
HAL Id: hal-01161252
https://hal.science/hal-01161252

Submitted on 8 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Modular Sound Descriptor Analysis Framework for
Relaxed-real-time Applications

Diemo Schwarz, Norbert Schnell

To cite this version:
Diemo Schwarz, Norbert Schnell. A Modular Sound Descriptor Analysis Framework for Relaxed-real-
time Applications. International Computer Music Conference (ICMC), Jun 2010, New York, United
States. pp.1-1. �hal-01161252�

https://hal.science/hal-01161252
https://hal.archives-ouvertes.fr

Proceedings of the International Computer Music Conference (ICMC) June 1–5, 2010, New York

A MODULAR SOUND DESCRIPTOR ANALYSIS FRAMEWORK FOR
RELAXED-REAL-TIME APPLICATIONS

Diemo Schwarz, Norbert Schnell

IRCAM–CNRS STMS
1 Place Igor Stravinsky

ABSTRACT

Audio descriptor analysis in real-time or in batch is increas-
ingly important for advanced sound processing, synthesis,
and research, often using a relaxed-real-time approach. Ex-
isting approaches mostly lack either modularity or flexi-
bility, since the design of an efficient modular descriptor
analysis framework for commonly used real-time environ-
ments is non-trivial. We first lay out the requirements for
such a framework before describing our modular architec-
ture that integrates instantaneous descriptors, segmentation
modules, temporal modeling, converter modules, and exter-
nal descriptors or meta-data. We present its proof of concept
implementation in MAX/MSP and examples that show the
simplicity with which new analysis modules can be written.

1. INTRODUCTION

Extraction of descriptors from audio signals is an essential
technique in many fields of computer music research and
production, and music information retrieval. It is becom-
ing increasingly important for the next generation of real-
time processing systems, such as content-based processing
[1], corpus-based concatenative synthesis [13], and multi-
modal applications including gesture analysis. These tech-
niques often employ a relaxed real-time approach where the
incoming data streams are not immediately processed into
output data streams. In this approach the incoming data
and/or information extracted from the data is recorded and
the output streams are generated from the recorded data.
This approach allows for the integration of information over
time and for applying advanced content based audio pro-
cessing techniques such as temporal modeling, recognition,
and classification. Applications using this approach often
employ a segmental approach, i.e. the basic unit of infor-
mation would be a segment of a sound signal with various
descriptors characterising the segment as a whole.

An audio descriptor is a value that describes a certain
quality of a sound, which can evolve over time or be con-
stant. Although often used interchangeably with the term
audio feature, the distinction can be phrased like this: A
descriptor defines the syntax and the semantics of one re-
presentation of a particular feature of audiovisual content.

A feature is a distinctive characteristic of the data which is
of significance to a user [4].

There are a multitude of useful audio descriptors, and
each can be calculated in a number of ways and variants,
see e.g. Peeters [8] for an overview. This multitude means
that a monolithic approach to descriptor analysis can never
satisfy the needs for either comprehensiveness or flexibility
in exploring different descriptors and versions.

The need for this flexibility, together with the desirable
property of sharing the same code for the descriptor algo-
rithms with off-line analysis programs, lead us to develop
a modular descriptor analysis framework the architecture of
which had to be carefully planned and is non-trivial.

1.1. Overview of Descriptor Extraction

The analysis of descriptors from audio data is also called ex-
traction. In the general extraction process, the audio data is
treated as a stream of overlapping windowed signal frames.
For each frame, the instantaneous descriptors (abbreviated
inst) are calculated, e.g. pitch, loudness, brilliance.

Some descriptors serve to take a decision on segmenta-
tion, or the stream of frames is divided into constant-size
texture window segments. On the segments, a temporal
modeling stage calculates segment descriptors that charac-
terise the temporal evolution of the instantaneous descrip-
tors over the duration of the segment, e.g. the mean value or
the amount of variation, the slope, etc.. Some of these tem-
poral modelings are applicable to any descriptor, some make
only sense for certain descriptors (e.g. geometric mean for
pitch). We call the former universal, and the latter specific
temporal modeling. The resulting segment descriptors are
called const descriptors. Segment descriptors can also be
provided from the outside, e.g. from meta-data importer
modules, or be global descriptors.

Any descriptor can also depend on one or several other
descriptors, and a converter module can calculate a different
representation (e.g. pitch in MIDI Note Number from pitch
in Hz) or additional information from them (e.g. Chroma
value from pitch).

Regarding the different levels of modularity, the spec-
trum ranges from completely monolithic systems, over li-
braries with static modularity, where modules can be config-

1

Proceedings of the International Computer Music Conference (ICMC) June 1–5, 2010, New York

ured at run-time, but have to be known at compile-time, to
dynamic modular systems like plugin or component frame-
works, where new modules can be inserted at run-time.

2. RELATED WORK

Real-time descriptor analysis has been a concern since the
beginning of electro-acoustic music, and gained even more
importance with content-based processing [1].

Many monolithic analysis modules for popular real-time
environments exist, such as analyser˜ [5] and many more.
The first descriptor analysis frameworks that would allow
the dynamic inclusion of external modules are either plu-
gin frameworks such as the sadly defunct FEAPI [6], and
the more lively VAMP,1 or the patch-based ZSA [7] for
MAX/MSP. The CATART system [14] for corpus-based
concatenative synthesis in MAX/MSP introduced for the
first time real-time and batch analysis, thanks to GABOR
[11], but on a statically modular framework.

The powerful dedicated music information retrieval
(MIR) framework MARSYAS is concerned with scheduling
[3], as well as CLAM2, but neither is a common environ-
ment for real-time sound and music applications.

The IRCAMDESCRIPTOR template library developed in
the framework of the SampleOrchestrator project3 is fo-
cused on descriptor extraction for classification in MIR. It
models the dependency graph between analyser modules
and important implementation aspects such as the schedul-
ing and buffering policy by extensive use of C++ meta-
programming techniques. However, this means that new
modules can not be integrated at run-time, and external seg-
mentation sources are difficult to combine with the internal
fixed-window-size oriented segmentation.

3. REQUIREMENTS

In this section, we will try to give an overview over the most
important requirements for a modular descriptor analysis
framework for real-time and off-line use that implements the
general extraction process described in section 1.1. We first
give requirements concerning functionality, then concerning
efficient implementation in a real-time system.

3.1. Functionality Requirements

Scheduling Analysis should run either in batch on sound
files and buffers, or on a live audio stream

Switch Analysis modules can be enabled/disabled at run-
time

Temporal Modeling Any number of universal and specific
temporal modeling algorithms can be integrated.

1 http://vamp-plugins.org 2 http://clam-project.org
3 http://www.ircam.fr/sor.html

Segmentation Allow several streams of segmentations in
parallel and overlapping segments, or an implicit seg-
mentation, where segments are analysis frames, ele-
mentary wave forms, or whole sound files. Segmen-
tation times can be given slightly in the past.

Descriptor Data Type Descriptors can be numeric scalars
or vectors, or symbols

External Files Instantaneous and const descriptors, seg-
ment boundaries, and global meta-data should be im-
ported from SDIF, text, XML or Matlab data files and
merged with the flow of data.

3.2. Implementation Requirements

Efficient Modularisation The framework should allow an
efficient implementation, notably by sharing com-
monly used calculation results, most of all the FFT
representation, between modules, by avoiding copy-
ing and sending lists of data, instead writing them di-
rectly to its destination, and by parallel processing,
e.g. by distributing work packets over different pro-
cessor cores.

Multiple Graphs Different graphs of analysis modules
should be able to work independently for different
corpora in the same application.

External Segmentation External sources of segmentation,
such as a human tapping on attacks, must be integrat-
able into the data flow.

Additional Information More information should be at-
tachable to descriptors, like descriptive text, unit,
grouping, symbol list, distance matrix, distance func-
tion.

Reanalysis A subset of descriptors or only the segmenta-
tion and subsequent temporal modeling can be re-run
with changed parameters.

4. ARCHITECTURE

This section describes our dynamically modular architecture
for a descriptor analysis framework within a dataflow pro-
gramming environment such as Max/MSP or PD. The fram-
work consists of a small number of fixed modules that ex-
change data with any number of analyser modules (descrip-
tor analysis, segmentation, temporal modeling) provided by
the patch programmer, by means of a protocol.

The fixed framework modules take care of the schedul-
ing of the data exchange at the various rates (frame rate,
segment rate, file rate), the intermediate storage of the cal-
culated descriptor data, and the handling of dependencies
between analyser modules.

At initialisation, each analyser module receives a dis-
covery message, upon which it registers itself with the

2

http://vamp-plugins.org
http://clam-project.org
http://www.ircam.fr/sor.html

Proceedings of the International Computer Music Conference (ICMC) June 1–5, 2010, New York

framework, and declares its dependencies (descriptors it
wants to receive as input). The framework then sends a ref-
erence to where the output data has to be written to each
module.

At runtime, each analyser module receives the data it
needs to analyse, together with timestamps, and the pro-
duced data is written directly to the output reference by the
module.

4.1. Input Types

The different types of data that is input to analysis modules
are given in the following, grouped by their rate:

At frame rate At unit rate At file rate
Signal sound vector
FFT magn. vector
Inst frame time,

instantaneous
descriptors vector

Segment start time, end
time, instantaneous
descriptors matrix

Const start time, end
time, const descr. vector

File data
one file’s
segment
descriptor
matrix

4.2. Output Types

The different types of output data that is produced by anal-
ysis modules are:

Inst instantaneous descriptors vector
Const const descriptors vector (meta-data, global, etc.)
Segmentation seg. time, keep last segment flag

4.3. Module Types

The above data types serve to determine the useful distinc-
tions of different types of modules by their input and output
data types, summarised in table 1.

4.4. Dataflow Schema

Figure 1 shows the dataflow between the 5 fixed framework
modules (in ellipses) and the different types of analyser
modules (in rectangles). To the right, the underlying com-
ponents Descriptor Schema and Descriptor Container take
care of the definition and registration of information about
the attached analyser modules and their output descriptors,
and the intermediate and final storage of results.

in \ out inst segment const
signal analyser (signal) segmenter (signal) -
fft analyser (fft) segmenter (fft) -
inst converter segmenter (descr) -
segment - - temporal

modeling
const or - - converter,
file meta-data

Table 1. Module types by input and output data type.

Figure 1. Dataflow schema of the modular descriptor anal-
ysis framework, showing the 5 different scheduling steps.

The fixed framework modules control the scheduling of
processing. The Framing module splits audio from files or
a live stream into signal frames and outputs these to signal
analysers. If any spectrum analysers are attached, it also
calculates and outputs an FFT. The Collect module gath-
ers the instantaneous descriptors calculated above and redis-
tributes them to converter and segmentation modules. The
Condense module is triggered by a segmentation message
and outputs the gathered instantaneous descriptors for the
current segment to the attached temporal modeling mod-
ules. The Convert module provides the segment descrip-
tors to converter or external meta-data modules. Finally, the
Postprocessing module is called once per analysed file or
live session to calculate segment descriptors that need the
whole file’s segments and descriptors to be present.

5. PROOF OF CONCEPT IMPLEMENTATION

The architecture described above was first implemented
in the CATART system 4 for real-time interactive corpus-
based concatenative synthesis[12, 13, 14], based on the
FTM&CO. extension library [9] at 5 for MAX/MSP, taking
advantage of FTM’s real-time optimised data structures and

4 http://imtr.ircam.fr/imtr/CataRT 5 http://ftm.ircam.fr

3

http://imtr.ircam.fr/imtr/CataRT
http://ftm.ircam.fr

Proceedings of the International Computer Music Conference (ICMC) June 1–5, 2010, New York

powerful sound and matrix processing tools [11, 2]. A sec-
ond implementation based on the MUBU container [10] is in
progress and shares the framework (with a different imple-
mentation of the fixed modules) and, most importantly, the
analysis modules.

An analysis patch looks very similar to figure 1. The
analysis modules are simply connected to the corresponding
framework module. They can be very simple, as figure 2
(left) shows, since all details of the protocol are handled by
a stub module imtr.analysis.stub.

6. CONCLUSION AND FUTURE WORK

The modular descriptor analysis framework architecture and
the implementation we presented in this article provides sev-
eral advantages over the state of the art of existing frame-
works:

• great flexibility in choosing only the needed modules
for a given task

• adding existing modules is as simple as making one
connection; they will be discovered and initialised au-
tomatically, can be presented in a menu, etc.

• writing new modules is very simple, since the stub
handles all of the protocol (separation of concerns)

• intermediate results are available in real-time at the
output of the modules, for tight real-time processing
such as envelope following or visualisation

One limitation is that unlike IRCAMDESCRIPTOR with
its fixed-size segment approach that can be extended over
multiple scales, the time resolution hierarchy in our frame-
work is limited to two levels (frame and segment rate), for
reasons of scheduling. Further scale levels could only be
added by introducing new scheduling modules.

One important point we learned during design and im-
plementation is the importance of the message protocol be-
tween the modules, that is more stable than the framework
implementation itself, which will be adapted in the future
re-implementation using Mubu [10].

Figure 2. Example of a converter module (left) and a tem-
poral modeling module (right), using the stub to declare the
module name and the produced descriptor.

7. ACKNOWLEDGEMENTS

The authors would like to thank Carmine Cella and the
anonymous reviewers for their detailed comments.

8. REFERENCES

[1] X. Amatriain, J. Bonada, A. Loscos, J. Arcos, and
V. Verfaille, “Content-based transformations,” J. of
New Music Research, vol. 32, no. 1, pp. 95–114, 2003.

[2] F. Bevilacqua, R. Muller, and N. Schnell, “MnM: a
Max/MSP mapping toolbox,” in New Interfaces for
Musical Expression, Vancouver, 2005, pp. 85–88.

[3] N. Burroughs, A. Parkin, and G. Tzanetakis, “Flexi-
ble scheduling for dataflow audio processing,” in Proc.
ICMC, New Orleans, USA, 2006.

[4] J. Hunter, “MPEG7 Behind the Scenes,” D-Lib Maga-
zine, vol. 5, no. 9, 1999, http://www.dlib.org/.

[5] T. Jehan, “Musical signal parameter estimation,” Mas-
ter’s thesis, IFSIC, Univ. Rennes, and CNMAT, Univ.
California, 1997.

[6] A. Lerch, G. Eisenberg, and K. Tanghe, “FEAPI: A
low level feature extraction plugin API,” in Digital Au-
dio Effects (DAFx), Madrid, 2005.

[7] M. Malt and E. Jourdan, “Zsa. Descriptors: a library
for real-time descriptors analysis,” in Sound and Music
Computing (SMC), Berlin, Germany, 2008.

[8] G. Peeters, “A large set of audio features for sound de-
scription (similarity and classification) in the Cuidado
project,” Ircam – Centre Pompidou, Tech. Rep., 2004.

[9] N. Schnell, R. Borghesi, D. Schwarz, F. Bevilacqua,
and R. Müller, “FTM—Complex Data Structures for
Max,” in Proc. ICMC, Barcelona, 2005.

[10] N. Schnell, A. Röbel, D. Schwarz, G. Peeters, and
R. Borghesi, “MuBu & friends – assembling tools for
content based real-time interactive audio processing in
Max/MSP,” in Proc. ICMC, Montreal, 2009.

[11] N. Schnell and D. Schwarz, “Gabor, Multi-
Representation Real-Time Analysis/Synthesis,”
in DAFx, Madrid, 2005.

[12] D. Schwarz, “Concatenative sound synthesis: The
early years,” JNMR, vol. 35, no. 1, Mar. 2006.

[13] ——, “Corpus-based concatenative synthesis,” IEEE
Sig. Proc. Mag., vol. 24, no. 2, Mar. 2007.

[14] D. Schwarz, R. Cahen, and S. Britton, “Principles and
applications of interactive corpus-based concatenative
synthesis,” in JIM, GMEA, Albi, France, Mar. 2008.

4

http://www.dlib.org/

	1 Introduction
	1.1 Overview of Descriptor Extraction

	2 Related Work
	3 Requirements
	3.1 Functionality Requirements
	3.2 Implementation Requirements

	4 Architecture
	4.1 Input Types
	4.2 Output Types
	4.3 Module Types
	4.4 Dataflow Schema

	5 Proof of concept Implementation
	6 Conclusion and Future Work
	7 Acknowledgements
	8 References

