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ABSTRACT

This paper introduces a HMM-based speech synthesis system which
uses a new method for the Separation of Vocal-tract and Liljencrants-
Fant model plus Noise (SVLN). The glottal source is separated into
two components: a deterministic glottal waveform Liljencrants-Fant
model and a modulated Gaussian noise. This glottal source isfirst es-
timated and then used in the vocal-tract estimation procedure. Then,
the parameters of the source and the vocal-tract are included into
HMM contextual models of phonems. SVLN is promising for voice
transformation in synthesis of expressive speech since it allows an
independent control of vocal-tract and glottal-source properties. The
synthesis results are finally discussed and subjectively evaluated.

Index Terms— HMM-based speech synthesis, Liljencrants-
Fant model

1. INTRODUCTION

Emerging fields of speech applications such as avatars, spoken di-
alog system, cinema, or serious games require high quality and ex-
pressive speech. Unit-selection speech synthesis still provides the
best available quality but speaker identity and expressivity are lim-
ited by the content of the underlying database even though slight
transformations can be applied. Recently HMM-based speechsyn-
thesis has received great attention because it allows a precise control
of speech attributes as well as the use of adaptation methodsinher-
ited from speech recognition allowing interpolation between speaker
identity or expressivity.

Earlier HMM-based speech synthesis systems suffered from
buzzy speech quality due to a simple excitation model involving
a impulse train and white noise to model voiced and unvoiced
segments respectively. Several methods have been proposedover
recent years to improve the excitation model such as the use of the
STRAIGHT vocoder [1] in order to shape a multi-band mixed exci-
tation (ME) with the spectral envelope [2]. ME has also been used
and improved in [3, 4, 5]. In these methods, the Vocal-Tract Filter
(VTF) is usually assumed to be excited by a flat amplitude spectrum.
The spectral amplitude of the source is thus merged into the VTF
estimate. In [6], Cabral et al. proposed to use Liljencrants-Fant (LF)
model and demonstrate the parametric flexibility of the LF-model
for voice transformation. In [7], they proposed a global spectrum
separation method to estimate the voice source and the VTF, esti-
mating the latter by removing the spectral effects of the calculated
glottal source model but without taking into account the different
properties of the source (deterministic or stochastic).

In this paper, we present a HMM-based speech synthesis sys-
tem for French using a new glottal source and vocal-tract separa-
tion method called Separation of Vocal-tract and Liljencrants-Fant
model plus Noise (SVLN), different from the one described in[7].
The glottal excitation is separated into two additive components:
a deterministic glottal waveform modeled by the LF model [8]
and a stochastic component modeled by a Gaussian noise. The
parametrization by only two parameters - the shape parameter Rd
and the noise levelσg - allows an intuitive control of the voice
quality. An estimate of the LF model [9] is used to extract these
parameters and the VTF is estimated by taking the estimate ofthe
glottal source into account. The VTF parameters are thus inde-
pendent of the excitation parameters and the glottal sourcemay be
changed, keeping the VTF untouched which can be of interest for
voice transformations in expressive speech synthesis.

The paper is structured as follows: the SVLN method is de-
scribed in Section 2. Synthesis is presented in Section 3. Those
speech synthesis system components which are specific to French,
and the integration of the new method into the system are described
in Section 4. Finally, the system is subjectively evaluatedand com-
pared to the state-of-the-art systems in Section 5 and we conclude in
Section 6.

2. GLOTTAL SOURCE AND VOCAL-TRACT
SEPARATION AND ESTIMATION

The SVLN method is described in this Section. We first describe the
acoustic waveform model, its separation and its parametrization and
we give the estimation method for each of the parameters.

2.1. Speech model

The signal is assumed to be stationary in a short analysis window (≈
3 periods in voiced parts,5ms in unvoiced parts). In the frequency
domain, the voice production model of an observed speech spectrum
S(ω) is (see Fig. 1):

S(ω) = (Hf0(ω) · GRd(ω) + Nσg (ω)) · C c̄(ω) · L(ω) (1)

Hf0 is a harmonic structure with fundamental frequencyf0. GRd

is the deterministic excitation, i.e. an LF model [8]. This model is
defined by: the fundamental period1/f0, 3 shape parameters and
the gain of the excitationEe. To simplify the LF control, the param-
eter space is limited to a meaningful curve and a position defined
by the value of a new parameterRd [8, 10]. Nσg is a white Gaus-
sian noise with standard deviationσg. C is the response of the VTF,
a minimum-phase filter parametrized by cepstral coefficients c̄ on a



mel scale. To avoid a dependency between the gainsEe andσg on
one hand and the VTF mean amplitude on the other hand, a con-
straint is necessary. In this presentation,GRd(ω) is normalized by
GRd(0) andEe is therefore unnecessary. Finally,L is the lips radi-
ation. This filter is assumed to be the time derivative (L(ω) = jω).

In the following Sections,S(ω) is the Fourier transform of a
windowed speech signal according to the stationarity hypothesis
given above. The model parameters{f0, Rd, σg, c̄} are estimated
onS(ω) at regular intervals of5ms along the speech signal.
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Fig. 1. The mixed excitation model on the left:GRd (solid line)
and the noise levelσg (dashed line). The speech model on the right:
the VTF (dashed line);L (dotted line); the spectrum of one speech
period (solid line). Both plots show in gray the source(H · G + N)
or the speech spectrumS(ω) respectively.

2.2. Glottal source estimation

The fundamental frequencyf0 can be computed from the speech sig-
nal with a number of methods. For this presentation, we use a har-
monic matching method [11]. To estimate the LF shape parameter
Rd, the phase of the VTF is assumed to be close to zero in the range
of the glottal formant frequencies. In this band, a minimum phase
version of the LF model is fitted to a minimum phase envelope of
S(ω) [9]. According to Fig. 1, an estimation of a Voiced/Unvoiced
Frequency (VUF) is used to splitS(ω) into a deterministic source
below the VUF and white noise above [12]. Therefore, we assume
thatGRd(ω) crosses the noise mean amplitude at the VUF (Fig. 1).
Consequently, knowing the spectral amplitude|GRd(ω)|, σg can be
deduced:

σg = |GRd(V UF )|
√

2
p

π/2 ·
p

P

t win[t]2

This is because|GRd(ω)| is the expected amplitude of the LF model
and spectral amplitudes of Gaussian noise obey a Rayleigh distri-
bution [11]. Consequently,|GRd(V UF )| has to be converted to
the Gaussian parameterσg through the Rayleigh mode (

√
2/

p

π/2)
[11]. Additionally, in the spectral domain, the noise levelis propor-
tional to the energy of the analysis window used to computeS(ω),
i.e.

p
P

t win[t]2.

2.3. Vocal-tract estimation

To estimate the VTF, the deterministic and stochastic frequency
bands are modeled by two different envelopes according to their
excitation properties. Then, these two envelopes are aligned with
their expected amplitude. In the deterministic band, the contribution
of the lips radiationL(ω) and the deterministic sourceGRd(ω)
are removed fromS(ω) by division in frequency (deconvolution
in time) (eq. 2). Then, a cepstral envelopeT o of ordero is fitted
(by an iterative method [13]) on the top of the harmonic partials of

the division result.T o fits the expected amplitude of the excitation
since the top of a harmonic partial is the expected amplitude. In the
stochastic band,S(ω) is divided byL(ω) and by the crossing value
GRd(V UF ) to assure a continuity between the two bands. Then,
the division result is modeled by computing its power cepstrum Co

truncated to a given ordero. According to the Rayleigh distribution,
the expected amplitude of this frequency band is retrieved through
the mean log amplitude measured byCo (

p

π/2/e0.058 in eq. 2)
[11].
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(2)

In the synthesis step, the VTF is applied on each period. Therefore,
its gain is normalized by the quantity of periods in the analysis win-
dow γ =

P

t win[t]/(fs/f0) (fs is the sampling frequency). The
order of the envelopesT o andCo is chosen to avoid the fitting of
the harmonic structureHf0 . Therefore,o = 0.5 · fs/f0. Even if no
harmonic partial appears in the stochastic part, partials with distance
of f0 (but not multiples off0) appear in this part because the glot-
tal noise is amplitude modulated by the glottal area [10]. Finally,
to avoid the division by zero byL(ω) at zero frequency,L(ω) is
replaced by1 − µejω with µ close to unity. The mel cepstral coeffi-
cientsc̄ are computed fromC(ω).

In unvoiced segments, no glottal pulses are synthesized. When
VUF is lower thanf0, VUF is clipped to zero andf0 is fixed to zero
indicating an unvoiced segment.

3. SYNTHESIS BY SEGMENTS

The synthesis process is an overlap-add method: First, small seg-
ments of stationary signals are generated. Then, these segments are
overlap-added to construct the whole signal.

In voiced parts (f0 > 0), temporal marksmk (Fig. 2) are
synthesized with intervals corresponding to the fundamental period
1/f0. The maximum excitation instant [8] of the LF model is placed
on this mark. Then, we define the starting timetk of thekth-segment
as the opening instant [8] of the LF model. Finally, the ending time
of thekth-segment is the starting time of the next segment. In un-
voiced parts (f0 = 0), we use segments of5ms and the markmk is
placed in the middle (Fig. 2).
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Fig. 2. 2 voiced segments followed by 2 unvoiced segments: syn-
thesized LF models (dashed lines) and Windowswink (solid lines).
Marks and starting times in vertical lines.

For the deterministic excitation, no window is necessary tocross
fade the glottal pulses since they start and end at zero time amplitude.
Conversely, the noise is a continuous excitation. To control the noise
amplitude (withσg) as its color (see below), a cross-fade has to be



used between segments. For eachkth-segment, a windowwink is
thus built with a fade-in center ontk and a fade-out center ontk+1

(Fig. 2). The fade-in/out function is a half Hanning window of dura-
tion 0.25 ·min(tk+1 − tk, tk − tk−1). Additionally, the fade-out of
wink is the complementary of the fade-in ofwink+1. Consequently,
the sum of all windows is1 at any time. To improve the naturalness
of the glottal noise in voiced segments, two processes are applied.
First, the noise is high-pass filtered with a cutoff frequency equal to
the VUF (in synthesis, the VUF is retrieved from the crossingvalue
betweenGRdk (ω) andσg). With such a filtering the lowest harmon-
ics are not disturbed by the noise. Secondly, the noise is amplitude
modulated with a functionvRd[t] built from the LF model as pro-
posed in [14].

In voiced segments, the source of thekth-segment is:

Ek(ω) = ejωmk · GRdk (ω)

+F V UFk

hp (ω) · F
`

vRdk [t] · wink[t] · nσgk [t]
´

wherenσk [t] is a Gaussian random time sequence,F(.) is the Dis-
crete Time Fourier Transform andF V UF

hp is the high-pass filter of
the noise. In unvoiced segments, the source reduces to:

Ek(ω) = F
`

wink[t] · nσgk [t]
´

Finally, the speech spectrum isSk(ω) = Ek(ω)·C c̄k(ω)·jω and the
whole signal is synthesized by overlap-adding the speech segments
in the time domain.

4. INTEGRATION IN THE HMM-BASED SPEECH
SYNHESIS SYSTEM

The implementation of our HMM-based speech synthesis system
is based on the HTS Toolkit[15]. Parameters{f0, Rd, σg, c̄} with
card(c̄) = 32 are estimated according to the method described in
Section 2. Several stream configurations were tested and we finally
kept the following one:

• one single Gaussian distribution with semi-tied covariance
[16] for {Rd, σg, c̄};

• one multi-space distribution (MSD[17]) forf0

Both streams include first and second derivatives of their parame-
ters. In the second stream, parameters are modeled by a single Gaus-
sian distribution with diagonal covariance for voiced parts, and the
voiced/unvoiced decision is taken into account by a specificweight
applied on each space in the MSD.

The naturalness of a synthetic voice also depends on the choice
of the context features. We used the context features describing the
phonetic context and lexical and syntactic features predicted from
the text, as detailed in Table 1. These features have been automati-
cally extracted from speech recordings and their text transcriptions
using ircamAlign [18], an HMM-based segmentation system relying
on HTK toolkit [19] and the Liaphon [20] French phonetizer. The
French text is first converted into a phonetic graph allowingmultiple
pronunciations. Then, the best phonetic sequence is chosenaccord-
ing to the audio file and aligned temporally on it. The contextfea-
tures are extracted according to the text and the extracted phonetic
sequence. Finally, a 5-states left-to-right HMM was used tomodel
each contextual phoneme.

The training procedure is similar to the one described in [21] :
monophones models are first trained and then converted to context
dependent models. Decision tree clustering is performed according
to the extracted context features in order to robustly estimate the

model parameters. During the synthesis step, parameters are first
generated by HTS using a constrained maximum likelihood algo-
rithm [22] from which a speech signal is synthesized according to
the method described in section 3.

Phonetic features:

• Phoneme identity, and some phonological features
(vowel lenght/height/fronting/rounding consonant
type/place/voicing) in quintphone context

Lexical and syntactic features

• Phoneme and syllabe structure: pos-in-syl, syl-numsegs,
syl-numsegs-{prev,next}, pos-in-word, pos-in-phrase, syl-
nucleus

• Word related: word-POS-{prev,curr,next}, word-
numsyl{prev,curr,next}, contentwords-from-phrase-
{start,end}, words-from-contentword{prev,next}

• Phrase related: phrase-numsyls, phrase-numwords, pos-in-
utterance

• Utterance related : Utt-numsyls, Utt-numwords, Utt-
numphrases

• Punctuation related: phrase-punct

Table 1. List of the context features extracted by ircamAlign

5. EXPERIMENTS

The proposed system has been trained on a database of 1995 sen-
tences (approximately 1h30 of speech) spoken by a French nonpro-
fessional male speaker and recorded at 16kHz in an anechoic room.
The context features were automatically extracted from thedatabase
using ircamAlign as described in the previous Section. Three dif-
ferent systems are compared: simple pulse train excitationmodel,
STRAIGHT and SVLN based ones. The two first ones were chosen
for the comparison because their quality is generally well known and
STRAIGHT is generally considered as a reference one. The three
systems were trained on the same database and the same extracted
context features.

5.1. Subjective evaluation

The test consists of a subjective comparison between the 3 systems.
A comparison category rating (CCR[23]) test was used to assess the
quality of the synthetic speech generated by the SVLN-basedsystem
in comparison to synthetic speech generated by the pulse train and
STRAIGHT-based systems. 5 sentences were chosen to generate the
test samples for each system. 48 French naive listeners compared a
total of 15 speech sample pairs. They were asked to attributea score
to the quality of the second sample of a pair compared to the quality
of the first one on the comparison mean opinion score (CMOS) scale.

The test is available on [24]. The prosody suffers by defaults
partly due to the nonnatural diction (over-articulated) ofthe non pro-
fessional speaker. The ranking of the three systems was evaluated
by averaging the scores of the CCR test for each method (shownon
Figure 3). The results show that the system based on the proposed
SVLN method provides a better quality than the one based on the
pulse train method but not as good as the one based on STRAIGHT.
We suppose that the difference of quality may be partly explained by
some artefacts due to the sensitivity of the voicing detection (through
the VUF estimate) and the noise filtering and modulation. This po-
tential way of improvement to our system will be studied in the fu-
ture.
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5.2. Voice Transformations

Although the quality of the speech synthesized by our systemis not
as good as the one synthesized by the STRAIGHT-based one, our
system offers a better control of the vocal quality with onlya few
parameters. Due to the VTF parameters being independent of the
excitation ones, the glottal source may be changed keeping the VTF
untouched. For instance, in pitch transposition, the glottal formant
[8] may be shifted independently of the VTF formants. This isof
great value for expressive speech synthesis. Also it allowsone to
quickly synthesize different speaker personalities with various voice
qualities from the same voice. Some voice tranformations examples
are available on [24].

6. CONCLUSION

In this work, we proposed a HMM-based speech synthesis sys-
tem for French using a new Separation method of Vocal-tract and
Liljencrants-Fant model plus Noise (SVLN). With this method the
naturalness obtained by HMM-based synthesis using a phase model
like STRAIGHT can be approached with a better control of the
vocal quality with few parameters. It also allows an intuitive control
of the voice quality which is of great interest for expressive speech
synthesis or to quickly synthesize different speaker personalities
with various voice qualities from the same voice.

Future research includes the improvement of the analysis stabil-
ity and robustness (e.g. against high frequency artefacts). We will
also improve the prosody modelling by extracting more advanced
context features using a French lexical analyser. Finally,we plan to
use the SVLN method for voice conversion.
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