipes have been modelled with Digital Wave-
guide Networkapproach (cf. e.g.[]5]) using the horn equation of
Webster(cf. [6]) and taking into account the visco-thermal losses
(cf. [7,[8]). The simulation framework dkelly-Lochbaumhas
been obtained (cf. e.g[][9]). This system involves someysela
for wave propagation through pieces of pipe, and some rizeurs
filters for reflections and transmissions at junctions otegeof
pipe. This model leads to real-time simulations. Nevegsgl
the application of the latter model to convex pipes prodistese
stability problems. The aim of this work is to get a stableitdig
realization for convex pipes, similar to the oneldf [4].

This paper is organized as follows. Sectldn 2 presents the
acoustic model we use, thgebster-Lokshimodel, and two equi-
valent systems for the simulation. In sek. 3, we study in tadce
domain the singularities of the transfer functions invdie this
model. In the case of convex pipes, some of these singelsriti
produce unstable substates, then the reason of their peeseex-
plained. To solve this problem, first, in sEt. 4 we proposeemég
ralized” framework. It describes the acoustic pipe with grées
of freedom which are 2 transfer functions of the system. ldenc
we can parameterize the modelling and we get an infinite num-
ber of solutions which preserve the input/output relati®econd,

Figure 1. Oboe d’amore (cfi_[10]).
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in sec[b we search for 2 transfer functions (degrees of dr@¢d
which allow a stable digital simulation for convex pipes.eTgro-
posed choice is compatible with tNéaveguideapproach and it is
similar to [4]. The last section concludes this paper andsdeih
perspectives.

2. ACOUSTIC MODEL AND SYSTEMS

2.1. The Webster-Lokshin model

The Webster-Lokshimodel is a mono-dimensional model which
characterizes the linear propagation of acoustic wavederex-
isymmetric pipes, with the weak hypothesis of quasi-sitgrof
isobares near the wall (cf.J[8]), and taking into accountuiseo-
thermal losses at the wall with the hypothesis of large tubés
[7,[11]). The acoustic pressureand the volume flow/ are gov-
erned by the following equations, given in the Laplace domai

g—;> {r(zz)P(zz, s)} -0, (1)

ul,s) 0o _

82 S%
<0—2+2g(4)—3+r(4) -

c?2

)

wheres € C is the Laplace variableXm(s) = w is the pulsation),

¢ is the curvilinear abscissa at the wally) is the radius of the
pipe,S(¢) = wr(¢)? is the section area(£) = ko~/1—7"(£)2 /7 (£)
quantifies the visco-thermal losses (&) and Y (¢) =" (£) /r(£)
represents the curvature of the pipe. Conical and flareds @pe
characterized b > 0 (e.g. a trumpet horn) and convex pipes by
T < 0. Equation[(1) is thVebster-Lokshirquation, and[{2) is
the Euler equation satisfied outside the boundary layer.

2.2. Two equivalent systems

We define a piece of pipe by a tube with a finite lengthnd with
constant coefficients of losses and curvaturerfd ). We will
build two systems which represent the acoustic effects oéeep
of pipe on the travelling waves given by:

;
o =1 (P + ZU), whereZ(¢) = Ol @)

In [4], the effects of a piece of pipe on the variablésare rep-
resented by input/output systems for ivebster-Lokshimodel.
Two equivalent forms (in an input/output point of view) aieem.

A first form, so-called “global”, is given in Fi§l2-(a). Its 4
transfer functions represent global effects of the piecpipé on
the wavesy™: Rg and Ry are the left and right reflections respec-
tively, andTy, is the global transmission through the piece of pipe.
“global” means that all internal acoustic effects are mjXed ex-

(@) (b)

oF Ty I
1
Ry Q R; =
% | 1 7 K2y

Figure 2: Two-poriQ (global form) and its decomposed form.

Let's definel'(iw) = ik(w), wherek(w) is the standard com-
plex wavenumber. In the Laplace domain, the funcfivis given

V() (D)o

The analytical solving of{1) an@(2) gives the functiongpf

(4)

T, = {Arcosh(T'L) + Brsinh(T'L)/T}"',  (5)
R, = {Arcosh(I'L) + Bp sinh(I'L) /T} Ty,  (6)
R, = {Arcosh(I'L) + Brrsinh(T'L) /T}T,, (7)

whereAr, Ar, Br, Br: and Bg- are some known functions ef
andI'(s)?. With ¢ = 7' /r, the functions of the decomposed form
are given in[[4]:

T(s)=e "L, ®)
It ) el N A G &

e =irere Mg @
L)+ e~ T(s) =6

Bre(9)= =g Bl =i =g @O

With 7 := L/c, note that we can writ&, (iw) = D, (iw) ¢~
and T (iw) = D(iw)e ™7, where D, and D are two transfer
functions associated to causal systems{for 0). Consequently,
the impulse responses @f, andT" are these ones db, and D
delayed byr which corresponds to the time of propagation inside
the piece of pipe.

In the case of pipes with negative curvaturés € 0) these
two forms present a paradox: whereas some numerical calculu
reveal that the global form of Fifj] 2-(a) is stable, the tfanfinc-
tions of the decomposed form of FIg. 2-(b) have some singigdar
in the Laplace domain which produces some instabilitieg Jim
of the following section is a better understanding of thesoes
behind this problem.

3. ANALYSIS OF SINGULARITIES

3.1. Complex analysis of”

The functionT'(s) (associated to the wavenumbeiw), cf. @))

ample the forwards and backwards components of wave prepagais defined as a square root of a complex number which depends

tion are taken into account.

A second form, so-called “decomposed”, is given by Elg. 2-(b
This form is interesting because it isolates the internauatic ef-
fects inside some transfer functions. For examplg, represents
the reflection ofs; at the left interface, an@ represents the prop-
agation through the piece of pipe. Here the successive fdsva
and backwards components are represented by the inteoml lo
This form allows the recovery of thi€elly-Lochbaunframework
which is well adapted for digital real-time simulation (efg. [9]).

itself on a square root of. But there is an infinite number of
continuations of the positive square root definedfon for the
complex plane, and we must choose one of them in order to define
in C the transfer functions of the system.

In [12,[13], the function" is defined by the choice of curves
(calledcut) which link somebranching pointdo the infinity. These
cuts are continuous sets of singularities, which produceesdis-
continuities ofl". And the branching points, are the solutions of
I'(s)? = 0, andso = 0 (for /).

DAFX-2
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YT =0: Forcylindrical and conical pipes, the unique branchingpo

is so = 0.

T >0: For flared pipesI” has 3 branching points: =0, s; and

s2 =731, with Re(s1) <0.

For convex pipesI” has 2 branching pointssg = 0, and
S1 € R+.

Whereas these branching points are fixed (they depeigand
T), the cuts have to be chosen.

ForY > 0, since no branching pointis in the right-half Laplace
plane (denote@ :={s € C/ Re(s) >0}), it is possible to define
an analytical continuation ovél in order to respect the stability
of the transfer functions. For example, the case of horaanits
is presented in Fif]3.

However, forY < 0, one branching poirg; is in C{, and so
it is not possible to define an analytical continuation d¥grsince
at least one part of the cut is @y . Figurel3 presents the case of
2 overlapped cuts 0R™: |— o0, 0] and] — oo, s1].

T<O0:

T>0

Figure 3: Phase af'(s) in the complex plane, branching points
and horizontal cuts.

3.2. Poles and physical interpretation

Whereas the transfer functions of the decomposed form [@f. (
[I0)) have the same type of singularitieslagof the cut type), the
3 global transfer functions (cf[J{3-7)) only dependsItfs)? and
not I'(s) (they are invariant with the transformatidh — —T).

Thus, in the decomposed form of FIg. 2-(A)(s) behaves as a
“circuit breaker” at the limit. And so, we prove the follovgmesult

¥s€C\C, lim R.(s) = Rie(s). (14)
— 00

The function R;. is then interpreted as the global reflection of a
semi-infinite pipe (anechoic). A similar reasoning has been done
in [3] for cones.

We observe the convergence of poles and zerd%‘gdbwards
the cutC of R, when L increases. Thus, the cut can be inter-
preted as a densification of intertwined poles and zerouréig
illustrates this convergence with > 0.

5000 5000

db(RI,), =0.3m

4000 4000

3000 3000
2000 - 2000 - -

1000 - - 1000 |- -

—1000 |- - —1000 - -

i i
—-2000 -1000 (0] 1000 —-2000 -1000 o]

5000 5000

db(R!), L = 30m

4000 4000

3000 3000
2000 - 2000 - -
1000 |- - 1000 - -

_1000f-- -1000 |-

5 - i
—-2000 -1000 0 —2000 -1000 0

1000 1000

Figure 4: Convergence of poles and zerosRéfwhenL — 0
(with T > 0). Poles, zeros and branching points are represented
by white points, black points and red crosses respectively.

3.3. Interpretation for T < 0

For negative curvatures, because of the part of the c{,on] C

Thus these 3 transfer functions have only one cut which comesR™*, the associated functions have an infinite number of simgula
from /s, and some other singularities of the pole type which are ties which produce instabilities. But some numerical obsions

associated to the resonance modes of the piece of pipe.

This last remark implies that only the transfer functionshef
decomposed form depend on the choicd of The input/output
relations do not depend on the choice of the cuts which start f

s1 and sz (because of the curvature) but they only depend on the

cut which starts fromsg = 0 (because of the visco-thermal losses).
For this branching point, we will choog®™ for some reasons of
stability and hermitian symmetry.

In [14], T is given by, /- defined by

Vo1 s =pexp(if) — s = /pexp(if/2),

with (p,0) € RT*x]—m,7]. With this choice ofl', the set of
the cuts iSR™ U C with C := {s € C/ T'(s)® € R™}. With this
definition,T" has the following property:

(11

Vs € C\C, Re(I'(s)) > 0. (12)
Consequently, wheh increases,
Vs e C\C, T(s)=ec "L 50 whenL — co.  (13)

show that the global transfer functions of the piece of piféctv
do have not this cut, are stable as expected.

A pipe with constant and negative curvatife= r” /r has a
sinusoidal profile*(¢) which changes sign evetly..;: defined by

Lerie == m/|Y). (15)
But we observe that wheh increases, a polg;, of Ré becomes
unstable as soon as the lendtbf the piece of pipe exceedd. .,
(with & € N*). Figure® illustrates this.

In this case, wherl. — oo there is a densification of an in-
finite number of unstable poles d@, s1]. Thus, forL < Lerst
the global transfer functions of the piece of pipe are stable
the transfer functions of the decomposed form, which arecass
ated to a semi-infinite pipe, have an infinite number of urstab
singularities. This phenomenon comes from the decompositi
of Fig.[2-(b) which is well adapted to digital waveguide sleru
tions with positive curvatures. For negative curvatureshaee to
search for another decomposition which is adapted to wagtegu
and which is stable fol" < 0.

DAFX-3



Proc. of the 1% Int. Conference on Digital Audio Effects (DAFx-10), Gramshia , September 6-10, 2010

25 whereD and D, correspond to the transmissiofisand T, with-
out delay: T'(s) = D(s)e™7® andT,(s) = Dy(s)e™7°. The
other functions of the decomposed form are givenifly (8-10).

10 (25;{ — T ] d)t
l

H, g

2500

b0 — 9L

2000

1500

1000 10 Figure 6: Standard form of a piece of pipe

—1000 -500 (0] 500 1000 —-1000 -500 o] 500 1000 —20

Figure 5: Pole transition fror@@, to RT, with Y < 0. 4.3. Parametrization

In a general case, the standard form (Elg. 6) allows the septa-

4, GENERALIZED FRAMEWORK tion of a piece of pipe if the following algebraic equatiortdch

In this section, we show that the 2 forms (global and decoexbos F. G, e 27"
can be represented by a common framework which is parameter- R, = Hi+ ﬁ, (16)
ized by 2 degrees of freedom which are 2 transfer functioribef —GiGr im
system. Then in the next section, we propose 2 parametechwhi RT = M, + FrGie (17)
guarantee the stability. g 1-G G, e2ms’

Fi

Dy = —————, 18

4.1. Global form and decomposed form g 1-GiGre 2 (18)

Fr
We have seen that the piece of pipe can be modelled by 2 systems = 1-G 3G oo (29)

—YiYr :

(cf. Fig.[2). The first is given by the two-po@ and its 4 global

functions; and the second is given by a decomposed form With 1

transfer functions. We observe that this system of equations has 2 degrees of free
e Global form: No matter the sign of the curvature coeffi- dom. Choosingy; andg. as degrees of freedom, the solving of

cientY, the transfer functionsng, Ry, andT, are stable. the system((16-19) gives

Moreover, we have seen that they have only one cigon

because of the visco-thermal losses. Their simulation with Hi = R, —DyG.e 7", (20)
a modal approach, could allow a stable realization of the

s —27s
piece of pipe. But low-cost computation requires the trun- Hr Ry = DyGre 2’ (21)
cation of modes, which involves some problems of realism. Fi = Dg(1-GGre ™), (22)
e Decomposed form: This form is adapted to waveguide Fr = Dy (1-G.G, e‘Q”) . (23)

modelling, but it implies some problems of stability. With

T < 0 an unstable part of the cut appearsin. . . N i
Consequently, it is possible to choose arbitrarily the fioms

In the ngxt secti_on, we see that there is an infir_lite _number of G, andg, and to preserve the original input/ouput relations of the
forms of a piece of pipe, and then we get a parametrizatiordero  gystem. And so we have a parametrization of the system with 2
to find a stable realization which respects the waveguidmder  fynctions. For example the global form corresponds to thuioeh

lism. G =0, G.=0.
] ) In the case of the decomposed form, the 6 transfer functions
4.2. Standard form of a piece of pipe have no internal delay, the modes of the piece of pipe arelatet

First, we represent the 2 forms of FIg. 2 with a common frame- PY the loop. For the global forngj, = G, = 0, the loop is open,
work: the framework of FidJ6 is equivalent to the 2 forms fib and the modes are simulated by the delays in the denomingtor o

or decomposed) if the following equations hold: the 4 other functions.

o Global folrm: Remarks: For all causal and stab{g andg,., the 4 functionsH;,

U, =R F =D G =0 H., Fr andF, defined by[(IB-19) are causal and stable. Moreover,
" —R  F.—D. G —o0 the choiceg; andG, such agGi(s)| < 1 and|G,(s)| < 1,Vs €

T 9 T 9 " ' C, allows the guarantee of the stability of the internal lobthe

e Decomposed form: system.

77:111 ilzze, ;__'—l = g(11+ %f)q + gle)’ Now we have to findj, andG, which allow to guarantee the

r _R TE 1+ R T R( D+1 “)ng + Bre), stability and the passivity of the system, and to presereavtive-
G = BuDA+ Rei) 5 RriD( 4 Rii) guideformalism

1+ Ry ’ " 1+ Ry '

DAFX-4
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5. STABLE REALIZATION OF CONVEX PIPE

5.1. Stabilization of convex pipes

With the waveguide approach, the “ideal” choice is this ohine
decomposed form. With

_ Ri(1+ Ry)

. R.i(1+ Ry)
.= —— D
R 1+ Ry

D and R}, :=
T 1+Rr1 bl

(24)

this “ideal” choice is given by; = R;; andgG, = R;;. But these
functions depend oi and they have some unstable singularities
on [0, s1] with T < 0. We should make another choice.

5.1.1. What can be a “good choice"?

Qualitatively, in order to understand what is a “good chbdifeg,

P2: v is analytical inCg,
P3: ] —o0,s1] N7 (Cy) = {@},
P4: Vs € CF, |Rj;(v(s))| < Land|R;;(v(s))| < 1.

With these properties, the choi¢g(s) := Rj;(v(s)) and
Gr(s) :== R;;(v(s)) defines some hermitian functions (P1), holo-
morphic inCJ (P2, P3 and becaud®); and R;; are holomorphic
onC\ ]—o0, s1]) and P4 guarantees the stability of the loop.

Note that the set of the cuts ¢ and G, becomesC’ :=
{s € C/y(s) €] — o0,51]} (with CT C Cg thanks to P3). Thus
the mappingy allows the “rejection” of the unstable part of the cut
of T' ([0,s1] € R")in C;, and this stabilizes the transfer func-
tions.

5.2. Stable digital realization

andg, we can examine for example the expression of the function Now we give some results of stable realizations of a pieceps p

F given by [22):
Fi(s) = Dy(s) (1 = Gi(s)Gr(s) e™27%)..

The functionD,, has a cut orR™ because of losses, and an
infinite number of pairs of complex conjugate pole<i. Every
pair corresponds to a mode of the piece of pipe. These padhar
zeros of the denominator @, whichis: 1 — R;; R}, e~>7*. The
choiceg, = R;; andG, = Ry, allows the exact compensation of
the poles ofD,. With this choice,F; has no pole as singularity,
but only the cuC of T.

with a negative curvature. We use the previous idea, butsuithe
empirical considerations.
The procedure is summarized by the following steps:
e We choose the parameter functiaghsandg,. using a map-
ping-y.
e We deduceH;, H,, F; and F;.
e We approximate the 6 transfer functions using standard re-
cursive filters.

5.2.1. Definition of the mapping

The idea we propose and test here, is to compensate the high

frequency poles (there is a infinite number) by the interoapl

of the framework with a choice such &(iw) ~ Rj;(iw) and
Gi(iw) =~ R};(iw) when|w| is high, but withG; andg,- holomor-
phic inC{ . Finally, the staying poles which are not compensated
in low frequencies are simulated as such in the 4 transfetitums

H;, Hr, F; andF,. given by [20:28).

5.1.2. How to find a “good choice”?

For simplification, we artificially modify the function®;; andR;.;
with a mappings — ~(s) of the complex plane:

Gi(s) := Rii(y(s)), and Gr(s) := Ryi(v(s)).

Now the choice ofj; andg, is done by the choice of this “map-
ping”. To guarantee a good behavior in high frequer@yiv) ~
R;;(iw) andg, (iw) ~ R;;(iw)), we choosey such as:

(25)

Vs € CF with |s| high: ~(s) ~ s. (26)
Remark: The expression|$| high” is voluntarily imprecise. In
practice, we want thay(iw) goesquickly towardsiw when |w|
increases.

5.1.3. Properties of a “good mapping”

Not only doesy have to verify [2B), but it is also interesting to
control the singularities ofj; andG,. with the choice ofy. First,
the chosen mapping has to guarantee the stability and tkeipas

of G, andg,., and if possible it has to reduce the set of their sin-
gularities. To guarantee the good definition of these fonsti we
give some constraints:

P1: v is hermitian (for real signals),

In practice, instead of looking for a well definedn C, we limit
the search inR (Fourier domain). Thus, we look for a contour
given by~(iR).
In high frequencies, the contour must get closer to the imagi
nary axis (cf. [2b)), and so we choose it suchyéigv) = iw with
|w| > wo, Wwherewy is a pulsation we can nanjignction pulsation
In lower frequencies, this contour has not only to get around
the part[0, s1] of the cut (to guarantee P3), but also to get around
the set ofs € C such agR;;(s)| > 1 and|R;;(s)| > 1 (P4).
Moreover, this contour must verify a constraint®@f -regula-
rity on iR (necessary condition for P2). Thus, the “junction” at
w = dwp between low and high frequencies must has the conti-
nuity of all its derivatives.
In order to simulate only the 2 first modes of the piece of pipe,
the junction pulsatiom, is chosen equal t&m(p2) wherep, is
the pole associated to the second mode of the piece of pipe.
Figure[T illustrates the contour(iw) which gets around the
cut, and the contour line of 1.

x 10"

Figure 7: Phase ak;; and contoury(iw).
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5.2.2. Approximation and results

s — Ry(iw)

Previously, we have chosen a mappinghich defines the param- 3 7 : ' -~ Rr(iw) ||
eter functionsj; andgG,.. Then, we deducé{(;, H.,, F7; and F. T ool \ i
which preserve the input/output relations of the systemgufz0- I st : : : b
[23). For a given piece of pipe this choice allows the definitiba
system composed by stable transfer functions, and whictaicen T wom s oo won Bow 7o seo w0 10w
a stabilized delay loop@;| < 1and|G,| < 1in C), cf. Fig.8. S s [

For the digital realization of the system, first the tran$feic- ] _? A |
tions G, and g, are approximated by standard recursive filters. ~ eSS 8 A N NS0
This type of approximation is presented n[12] 3] 16]; hiere Fréquence (Hz)

needs a placement of some polesion.

For H;, H,, F; and F,., the same type of approximation is
realized. Here, withw| > wo, G;(iw) = Ryj;(iw) andg, (iw) =
R;;(iw), in consequence the modes with frequencies higher than
wo are simulated by the internal loop of the system. Then, there
are two staying modes (in low frequencies) which are sinedlat
by 2 pairs of complex conjugate poles.

Figure 10: R}, and its simulated versioR}.

6. CONCLUSION

In this paper, we have seen in the case of convex pipes thasthe
For evaluation, we have built the realization of a convexgie O.f phe simulation framework of]4] produces some prgplgmstaf
of pipe with the foilowing parameters, — 7 cm,r, = 10 cm bility, because of the presence of unstable singularitieghvare

o T ) o not of the pole type, but of theut type. After an explanation of
T =—-100m~", L = 15cm, ande = 0.0033 m~2. Thejunction  the problem, we have proposed a “generalized” frameworlchvhi
pulsation is fitted according to the second mode Og the [)Jelﬁce O parameterizes the system with 2 degrees of freedom which are
pipe which corresponds to a pair of polesat~ 17 10° rad.s transfer functions. Then in pditt 5 we have done a choice wtih
(Fo = wo/(2m) ~ 2700 Hz). Every transfer functiog, or G, bilizes the system and preserves the approachl of [4]. Thikeh
is simulated by 6 stable poles (&) and every function among  gjjgws the “rejection” of the unstable singularities to thé-half
the 4 other by 6 stable real poles and 2 pairs of complex camgug | apjace plane, and this stabilizes them. Finally, the digitm-

poles. The delays of the framework of Hig. 6 are simulatedby | jation of a piece of pipe has been realized with 2 delays and 6

cost digital delays (circular buffers) @b samples £ L/c ~ 19 standard recursive filters.

with F, = 44100 Hz is the sample rate). _ The stable simulation is obtained thanks to two key points:
Figure[9 illustrates the frequency responserfand its ap-  first the piece of pipe is represented with the new decortiposi

proximation. We obs_erve 2 Io_bes which correspo_nd to the 2 firs proposed in Figll6; second, the two degrees of freedom of this
resonances of the piece of pipe which are not simulated by thedecomposition (here, chosen @sandg,) are tuned through a
internal loop. parameterized contows — ~(iw) so that the internal reflection
functions do not contain singularities @ and have their modu-
lus smaller than in Cf . In future work, the choice of the mapping
o1 /_\ ~ could be improved to guarantee additional properties dueiyt
maps all the singularities &~ only.
Moreover, only the stability of one piece of pipe is done. For
the simulation of a whole virtual pipe, which is the concattém
00 of several pieces of pipe, it is necessary to study the #taloil
the whole system. This could be achieved proving the pag%¥i
N e the digital system for a piece of pipe, and proving that thaissiv-
Abscissa (m) ity property is preserved after the connection with anofiassive
system.

Profiler(¢) (m)
v

Figure 8: Profile of the simulated convex pipe.
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