
HAL Id: hal-01161255
https://hal.science/hal-01161255

Submitted on 8 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evolutionary Spectral Envelope Morphing by Spectral
Shape Descriptors

Marcelo Caetano, Xavier Rodet

To cite this version:
Marcelo Caetano, Xavier Rodet. Evolutionary Spectral Envelope Morphing by Spectral Shape De-
scriptors. International Computer Music Conference, Aug 2009, Montreal, Canada. pp.1-1. �hal-
01161255�

https://hal.science/hal-01161255
https://hal.archives-ouvertes.fr


  
 

EVOLUTIONARY SPECTRAL ENVELOPE MORPHING BY 
SPECTRAL SHAPE DESCRIPTORS

Marcelo Caetano, Xavier Rodet 
IRCAM, Analysis-Synthesis Team 

{caetano,rodet}@ircam.fr 

ABSTRACT 

There has been a great collective effort in the search for 
perceptually meaningful sound transformation techniques. 
The transformation of sounds matching target sound 
descriptors is a promising candidate because the 
descriptors are thought to capture timbral dimensions 
corresponding to relevant perceptual features. However, 
matching the descriptors alone is not enough because there 
are a large number of perceptually different sounds with 
the same values of descriptors. In this work, we use 
evolutionary computation to search for the spectral 
envelope variation that best matches the target spectral 
shape descriptors. We were able to achieve a more 
independent control of the descriptors while preserving the 
overall perceptual features. 

1. INTRODUCTION 

Sound transformations are ubiquitous in a wide range of 
applications so there is a growing interest in models and 
techniques that enable us to independently control 
perceptual features as accurately as possible. Timbral 
transformations figure prominently among the most 
challenging because timbre and its relations to the 
parameters of most models are not yet very well 
understood, but timbre is known to be related to the 
spectral envelope shape. The music information retrieval 
community has been working to find good sound 
descriptors for retrieval and classification of audio files in 
large databases and spectral shape descriptors figure 
prominently among those [10]. However, the inverse task 
of synthesizing a sound that matches certain values of 
sound descriptors defined a priori is much more difficult. 

There are many proposed approaches to attaining 
timbral transformations, depending on the choice of the 
sound model and the objectives. In general, the primary 
goal is to obtain sounds that contain specific perceptual 
features. One popular solution is to use a technique to tune 
the parameters of the model to produce a sound similar to 
a given target. Yee-King [11] uses a genetic algorithm to 
automatically find the settings of an FM synthesizer that 
produce an output sound similar to a given target. 
Similarity is an MFCC based measure, such that they do 

not compare spectral shape descriptors so it is not possible 
to just change one dimension/feature while trying to 
preserve the others. Another popular approach is to use a 
technique that performs a mapping from the sound model 
parameters to the desired perceptual features. Le Groux [4] 
presents a support-vector machine based system that maps 
the parameters of additive synthesis (after dimensionality 
reduction with PCA) to sound descriptors. However, the 
only features they control are pitch and loudness. Hoffman 
[3] presents a general theoretical framework for 
synthesizing sounds that match arbitrary sets of 
perceptually motivated sound descriptors. Although they 
pose the problem clearly, they only present very 
preliminary results. Park et al. introduced the concept of 
feature modulation synthesis (FMS) [7], which proposes 
modulating signal features that are related to sound 
descriptors so they are capable of varying the values of the 
descriptors, but the transformations are not independent, 
such that modulating one feature also changes the others in 
unexpected ways. Mintz [6] proposes the use of 
constrained linear optimization to find the sound whose 
descriptors are the closest to target values. Nevertheless, 
all the conditions have to be linear, so the spectral shape 
descriptors become a distorted measure. Instead of using a 
transformation domain that allows direct modification 
according to a target, Coleman [1] derives analytic 
relations for modelling parametric transformations with 
respect to target descriptors. The transformations are 
limited to resampling and bandpass equalization using the 
spectral centroid and spread, the inclusion of skewness and 
kurtosis are referred to as future work. 

In this work we focus on morphing spectral envelopes 
governed by the spectral centroid, spread, skewness, 
kurtosis and slope [8], which allow an approximation of 
underlying perceptual dimensions [9]. In the present effort 
we aim at independently controlling the descriptors. The 
next section presents two simple techniques for 
interpolating the spectral parameters of sound models and 
shows the corresponding behaviour of the spectral shape 
descriptors. The main motivation for our approach is to 
improve these results in the feature space by using a 
genetic algorithm to search for a spectral envelope that 
matches more closely the target spectral shape descriptors. 
Next we describe the experiment followed by an 
evaluation of the results and the conclusions. 



  
 

2. INTERPOLATION AND MORPHING BY 
DESCRIPTORS 

In this work we avoid simply interpolating the parameters 
of a model regardless of the impact on the perceptual 
features of the result. We define sound morphing to be a 
transformation between source timbres governed by a 
factor α ranging from 0 to 1, in which the original sources 
are obtained at the extremes, and we operate in the feature 
space, which are the spectral shape descriptors. Using 
traditional additive models, we can interpolate the time-
varying frequencies and amplitudes of corresponding 
partials in the source sounds. Throughout this article, we 
shall refer to this method as the naïve interpolation 
method, as opposed to morphing perceptually related 
parameters of spectral envelope models. It is not 
straightforward to obtain a certain envelope shape that 
matches target values of spectral shape descriptors, so we 
measure the success of the results as how closely they 
match the target values calculated as interpolations of the 
descriptor values of two extremes. In all examples 
presented hereafter, the bassoon sound is always the first 
extreme and the clarinet sound is always the second. 

Figure 1 shows the naïve interpolation method, and the 
interpolation of linear predictive coding (LPC) coefficients 
[5] to exemplify the effect of varying the interpolation 
factor linearly from 1 to 0 on both the envelope shape and 
the descriptor values. Comparing them, we readily see that 
the peaks of the spectral envelope of the hybrid versions 
on top of Figure 1 do not shift from one frequency region 
to the other, instead, they just increase or decrease 
following the interpolation factor. At the bottom, however, 
the behavior of the peaks of the hybrid versions follows a 
more natural and smooth path. The peaks in the spectrum 
represent frequency regions with more energy, and the 
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Figure 1. Top: Spectral envelopes (left) and spectral shape 
descriptor values (right) for the naïve interpolation method 
with linearly varying interpolation factor. Bottom: Spectral 
envelope (left). and spectral shape descriptor values (right) 
for the interpolation of the LPC coefficients with linearly 
varying interpolation factor. 

Descriptor Target Naïve LPC 
Centroid 724 22 -4 

Spread(10+6) 1.248 0.077 -0.138 
Skewness 10 0 1 
Kurtosis 153 2 24 

Slope(10-12) -5.06 -0.28 0.79 

Table 1. Target (α = 0.5) and differential spectral shape 
descriptor values for the naïve and LPC interpolation 
methods. 

spectral centroid, for example, is usually attracted by these 
high energy regions. We should also notice that at the top 
of Figure 1 the variation is fairly counterintuitive, while at 
the bottom the descriptor values either increase or decrease 
as expected as the interpolation factor varies linearly. We 
want to verify if a specific factor α for either method 
generates descriptor values that also correspond to that 
factor, while preserving the desired hybrid envelope shape. 
Table 1 shows the values of the target and the difference 
between target and resultant descriptors for both methods 
for α = 0.5. The aim of this work is not only to improve 
these values by matching them more closely, but also to 
allow independent control of the morphing factor for each 
descriptor investigated. 

3. EVOLUTIONARY SPECTRAL ENVELOPE 
MORPHING BY SPECTRAL SHAPE 

DESCRIPTORS 

We control the parameters of the LCP spectral envelope 
model independently with a genetic algorithm (GA). Since 
manipulating the LPC coefficients directly can lead to 
poles outside the unit circle (unstable filters), we 
manipulate the poles instead. On the right of Figure 3 we 
see that the poles of the first envelope drift to 
corresponding poles of the second as the interpolation 
factor varies from 0 to 1 when we interpolate the LPC 
coefficients. We refer to these poles in different positions 
of the interpolation path as hybrid poles and we are 
looking for a combination of hybrid poles that corresponds 
to an envelope model that matches the target descriptor 
values more closely while preserving the desired overall 
envelope shape. 

3.1. Genetic Algorithms 

A GA explores complex search spaces by codifying the 
parameters of a model into a chromosome-like structure 
where each individual corresponds to a point in the 
parameter space. The resulting search space contains the 
candidate solutions, and the evolutionary operators 
implement exploration and exploitation of the search space 
aiming at finding quasi-global optima. The GA iteratively 
manipulates populations of individuals at a given 



  
 

generation by means of the simple genetic operations of 
crossover, mutation and selection [2]. 

We initialize the population of candidate solutions by 
interpolating the LPC coefficients of the spectral 
envelopes of the extremes with a factor α varying linearly 
from 0 to 1, as shown at the bottom of Figure 1. Each 
individual consists of a chromosome that contains the 
hybrid poles at one point of the path, as depicted at the top 
of Figure 2. Crossover consists of selecting two parent 
individuals, the crossover points, and swapping the 
chromosome segments (represented by different shades in 
Figure 2) between them, thus generating two offspring. 
We mate each individual of the current population with 
one randomly chosen partner (uniform distribution) using 
a one-point crossover operator with a uniform distribution 
[2]. Both offspring are inserted in the population and the 
parents are also kept. The mutation operation, applied to 
all individuals in this increased population, is depicted at 
the bottom of Figure 2 and consists of randomly (uniform 
distribution) choosing a mutation point, represented in 
black in the figure, and replacing the hybrid pole in that 
position by a new interpolated value with a factor α 
randomly (uniform distribution) chosen between 0 and 1. 
We measure the fitness of all individuals in the current 
population using the fitness function in Equation 1, the 
absolute value of the difference between target descriptors 
(T) and the descriptor values calculated for each individual 
in the current generation (c), normalized by the target 
value. Selection is done by sorting the individuals of the 
population of the current generation by increasing values 
of fitness and selecting N for the next generation. 

∑
−

=
i i

ii

T
cT

ff                                             (1) 

4. EXPERIMENT AND RESULTS 

The experiment was designed to show that we can obtain 
evolutionary hybrid envelopes that match closely the target 
descriptor values while retaining the desired envelope 
shape, even if we use independent morphing factors for the 

 

 

Figure 2. Chromosomes at the top, the crossover operation 
in the middle and mutation operation at the bottom. 

descriptors. We generated evolutionary hybrid spectral 
envelopes for different values of the same morphing factor 
applied to all descriptors or an independent factor for each 
descriptor. Table 2 shows the target descriptor values on 
the left and the difference between target and result on the 
right for each morphing factor α indicated. Mixed factor 
means that an independent factor α was set for each 
descriptor. Figure 3 shows all the spectral envelopes 
resulting from the experiment on the left. If we compare 
the bottom of Figures 1 and 3 we see that all evolutionary 
hybrid envelope shapes keep the somewhat desired smooth 
transitions of peaks evidenced earlier. This means that, in 
general, manipulating the hybrid poles does not lead to 
unexpected envelope shapes. However, the two envelopes 
marked mixed alpha in Figure 3 present some interesting 
characteristics that deserve to be mentioned. For example, 
one of them presents a slightly higher peak than the 
corresponding one in the original envelope to 
accommodate the independence of the morphing factors. 
This is not possible to achieve with either method 
presented in section 2. 

The fitness values measured for all the results ranged 
from ff = 0.01 to ff = 0.1, with varying degrees of 
accuracy. We do not control the individual accuracy of 
descriptors, so because they all have different ranges, the 
precision of matching the centroid is different from the 
spread, etc. The connection between envelope shape and 
descriptor values is an important part of the validation of 
the method because we are assuming that the closer this 
relation, the more perceptually meaningful the results. We 
can see in Table 2 that the descriptors whose ranges are 
smaller tend to be matched with greater precision. This 
problem arises because we use the same weight for all 
descriptors in the fitness function, so we could even out 
the importance of each descriptor in the final result with 
different weights. It is impossible to compare the results 
numerically with other approaches because there are no 
published results. We can, however, compare the column 
that corresponds to α = 0.5 in Table 1 with the 
corresponding column in Table 2 to see if the descriptor 
values obtained with the GA are closer than those obtained 
with simple LPC coefficient interpolation. 
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Figure 3. Evolutionary spectral envelopes for different 
target values of spectral shape descriptors (left) and hybrid 
poles resulting from the interpolation of the LPC 
coefficients with linearly varying interpolation factor 
(right). 



  
 

Descriptor α = 0.2 α = 0.4 α = 0.5 α = 0.8 Mixed α Mixed α 
Centroid 777 9 742 -14 724 2 671 3 688 0.26 795 1 

Spread(10+6) 1.456 0 1.317 -0.01 1.248 0 1.040 0 1.387 -0.002 1.248 -0.001 
Skewness 9 0 10 0 10 0 11 0 11 0.72 11.56 0.15 
Kurtosis 128 0 144 0 152 0 177 0 128 -1 161 -1 

Slope(10-12) -5.76 -0.02 -5.30 0 -5.06 0 -4.35 0 -5.06 0 -4.11 0.01 

Table 2. Target and differential spectral shape descriptor values for the evolutionary spectral envelope morphing. 

The values were significantly improved with the 
application of the GA for this specific example. However, 
we would have to perform listening tests to verify how this 
difference reflects perceptually. The most important aspect 
of the results lies in the independent control of all the 
descriptors given that the relevance of the descriptors 
values is only relative and there is no scale at present with 
which to perform a deep quantitative analysis. All the 
sounds synthesized with the spectral envelopes resulting 
from the naïve and the LPC interpolation methods as well 
as with the evolutionary spectral envelope morphing by 
spectral shape descriptors technique can be heard on 
http://recherche.ircam.fr/anasyn/caetano/icmc2009.html. 

5. CONCLUSION AND FUTURE PERSPECTIVES 

We proposed a method to obtain perceptually meaningful 
sound transformations guided by descriptor values because 
of their relation to perceptual features of sounds. We 
focused on timbral morphing between two extreme 
spectral envelopes, and we used a GA to search for the 
variation that best matches target values of spectral shape 
descriptors that were set between those of the extremes. 
Our approach enabled us to match the descriptors with 
independent morphing factors. However, the perceptive 
impact of these results is yet to be tested. 

Future perspectives of this work include using different 
models, such as MFCC or LSF because LPC coefficients 
and poles are too sensitive and do not quantize well. We 
also plan to conduct perceptive experiments to try and 
validate the method and even to investigate if there is a 
scale or even a Just Noticeable Difference (JND) for the 
spectral shape descriptors. 
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