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ABSTRACT

We present an approach to model the temporal evolution abaud
descriptors using Segmental Models (SMs). This methodvallo
to segment a signal as a sequence of primitives, constitytexd
set of trajectories defined by the user. This allows one tdi@xp
itly model the time duration of primitives, and to take intxaunt
the time dependence between successive signal framesargont
to standard Hidden Markov Models. We applied this approach t
a database of violin playing. Various types of glissando dyd
namics variations were specifically recorded. Our resuitsvs
that our approach using Segmental Models provides a segment
tion that can be easily interpreted. Quantitatively, thgrSental
Models performed better than standard implementation délétn
Markow Models.

1. INTRODUCTION

One way of producing innovative music is to add complex ssund
to the composer’s vocabulary. We can think of various exaspl
such as noise machines of the italian Futdlisteunds produced
from electronical devices as well as extended playing tegctes
on traditionnal instrument§J[L] Pl 3]. Along a single soundrs,
complexity can be introduced by modulating pitchness, ithere
enveloppe, granularity etc. In such cases, an elementanydso
can not be described only with steady values for pitch, tembr
duration and intensity values, which is the modeling asgionp
behind most systems designed for western music transamipti

If one wants to describe such complex notes, it is desirable
to seek for existing sound ontologiels [4, 5]. We pursue ideas

from previous works[l6[17] where authors aimed to implement
ideas from Pierre Schaeffer’s description of sounds[8]e ©wuld
roughly describe his system as the representation of comples

as characteristic temporal profiles on perceptual dimessidn
these works, the authors designed temporal features i twde
fit Schaeffer's morpholgical sound descriptions. Theresaxeral
limitations in these previous attempts that we try to ovarean

the present work. The first comes from considering global fea
tures on an isolated portion of sound as opposed to instamtsn
features. This is suboptimal from a statistical learniragdpoint.

1The Intonarumori (noise intoners) built by Russolo in theyea0th
century.

Defining sub-units would allow to limit the number of modé®s.[
Moreover, the combination of sub-units can lead to more es«pr
sive models, as the use of a limited set of phonemes allow the
modeling of a high number of words.

In the proposed approach, we try to overcome these limitatio
by proposing a statistical framework to explicitly modetiaude-
scriptor trajectories. The modeling philosophy consistgak-
ing maximum advantage of our prior knowledge that data can be
viewed as trajectories, so that subsequents observatiestrangly
correlated. This segmental approach already used for hétimiyv
modeling in[10] has proven to be a good solution when ontielit
training data is available. Furthermore, explicitly maodglthe du-
ration has shown to increase robustness to noisy condifidijs
The statistical framework is based on Segmental Models [SMs
SMs are a generalization of Hidden Markov Models (HMM)I[12]
that address three principal HMM limitations: 1) weak dimat
modelling, 2) assumption of conditional independence afeob
vations given the state sequence and 3) the restrictiong@n f
ture extraction imposed by frame-based observatiors [I3the
contrary, SMs provide explicit state duration distribaspexplicit
correlation models and use segmental rather than franesfea-
tures.

The paper is structured as follows. In secfidn 2 we introduce
the formalism of SMs and how we adapt it to audio descriptors.
In section[B, we present an experimental set up to validate ou
approach. We finally present the results of a classificatsk,t
and give perspective for future studies in sectldns 4&nd 5.

2. SEGMENTAL MODELS

In this section, we present some key points of the SM fornmalis
to model time dynamics. This modelling is based on a set afecur
primitives that we introduce here. We also describe the diego
process that permits to segment a signal into a sequencewa cu
primitives.

2.1. Model Description

The SM formalism addresses two aspects that are partigudarl

sential for our approach. We briefly review these two poimis a
we invite the reader to refer to[I13] for a more in-depth prese
tation of SMs. First, contrary to HMMs where observations ar
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assumed to be independent from each other, SMs directly Imode In this paper, we defined a set of primitives a priori as dorf&%j

sequences of observations. Each state represents eleynanizae
shapes, also called primitives. This first property enataéslly
consider possible time dependence between successiatfsagnes
thanks to the use of explicit curve shapes. The second pyoper
dresses duration modeling of states. In SMs, the time spesatch
state is defined in a flexible way, using duration distritusioT his
permits to reflect that each curve shape possesses a chiatacte
duration length with some variability. Combined togethbese
two properties enables to consider curve primitives withsilale
amplitude and/or time deformations, which grants a fleXitaime-
work for the modelling of shapes. SMs have shown successful i
data mining to identify patterns in time seri€sl[14], or toyide a
higher level representation in handwriting recognitiosksa[10].

the primitives are segments with constant or weak curvatité
slopes equally distributed withip-7/2; 7 /2].

A T-long trajectory is generated using an initial an@lg;., a
final angledy;nq:, and the following linear interpolation:

n

t t+T—1

(Ofinar — Oinit), with t = [0,T — 1]
Varying T, we obtain different lengths of elementary trégees.
Varying 0in:: andf ¢inq:, We can set the main segment angle. A set
of nine such elementary models is illustrated on Fidiire 2&chE
segment represents an archetype building block for a featuwe,

in the sense thatitis built upon the idea that any featuresccould

We here extend the idea to model time shapes in audio feature®® roughly described as a concatenation of successive aegme

curves.

We represented on Figukg 1 the general concept of the seg-

with various durations.
The reason for choosing this set is partly inspired by thekwor

mental approach applied to a monodimensional signal. Wi bui N [16] where the author compared an analogous predefined set

an ergodic model where each stéteis a predefined curve primi-
tive: for each curve primitive, several duration lengthsire pos-
sible. This topology then enables to decompose the inpugkig
into a sequence of primitives, each characterized by a ti(fle
1;), using the decoding procedure presented in seEfidn 2.3.

signal

Si S2 83

(52, ) :(33, 1) (s1, I¥)

signal

»

>
time

- >
Ij li I

Figure 1: Model topology for the SM: each state represents\aec
primitive S; with possible duration lengtis. The model is fully
connected. The decoding procedure then segments an igpat si
into a sequence of dupletgr¢Gmitives, lengths).

2.2. Trajectory Models

From the model description, it appears that the choice made f
the set of curve primitives is crucial. It not only condit®the ob-
tained segmentation, but a judicious choice of primitivass addi-
tionally grant a level of interpretation on the signal depasition.

to a more specific one, learned from several handwritingsa#sa
and found that the predefined one were generic enough tormtccou
for any handwriting curve. We adapted it using only segmants
the x-positive plane. Although quite basic, these curveitives

can capture possible trends of signal, typically statipngoing

up or down. In addition, these features actually match dspec
the sound typology proposed by Schaeffér [8]. More advanced
primitives can also be defined, in particular primitiveshwitore
specific curve shapes.

Another important aspect in the modeling deals with the@oi
of a set of possible duration lengths for the primitives. sTéét
actually controls the time deformations that each priraitian as-
sume and parallely defines a temporal granularity.

So
Ss

S7
N3

Ss

S4
S3
S2
Ni

Figure 2: Set of nine curve primitives

2.3. Decoding

The decoding of the ergodic model yields to a segmentati@nof
input signal into the chosen primitives. We perform thigpsoa
the basis of anaximum a posteriofikelihood, with a 3D Viterbi

procedure[[183].
For an observed input signal...x:, we compute the corre-

sponding sequence of anglés...d; to be invariant to possible
curve offsets. We use the following formula :
0 = arctan((zw¢ — x¢—1) * fr) )
where fr is the input signal’s frame-rate.
Assuming a white gaussian noisgwith varianceo for the
observations, we gét, = 6, + b;. The likelihood of the primi-
tive Si with respect to the observed sequence of angles): is
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approximated, as done inJ10]:

— logp(01...0:|t, Sk) = 2

N =

~ (0; — 0:)°
>
=1

wheref; is an element in the sequence of anglesSpr

For an observed sequence of andles.dr, the decoding is
based ond:(j), the log probability of the most likely sequence of
elementary trajectories ending with trajectory lapeht timet:

6:(j) = max maxd; (i) aij pj (1) p(Br_141..0:|1,5;) (3)

i=1,....,M lEL
wherea;; is the transition probability from stat€; to S;, M is
the number of elementary trajectorigsjs the set of possible du-

ration lengths, ang; (/) the probability to stay in staté; during
[ successive observations.

Choosing the maximum posterior probability path yields to

two N-long sequencesSy and!l¥, whereN is the number of
states in the path. These two sequences actually give asesiee
tion of the input signal temporally decomposed on the setiafip
tives. Given our choice of curve primitives, this decomposidi-
rectly informs us of the signal trends over successive tanges.

3. EXPERIMENTS

The approach was evaluated on a set of violin contemporagy pl

ing techniques. We describe here the datasets, the choden au

description and the evaluation procedure.

3.1. Dataset

We specifically recorded data to carry out an evaluation of ou

approach. The music material involved various pitch andnint

sity profiles. To do so, we defined a musical vocabulary (see

Figure[Ba ) composed of two pitch profilegpgvard glissando,
downward glissand@nd three intensity profileciescendo, de-
crescendo, sforzandoefered a1 ,» andii 2,3 respectively. This
vocabulary was chosen for the strong intrinsic temporalgians

of its elements. Crescendi(resp. glissand) consist in continu-
ously progressing from one intensity level (resp. pitchanother.

S forzando consists in a step-like intensity profile with a louder
part at the beginning. We generated short music sketchesfout
this vocabulary, by random combination of the vocabulagjés
ments with random pitches. Each sketch is a four-beat seand
beat being a combination of one intensity profile and onehpitc
profile. Moreover, no global dynamic levels were imposedy on
crescendanddecrescendiFigurelBb shows one example of a gen-
erated music sketch.

We automatically generated 43 sketches involving randam pr
portions of pitch and intensity profiles. The generatedesarere
interpreted by a violin player at a given tempoGof bpm. Sound
was recorded a44100 Hz, and sliced intot6.4 msec windows,
every5.8 msec, yielding an approximate frame rgite= 172 Hz.

3.2. Audio Features

We extracted two sound descriptors, highly correlatedéathsi-
cal dimensions of pitch and intensity involved in our datanely
fundamental frequency [IL7] and loudneBs|[18]. In order Far t
considered pitch profiles to be shift-invariant along thegfrency

a) i1 i2 ia

p10 — . — . — -

e e

/E— . -

p: € £ { = =

2% T — #‘Z

b)

o) r— " o " —

bes e I T

QT e e e 4
— — ‘?f’z —
(p2,i2) (p1,i2) (p1,i3) (p2,i1)

Figure 3: Pitch and intensity vocabulary elements (a) amdckk
example generated from the combination of pitch and intgnsi
profiles (b). Sketches were performed on a violin.

axis, fundamental frequency was mapped frblertz to a loga-
rithmic scale ¢ent3. The descriptor sequences were normalised
within the [0, 1] interval, using the possible violin ranges in pitch
(190H z to 4400H z) and intensity .01 Sones to 15 Sones).
Subsequently, these values are converted to angle segueithe
Equatiorl.

3.3. Evaluation Method

To assess our approach, we carried out a classification tegieo
vocabulary elements defined in secfiod 3.1. The tasks caiebe i
tified as:

e taskTL classify theupwardanddownward glissandpitch
profiles

e taskT2 classify thecrescendo, decrescendadsforzando
intensity profiles

The audio feature computation on each class element yields t
set of pitch and loudness values on which we separately réh a 3
Viterbi decoding. The output sequences of primitives argbas
ciated durations are then fed into a higher level HMM to cienst
tute models of each vocabulary elements. This step is sitala
the higher-level stage performed [n]10] and can be seen aga w
to agglomerate constitutive sub-units (i.e. the user-ddfjprimi-
tives) into larger semantic units. For this higher level Hiyive
chose a 3-state left-right topology with a 2-dimensionali§san
model and diagonal covariance to account for state indicéls a
segment duration lengths.

The classification task was performed as follows. A typical
train/test round consisted in training the higher-leveldeloon a
randomly picked70% of the data, and testing on the remaining
30%. To evaluate a model on a given task, we ran each train/test
round ten times in a row and averaged the classification saore
each test set. Training the models was done with converitiona
EM learning [19] using HTKI[[ZD] with simple left-right modzl
Classification scores were computed as the mean of diagemad t
on the normalised confusion matrix.

As a reference, we performed the same classification tasks
with a HMM directly operating on the audio frames. We used
the same 3-state left-right topology and train/test praces| with
a 1-dimensional Gaussian model to account for an incomiag an
gle sequencé;...d;. The experiment protocol is summed up on
Figureld
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Figure 4: Experimental set overview. A left-right HMM withree
states is trained with segmented observations output frerseg-
mental decoding procedure. Classification results are aceato
a left-right HMM operating on audio frames.

bB
train

DB
test

4. RESULTS

In this section, we first give a qualitative result intendtoglius-
trate a typical output of the segmental decoding layer. Véa th
give quantitative results on the classification tasks.

4.1. Segmentation results

The segmentation was performed using the primitives pteden
sectionZP. We defined the set of possible duration lengttis w
values linearly taken betwee80ms (roughly corresponding to
short violin note) an@®.6s (several notes). The curves on Figure
show the resulting segmentation for one example of pitofilpr
and loudness profile.

We can see that on this example, tilesssandois composed
of three phases, i.e. flat pitch then increasing pitch anéth&ts
pitch. This description in itself is quite informative orethiolinist
playing as we are able to see the details of his performantiei®n
vocabulary element: in this example the pitch increasiragphwas
relatively short with two well defined flat phases. On the oess
profile, we can see that tt@escendds composed of a linearly
increasing phase during most of the time before a rapidselea

itch (a.u. loudness (a.u.
048 _pich (@u) (@v)
0.6
0.47 0.4
0.46 0.2
n . \ 0| 4 I
0'450 100 200 300 0 100/ 200 300| 400
time\ (frame) time (frame)
(Ss, 90) (57, 40) (Ss, 150) (Ss, 300) (51, 90)
a) b)

Figure 5: Segmentation results on two profile classes from.DB
a) shows a pitch profile for ampward glissandelass. b) shows an
intensity profile for acrescendalass. Below each feature curve,
the sequence of primitive labels and durations is repottedach
box, the shape of the corresponding symbolic representatio
each primitive is printed.

4.2. Classification results

Classification scores for pitch profiles displayed in Fid@r@gask

T1) show that the segmental approach performs significantly be
ter than the baseline frame-based approach (median vaf&¥/at
versus 72%). Moreover, the results also show more consisten
as their variability is much smaller in the segmental apgino@n-
terquartile of 7 versus interquartile of 18). For the louskprofiles
(taskT2), results appear to be relatively similar between the two
approaches (median value around 77%). However, the segment
approach shows once again a narrower variability in classifin
(interquartile of 3 versus interquartile of 12).

We can get insight of these results by inspecting the learned
models and how the data fits. Figlile 7 shows an example of the
learned models for the two pitch profiles, for the frame-daee-
proach (a and c) as well as for the segmental approach (b and d)
As one could expect for this classification task, the secdatd s
seems to be the most discriminating one. In the frame-bgsed a
proach, the second-state Gaussians only differ by a slidfer-d
ence of mean, and tend to overlap. In the segmental approach,
these second-state Gaussians are much more distinct.editer
ingly, looking at the graphs, the segment duration obsematdo
not seem to add much more discriminative power to the model.
When inspecting loudness models, no such clear contrasbhvas
served between the two approaches on the Gaussian digtnibut
In both cases, data looked less unimodal, which questi@shb-
sen topology.

100, 20 — Segmental

951 = Frame-based
90 80
8sf

70

80
75
70t
65¢ 50
60}

7| — 40— |

Pitch Loudness

scores

Figure 6: Classification scores on ta§ksandT2.

5. CONCLUSION AND PERSPECTIVES

We propose the use of Segmental Models to segment time curves
of audio signals. The implementation we proposed was tested
on two classification tasks using a database of violin coptem
rary playing. The segmental approach performed bettersteam
dard implementations of Hidden Markov Models in most cases.
Importantly, Segmental Models overcome well-known linigas

of HHMs, by explicitly modeling the time duration of primigs,

and by taking into account the time dependence betweensucce
sive signal frames. Future perspectives may adress thg sfud

a realtime implementation on a data stream, using Viterte@rex
sions such as il [21]. The segmental approach performedowell

a monophonic instrument in the context of contemporary musi
however we believe that this approach can be easily extetuded
broader situations. In particular, we are investigating tise of
more complex curve primitives to directly address speciiens|
components. Besides, we are also currently extending the ap
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Figure 7: Observation densities and state aligned dataéonéd

models for the two pitch classes: stands for the state number

of the model. a) states of the frame-based HMM for classb)
states of the segmental HMM for clags c) states of the frame-

based HMM for clasg- d) states of the segmental HMM for class

D2

proach to multidimensional features that could includeothodal-
ities like mouvement data.
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