
HAL Id: hal-01161246
https://hal.science/hal-01161246

Submitted on 8 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unsupervised accuracy improvement for cover song
detection using Spectral Connectivity Network

Mathieu Lagrange, Joan Serra

To cite this version:
Mathieu Lagrange, Joan Serra. Unsupervised accuracy improvement for cover song detection us-
ing Spectral Connectivity Network. International Conference on Music Information Retrieval, 2010,
Utrecht, Netherlands. pp.1-1. �hal-01161246�

https://hal.science/hal-01161246
https://hal.archives-ouvertes.fr


UNSUPERVISED ACCURACY IMPROVEMENT FOR COVER SONG
DETECTION USING SPECTRAL CONNECTIVITY NETWORK

Mathieu Lagrange
Analysis-Synthesis team,

IRCAM-CNRS UMR 9912,
1 place Igor Stravinsky, 75004 Paris, France

mathieu.lagrange@ircam.fr

Joan Serrà
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ABSTRACT

This paper introduces a new method for improving the
accuracy in medium scale music similarity problems. Re-
cently, it has been shown that the raw accuracy of query
by example systems can be enhanced by considering pri-
ors about the distribution of its output or the structure of
the music collection being considered. The proposed ap-
proach focuses on reducing the dependency to those priors
by considering an eigenvalue decomposition of the afore-
mentioned system’s output. Experiments carried out in the
framework of cover song detection show that the proposed
approach has good performance for enhancing a high accu-
racy system. Furthermore, it maintains the accuracy level
for lower performing systems.

1. INTRODUCTION

Expressing the similarity between music streams is of in-
terest for many multimedia applications [3]. Though, in
many tasks in music information retrieval (MIR), one can
observe a glass ceiling in the performance achieved by cur-
rent methods and algorithms [5]. Several research direc-
tions can be considered for tackling this issue. In this pa-
per, we focus on the cover song detection task, but most of
the argumentation may be transferred to more general sim-
ilarity tasks involving a query by example (QBE) system.

One option to boost the accuracy of current QBE sys-
tems is to use an enhanced description of the musical stream
using the segregation principle [2]. Intuitively, a lot can
be gained if an audio signal is available for each instru-
ment. This way, one can easily focus on the stream of in-
terest for each MIR task. In this line, Foucard et al. [8]
show that considering a dominant melody removal algo-
rithm as a pre-processing step is a promising approach for
observing more robustly the harmonic progression and, in
this way, achieve a better accuracy in the cover song de-
tection task. However, it may be a long way until such
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pre-processing based on segregation will be beneficial for
managing medium to large scale musical collections.

An efficient alternative is to consider post-processing
approaches exploiting the regularities found in the results
of a QBE system for a given music collection. Indeed,
music collections are usually organized and structured at
multiple scales. In the case of cover detection, songs nat-
urally cluster into so-called cover sets [17]. Therefore, if
those cover sets can be approximately estimated, one can
gain significant retrieval accuracy, as evidenced by Serrà et
al. [17] and Egorov & Linetsky [6]. A different and very
interesting post-processing alternative is the general classi-
fication scheme proposed by Ravuri & Ellis in [15], where
they employ the output of different cover song detection
algorithms and a z-score normalization scheme to classify
pairs of songs.

Unsupervised post-processing methods that have been
introduced so far are rooted on (a) the knowledge of an ex-
perimental similarity threshold defining whether two songs
are covers or not [17], or (b) the potential number of or
cardinality of clusters of the dataset being considered [6].
Thus, these methods are either algorithm or data-dependant.
The scheme in [15] is a supervised system trained on dif-
ferent algorithms outputs for some ground truth data. There-
fore, it might potentially fail into one or both of the afore-
mentioned dependencies 1 .

In this paper, we focus on improving the output of a
single QBE system in an unsupervised way. In contrast
with the aforementioned references, we propose to con-
sider “more global” approaches in order to alleviate their
needs and in order to advance towards unsupervised param-
eter-free post-processing steps for QBE systems. To this
extent we introduce spectral connectivity network (SCN).
In addition, we focus on the benefits this technique might
provide if the raw accuracy of the QBE system is rather
low. This could be the case of a particularly difficult dataset,
of a more simple and efficient system (or merely a subop-
timal one), or a combination of both cases.

The remaining of the paper is organized as follows: af-
ter a presentation of previous work in Sec. 2, we intro-
duce our new accuracy improvement scheme in Sec. 3. In
this section, the algorithm is motivated and illustrated on

1 Furthermore, issues could arise with the employed z-score normal-
ization for some intricate data structures or algorithm outputs (e.g., bino-
mially distributed classifier inputs).
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Figure 1. Combination scheme used for clustering based
systems.

generic artificial datasets. In Sec. 4 we use the evaluation
methodology considered in [17] to show the potential of
the proposed approach.

2. PREVIOUS WORK

There exist different proposals for the unsupervised post-
processing of the output of a single QBE cover song de-
tection system [6, 17]. Most promising strategies so far
consist in first estimating the cover sets and use this clus-
tering information in order to increase the overall accuracy
as shown in Fig. 1. This can be achieved by considering
a classical agglomerative hierarchical clustering algorithm
such as the well-known group average linkage (UPGMA)
method [10,19] or alternatively the Community Clustering
method (CC) presented in [17], which looks for connected
components in a complex network built upon the results of
the considered QBE system. Once a clustering solution is
obtained, the output distance for a couple of song entries
(ei, ej) given by a QBE system can be modified to increase
the overall accuracy [17]:

d′i,j =

{
d(ei,ej)
max(d) if ei, ej ∈ Ek,
d(ei,ej)
max(d) + β otherwise.

(1)

We denote di,j as the raw dissimilarity output of the QBE
system between two songs ei and ej , Ek represents a given
cluster, and β > 1.

Both UPGMA and CC depend on the setting of a thresh-
old similarity value that overall discriminates between
cover and non-cover song pairs. This parameter is usu-
ally algorithm-dependent. Therefore, for different music
collections analyzed through the same QBE system, one
should expect similar values for the similarity threshold.
That seems to be the case for the algorithm presented in
[16] when analyzing different datasets 2 (Fig. 2).

At a first glance one could screen Fig. 2 and set a dis-
similarity threshold for roughly separating between covers
and not covers. In the present case this threshold could be
around 0.6 (or below, if we want to have less false pos-
itives). The threshold then would provide the necessary
information to the post-processing clustering stage. How-
ever, this dissimilarity threshold might not directly corre-
spond to what the clustering algorithm is using internally
(e.g., intra-cluster cophenetic distances [10, 19]). In the
end one might better perform a grid search for the involved
parameter.

In a more general scenario, one might not always be
sure about the data or algorithm dependencies of the prob-

2 We notice however that both datasets have some similarities, e.g., in
terms of genres.
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Figure 2. Normalized histograms for the dissimilarity
measure [16] on the music collection of [17] (lines with
crosses) and on the “covers80” dataset [7] (lines with tri-
angles).

lem. So, to be on the safe side, some data exploration, al-
gorithm analysis, and/or parameter optimization needs to
be done. To avoid those tedious steps is what motivates us
to consider unsupervised parameter-free post-processing
strategies.

3. SPECTRAL CONNECTIVITY NETWORK (SCN)

Without any a priori knowledge about the problem at hand,
one needs to root the method on a statistical analysis that is
able to identify the underlying structure of the observation,
being in our case the output of a QBE system over a large
music collection.

Spectral graph clustering has gained popularity in many
information retrieval areas, specially in gene, web, image,
and audio processing [1,11,18]. The interested reader may
be referred to [12] for a tutorial introduction.

If S is a square matrix encoding the similarities of all
the entries ei of our music collection E, it can be shown
[14] that the eigenvectors of the corresponding Laplacian
are relevant clustering indicators for determining the k dis-
joint set of clusters E1, ..., Ek (see Fig. 3). We propose to
consider this property in order to increase the overall accu-
racy of QBE systems using the processing scheme shown
in Fig. 4. Each of the steps are further detailed in the re-
maining of this section.

3.1 Similarity Computation

As most QBE systems output a dissimilarity value di,j

measuring how “far” a given couple of entries (ei, ej) are,
one needs to convert this distance into a similarity value
si,j . This is performed using the traditional radial basis
function

si,j = e

„
−d2(ei,ej)

σ2

«
, (2)



Figure 3. Eigenvalues and eigenvectors of the Laplacian
graph corresponding to a dataset made of 4 bi-dimensional
sets of 50 components with low overlapping.
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Figure 4. Processing scheme used for the proposed system
based on SCN.

with σ determined using the local scaling procedure pro-
posed in [20]. The similarities si,j lead to a matrix S,
which is further normalized as [18]:

Sd = D−1/2SD−1/2, (3)

where D is a diagonal matrix with the degrees d1, ..., dn
along the diagonal, dk =

∑
j sk,j .

3.2 Eigenvalue Decomposition

As proposed in [14] and illustrated in Fig. 3, the eigenvec-
tors corresponding to the k highest eigenvalues of Sd can
be considered as cluster indicators. For that purpose, the
contribution of each eigenvector is first normalized with
respect to each of the entries, (i.e., per rows).

For a clustering task, any traditional clustering algo-
rithm may then be considered. The k-means algorithm is
usually considered in the literature. Though, in the case
of cover set detection, the number of clusters is high and
their cardinality is low, which makes the algorithm rather
slow and highly sensitive to the random initialization. In
pre-analysis, it was found more suitable to use the afore-
mentioned UPGMA algorithm. However, in this scenario,
one still needs to perform the clustering decision based on
a prior, be it the number of clusters or the similarity thresh-
old and consider Eq. 1 for accuracy improvement.

3.3 Connectivity Network

An alternative approach is to consider the Connectivity
Network (CN) as our enhanced dissimilarity d′(i, j) by us-
ing the projection matrix of the normalized eigenvectors:

P =
Nq∑
k=1

qkq
T
k , (4)

where qk is the eigenvector corresponding to the k high-
est eigenvalue λk and Nq is the number of eigenvectors to
consider. This principle has been originally used for corre-
spondence analysis of contingency tables [9] and reintro-
duced later in the context of spectral clustering [4].

The usual procedure is to set Np = k in order to retain
only the relevant eigenvectors. If k cannot be considered as
a prior (which is the case for cover set detection), one has
to consider a method that can robustly estimate k. Unfor-
tunately, no standard estimation procedure gave satisfying
results both in terms of accuracy and complexity.

However, notice that in Fig. 3 the eigenvalues are high
for the first k eigenvalues and lower afterwards. Consider-
ing the eigenvalues as weights in the computation leads us
to the so-called Green’s function

G =
Nq∑
k=2

qkλkq
T
k , (5)

where Ng can more safely be set to a high value. An alter-
nate formulation was proposed in [4]:

SPCA = D

Nq∑
k=2

qkλkq
T
k D. (6)

In the experiments reported in this paper, the Green’s
function outperformed significantly the two others in the
case of unknown k, i.e. whenNg is set to the total number
of eigenvectors. Since we are interested in a parameter-free
system, only the results obtained using this function are re-
ported. Fig. 5 illustrates the use of the Green’s function
while considering a dataset made of four bi-dimensional
Gaussian clusters with significant overlap. Fig. 5(b) is ob-
tained by a bi-dimensional scaling of the Green’s function.

4. RESULTS

We split our results into two parts. The first part concerns
accuracy improvements related to QBE systems expected
to have already a good accuracy and the second part relates
to what might happen to systems with worse raw accura-
cies before the post-processing stages applied in this paper.

4.1 High accuracy QBE systems

In this subsection we attempt to improve a QBE system
with quite high raw accuracy. We exactly use the same
methodology and input data as in [17].
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Figure 5. Four bi-dimensional Gaussian clusters with sig-
nificant overlap (a) and bi-dimensional scaling plot of the
corresponding Green’s function (b).

4.1.1 Methodology

In order to replicate those experiments we use both the
same synthetic and real data. Synthetic data is generated
by considering a Gaussian noise fontN (0, 0.25) with zero
mean and 0.25 standard deviation. A dissimilarity measure
between songs i and j is then defined as:

di,j =


0 if i = j,
|N (0, 0.25)| if i and j are covers,
1− |N (0, 0.25)| otherwise.

(7)

Real data is provided by the Qmax measure presented in
[16] and sampled from the 2125 song collection of [17].

We also employ the same data setups as in [17] (Table 1,
where var. means that cover sets have a variable cardinal-
ity). Different number of cover sets (nC) and cardinalities
are considered, as well as the fact of adding a different
number of noise songs (nN ). For setups 1.1 to 2.4 we re-
peat the experiments 20 times.

To evaluate QBE systems we employ the mean of aver-
age precisions (MAP) over all queries. The MAP is rou-
tinely employed in a wide variety of tasks in the IR [13]
and MIR communities, including the MIREX cover song
identification task [5]. The average precision (AP) for a

Setup Parameters
nC Card. nN Trials

1.1 25 4 0 20
1.2 25 var. 0 20
1.3 25 4 100 20
1.4 25 var. 100 20
2.1 125 4 0 20
2.2 125 var. 0 20
2.3 125 4 400 20
2.4 125 var. 400 20
3 525 var. 0 1

Table 1. Setup summary.

query i is calculated from the retrieved answer Ai as

APi =
1
Ci

N∑
r=1

Pi(r)Ii(r), (8)

where Ci is the total number of covers for the i-th query,
N is the total number of songs in the dataset, Pi is the
precision of the sorted list Ai at rank r,

Pi(r)=
1
r

r∑
l=1

Ii(l), (9)

and Ii is a relevance function such that Ii(z)=1 if the song
with rank z in Ai is a cover of the i-th song, Ii(z) = 0
otherwise. A relative MAP increase is then computed just
dividing the post-processed MAP by the raw one, subtract-
ing 1, and multiplying by 100. For further details about
methodology we resort to [17]. In the case of UPGMA
and CC we report results with the optimal threshold found,
independently for each data source.

4.1.2 Results

As it can be seen in Table 2, a significant accuracy im-
provement can be gained over the synthetic dataset. UP-
GMA performs best, followed by SCN which is handi-
capped by the cluster size variability (setups 2.2 and 2.4).

On the real dataset, UPGMA and CC perform equally
well (Table 3). SCN achieves lower performance, proba-
bly due to the fact that real data has less intrinsic regularity

UPGMA CC SCN
1.1 10.17 5.49 6.17
1.2 9.76 4.31 4.08
1.3 10.01 3.88 10.20
1.4 9.54 3.73 3.27
2.1 20.95 5.33 20.00
2.2 20.70 4.95 5.98
2.3 21.54 4.62 25.20
2.4 20.35 5.08 10.90

Table 2. Accuracy improvement (expressed as relative
MAP-improvement %) for the synthetic dataset processed
using the QBE proposed in [17] as input.



UPGMA CC SCN
1.1 5.49 4.91 3.55
1.2 4.31 4.00 3.15
1.3 3.88 3.97 3.26
1.4 3.73 4.05 3.45
2.1 5.33 6.44 2.82
2.2 4.95 5.02 2.47
2.3 4.62 6.08 2.43
2.4 4.77 5.06 1.70
3 5.08 5.57 1.14

Table 3. Accuracy improvement (expressed as relative
MAP-improvement %) for the real dataset processed using
the QBE proposed in [17] as input.

than the synthetic one. Actually, no post-processing im-
proves more than 5-6%. This may be explained by the fact
that the MAP achieved by the considered system over this
concrete dataset is rather high. As a consequence, setting
a threshold distance can be done reliably (recall Fig. 2).
Therefore, one can speculate that the best MAP that can be
achieved given this configuration is in that range.

As a conclusion, it seems that approaches focusing on
locality (UPGMA and CC) are more relevant than global
approaches (SCN) for improving the performance of a QBE
system with rather high raw accuracy provided that their
clustering threshold can be set reliably.

4.2 Lower Accuracy QBE systems

In light of the previous results, we are interested in seeing
how these clustering schemes perform on lower accuracy
systems. Motivations for that could be that we either do
not have a good, high performing QBE system for a given
task, but a more modest one, or either that we are using
a faster and more efficient version of the original system.
Furthermore, we could be dealing with a particularly dif-
ficult dataset where our (otherwise reliable) QBE system
performs more poorly.

In these cases, the accuracy improvement provided by
the post-processing steps outlined in this paper could be
more significant than with the original high accuracy sys-
tem. It could even be the case that, with a (in principle)
lower performing QBE system, we reached the same (or a
higher) final MAP.

For lower accuracy systems it is theoretically relevant to
consider more global approaches, as setting a dissimilarity
threshold is more difficult due to the noise level. However,
the overall structure of the dataset might not be completely
lost, and therefore we can still take benefit of this fact by
using a method like SCN. This can be asserted by com-
paring the MAP increase achieved by the studied methods
when considering as input a lower accuracy system [7] (Ta-
ble 4).

4.2.1 Methodology

We propose to further verify the previous assertion by sim-
ulating a QBE system with a controllable accuracy. For

MAP UPGMA CC SCN
Serrà et al. [16] 0.73 4.01 1.27 1.14

Ellis & Cotton [7] 0.42 8.06 3.04 19.70

Table 4. MAP and MAP increase (%) for two QBE systems
over the “covers80” dataset [7]. UPGMA and CC thresh-
olds were specifically optimized for this dataset (however
no significant difference was observed, c.f. Sec. 2).
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Figure 6. Normalized histograms for real data with no
noise (lines with crosses) and with σ = 0.45 (lines with
triangles).

that purpose, noise is added to our real data di,j (the out-
put of the high accuracy reference QBE system) such that

d̃i,j = |di,j +N (0, σdmx)| , (10)

where σ is the noise level and dmx is a normalization factor
set to the maximal dissimilarity found (see Fig. 6 for the
corresponding histograms).

4.2.2 Results

As it can be seen in Fig. 7, CC does not maintain its initial
MAP increase when the noise level raises up. In contrast,
UPGMA maintains or slightly increases its relative MAP.
We finally see that SCN really boosts the MAP increase
as more noise is added. This confirms our hypothesis and
leads us to speculate that these methods are more robust
for low accuracy QBE systems.

5. CONCLUSION

We proposed a global approach for improving the accu-
racy of query-by-example (QBE) systems based on spec-
tral connectivity network. Contrasting with other state-of-
the-art approaches, it does not rely on any parameter set-
ting such as a dissimilarity threshold or the expected num-
ber of or cardinality of clusters within the data.
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Figure 7. Relative accuracy increase as a function of the
noise level for setup 2.4 using Serra’s data/QBE combina-
tion as input.

The experiments showed that the proposed approach
exhibits comparable results for improving high accuracy
QBE systems and becomes highly competitive for improv-
ing lower accuracy QBE systems. Future research will in-
clude a more in depth study upon the selection of the rele-
vant eigenvectors (a problem closely linked to the estima-
tion of the number of clusters in a dataset).
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